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Abstract. — We consider simplicial sets equipped with a notion of
smallness, and observe that this slight “topological” extension of the
“algebraic” simplicial language allows a concise reformulation of a num-
ber of classical notions in topology, e.g. continuity, limit of a map or
a sequence along a filter, various notions of equicontinuity and uniform
convergence of a sequence of functions; completeness and compactness;
in algebraic topology, locally trivial bundles as a direct product after
base-change and geometric realisation as a space of discontinuous paths.

In model theory, we observe that indiscernible sequences in a model
form a simplicial set with a notion of smallness which can be seen as an
analogue of the Stone space of types.

These reformulations are presented as a series of exercises, to em-
phasise their elementary nature and that they indeed can be used as
exercises to make a student familiar with computations in basic simpli-
cial and topological language. (Formally, we consider the category of
simplicial objects in the category of filters in the sense of Bourbaki.)

This work is unfinished and is likely to remain such for a while, hence
we release it as is, in the small hope that our reformulations may provide
interesting examples of computations in basic simplicial and topological
language on material familiar to a student in a first course of topology
or category theory.

These preliminary notes are intended as an invitation to the topic, and are released in the hope of

generating further activity on the subject.

Warning: Unfortunately, the notes are likely to contain misprints and perhaps mistakes. We hope the

elementary nature of the material makes them easy to ignore. The notes are likely to remain in current

state for a while. I will be grateful for corrections of mistakes and inaccuracies and generally help in

proofreading but may not be in a position to make substantial changes. mishap.sdf.org/6a6ywke/

Corrections to be sent to either here or miishapp@sddf.org .
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1. Introduction

We consider simplicial sets equipped with an additional neighbourhood
or being small enough structure, which (paraphrasing [Bourbaki, General
Topology, §Introduction] on topological structure) ‘enables us to give
a precise meaning to the phrase “such and such a property holds for
all [simplices sufficiently small] (orig. points sufficiently near a)” : by
definition this means that the set of [simplices] (orig. points) which
have this property is a neighbourhood for the [neighbourhood] (orig.
topological) structure in question.’ In presence of a metric, a ‘small’
simplex would mean a simplex being wholly contained in a small ball.

We observe this leads to a notion (category) of spaces allowing a con-
cise reformulation in category-theoretic terms of a number of classical
notions in topology, e.g. continuity, limit of a map or a sequence along
a filter, various notions of equicontinuity and uniform convergence of a
sequence of functions; completeness and compactness; in algebraic topol-
ogy, locally trivial bundles as a direct product after base-change, and
geometric realisation as a space of discontinuous paths.

The notion of smallness on a simplicial set allows to discuss topology
as follows. In a topological or metric space X, a point x is near a point

http://mishap.sdf.org/tmp/Bourbaki_General_Topology.djvu#page=15
http://mishap.sdf.org/tmp/Bourbaki_General_Topology.djvu#page=15
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y iff the simplex �x, y� > E �E is small in the simplicial set of Cartesian
powers of X equipped with an appropriate smallness structure..

Formally, we consider the category of simplicial objects in the category
of filters in the sense of Bourbaki, and the intuitive description above is
formalised as follows. In a topological space X, a neighbourhood of a
point x consists of all points y such that “the simplex �x, y� is ε-small”
for some ε a neighbourhood according to the filter on E �E. Yet more
formally, U ? x is a neighbourhood iff there is a subset ε ` E � E big
according to the filter on 1-simplicies E � E such that y > U whenever�x, y� > ε.

For a metric space X, the filters on the Cartesian powers can be de-
scribed explicitly as follows: a subset ε ` E � ... � E is big, or a neigh-
bourhood, iff there is ε A 0 such that a tuple belongs to ε whenever it
consists of points at distance at most ε apart.

The structure of the paper is as follows. In §2 we define the category
Å̧ and give a number of reformulations. Its purpose is give the reader

a feeling of expressive power of Å̧. Notably, following the approach of

[Besser],[Grayson],[Drinfeld], we show�1� that the geometric realisation of
a simplicial set can be interpreted as an mapping space of discontinuous
paths. In §3 we discuss the intuition behind the new notion of space.
In §3.1 in a verbose manner we argue that the description by [Bourbaki,
Introduction] of the intuition of (basic general) topology transfers to Å̧

almost verbatim. In §3.2 we offer several vague speculations about intu-
ition of algebraic topology. In §3.3 we say that Å̧ has objects originating
in Ramsey theory and model theory.

In §4 we mostly repeat §2 somewhat more formally and with more
details. There we present our reformulations as a series of exercises, to
emphasise their elementary nature and that they indeed can be used as
exercises to make a student familiar with computations in basic simplicial
and topological language.

We end in §5 by a discussion of Ramsey theory and indiscernibles in
model theory.

2. A sample of definitions and reformulations

2.1. Constructions in general topology. —

�1�We stress, again, the preliminary nature of these notes

http://mishap.sdf.org/tmp/Bourbaki_General_Topology.djvu#page=15
http://mishap.sdf.org/tmp/Bourbaki_General_Topology.djvu#page=15
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2.1.1. The definition of the category of simplicial sets with a notion of
smallness. — Here we state the key definition of the paper. In this
section we introduce notation as we go; see §4.1.2 for explanation if nec-
essary. Here we just note that a version of this paper uses type-theory
notation for Hom-sets, which the author finds more readable for nested
formulae: in a category C, the set of all maps from an object X to Y

is denoted by either �X Ð�
C
Y   or HomC �X,Y �, and the space of maps

from X to Y , usually an object of C, if defined, is denoted by either

�X Ô�
C
Y   or HomC �X,Y �.

The definition of our main category uses the following definition [Bour-
baki, I§6.1, Def.I] which is given more formally later in Definition 4.1.

Subsets in F are called neighbourhoods or F-big. Unlike [Bourbaki], we
do not require �FIII� and allow both X � g and g > F; necessarily X > F.

A morphism of filters is a function of underlying sets such that the
preimage of a neighbourhood is necessarily a neighbourhood; we call
such maps of filters continuous.

Let Å denote the category of filters.

Definition 2.1.1.1 (Simplicial filters Å̧). — Let Å̧ � Func�∆op,Å�
be the category of functors from ∆op, the category opposite to the cate-
gory ∆ of finite linear orders, to the category Å of filters. We refer to its
objects as either simplicial filters, simplicial neighbourhoods, or situses,
for lack of a good name.

2.1.2. Neighbourhood structures associated with a metric space. — See 4.2.1
for a precise definition.

With the set M of points of a metric space associate the simplicial sets
represented by M :

∆op
Ð� Sets, nz� HomSets �n,M� �Mn

∆op
Ð� Sets, nz� HomSets �n � 1,M� �M �Mn

Call a subset ε `Mn � HomSets �n,M� a neighbourhood (of the diagonal)
iff there is ε A 0 such that �x1, .., xn� > ε whenever dist�xi, xj� @ ε for all

http://mishap.sdf.org/6a6ywke/6a6ywke.pdf
http://mishap.sdf.org/tmp/Bourbaki_General_Topology.djvu#page=63
http://mishap.sdf.org/tmp/Bourbaki_General_Topology.djvu#page=63
http://mishap.sdf.org/tmp/Bourbaki_General_Topology.djvu
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0 @ i @ j B n. In this way we associate two simplicial neighbourhood
with a metric space denoted by M√ and M√��1�, resp. There is an
Å̧-morphism ��1� �M√��1�Ð�M√ projecting each M �Mn to Mn.

A Å̧-morphism f � L√ Ð�M√ is a uniformly continuous map LÐ�
M .

2.1.3. Limits and ��1� ��A id � ∆op
Ð� ∆op. Uniform convergence.—

Let Ncof be the filter of cofinite subsets, and let �n( Nn
cof� denote the

simplicial object ∆op
Ð� Å, nB ( Nn

cof of Cartesian powers of Ncof.
A Cauchy sequence �an�n>N in a metric space M is a morphism ā ��n( Nn

cof� Ð� M√, �i1, .., in� ( �ai1 , ..., ain�: for each ε A 0 the preim-
age of ε �� ��x, y� � dist�x, y� @ ε� contains δ �� ��n,m� � n,m A N��
for some N large enough, i.e. dist�an, am� @ ε for n,m A N . The se-
quence �an�n>N converges iff the morphism ā � �n( Nn

cof�Ð�M√ factors

as ā � �n( Nn
cof� āª

Ð� M√��1� ��1�
ÐÐ� M√. Moreover, the morphism āª �

�n( Nn
cof� āª
Ð�M√��1� is necessarily of formMn

Ð�Mn�1, �i0, i1, ..., in�(�aª, ai1 , ..., ain� where aª is the limit of sequence �an�n>N.
To see this, first note that the underlying sset of M√��1� is a disjoint

union M√��1� � @a>M�a��M√ of copies of M√, and that the underlying
sset of �n( Nn

cof� is connected. Hence, to pick a factorisation of the un-

derlying ssets is to pick an a >M . Now, the map �n( Nn
cof�Ð� �a��M√

is continuous iff for each ε A 0 the preimage of ε �� ��a, x� � dist�a, x� @ ε�
contains δ �� ��n,m� � n,m A N�, i.e. for m A N dist�a, am� @ ε.

A uniformly continuous function f � L Ð� M is a morphism L√ Ð�

M , cf. §4.11.3. Indeed, for every ε A 0 the preimage of ε �� ��u, v� �

dist�u, v� @ ε� ` M �M contains δ �� ��x, y� � dist�x, y� @ δ� ` L � L for
some δ A 0, i.e. dist�f�x�, f�y�� @ ε whenever dist�x, y� @ δ�.

A uniformly equicontinuous sequence �fi � L Ð� M�i>N of uniformly
continuous functions is a morphism �n( Ncof� �L√ Ð�M√,

N �Ln Ð�Mn, �i, x1, ..., xn�( �fi�x1�, ..., fi�xn��,
or, equivalently, is a morphism �n( �Nn

cof�diag� �L√ Ð�M√,

Nn
�Ln Ð�Mn, �i1, ..., in, x1, ..., xn�( �fi1�x1�, ..., fin�xn��

where �n( �Nn
cof�diag� denotes the simplicial object ∆op

Ð� Å, nB (�Nn
cof�diag of Cartesian powers equipped with “the filter of cofinite diag-

onals”, i.e. a subset of Nn is a neighbourhood of �Nn
cof�diag iff it contains

the set ��i, i, .., i� � i A N� for some N A 0.
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Indeed, for every ε A 0 the preimage of ε �� ��u, v� � dist�u, v� @ ε� `

M �M contains δ �� ��n,x, y� � n A N,dist�x, y� @ δ� ` N�N�L�L, resp.,
δ �� ��n,n, x, y� � n A N,dist�x, y� @ δ� ` N�N�L�L, for some δ A 0 and
N A 0, i.e. dist�fn�x�, fn�y�� @ ε whenever n A N and dist�x, y� @ δ.

A uniformly Cauchy sequence �fi � L Ð�M�i>N of uniformly continu-
ous functions is a morphism �n( Nn

cof� �L√ Ð�M√,

Nn
�Ln Ð�Mn, �i1, ..., in, x1, ..., xn�( �fi1�x1�, ..., fin�xn��.

Indeed, for every ε A 0 the preimage of ε �� ��u, v� � dist�u, v� @ ε� `

M �M contains δ �� ��n,m,x, y� � n,m A N,dist�x, y� @ δ� ` N�N�L�L
for some δ A 0 and N A 0, i.e. dist�fn�x�, fm�y�� @ ε whenever n,m A N
and dist�x, y� @ δ.

The uniformly equicontinuous sequence �fi � L Ð� M�i>N uniformly
converges to a uniformly continuous function fª � L Ð�M iff this mor-
phism “lifts by ��1�”, i.e. fits into a commutative diagram

L√��1� � �n( �Nn
cof�diag� //

��1��id
��

M√��1�
��1��id

��

L√ � �n( �Nn
cof�diag� �f1,f2,...� // M√

where the top row morphism is, necessarily, of form

Nn
�Ln�1

Ð�Mn�1, �i1, ..., in, x0, x1, ..., xn�( � fª�x0�, fi1�x1�, ..., fin�xn� �
To see this, use that �n ( �Nn

cof�diag� is connected and therefore maps
into a connected component of M√��1�.
2.1.4. Complete metric spaces as a lifting property. — A metric space M
is complete iff every Cauchy sequence converges, i.e. the following lifting
property�2� holds:

gÐ� �n( Nn
cof� û M√��1�Ð�M√

�2� A morphism i � A � B in a category has the left lifting property with respect to a
morphism p �X � Y , and p �X � Y also has the right lifting property with respect to
i � A � B, denoted i û p, iff for each f � A � X and g � B � Y such that p X f � g X i
there exists h � B �X such that h X i � f and p X h � g. This notion is used to define
properties of morphisms starting from an explicitly given class of morphisms, often
a list of (counter)examples, and a useful intuition is to think that the property of
left-lifting against a class C is a kind of negation of the property of being in C, and
that right-lifting is also a kind of negation.
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or, in another notation,�3�

gÐ� �n( Nn
cof� > �M√��1�Ð�M√ � M is a complete metric space�l

Hence, gÐ� �n( Nn
cof� > �R√��1�Ð� R√�l, and therefore

M√��1� Ð� M√ > �R√��1� Ð� R√�lr implies M is com-
plete,

and a little argument shows the converse holds for precompact metric
spaces.

Compactness can also be reformulated as a lifting property, see §4.11
for this and other examples.

2.2. Elementary constructions in homotopy theory. —

2.2.1. The unit interval. — With the unit interval �0,1� associate the
simplicial set

∆op
Ð� Sets, nB z� Hompreorders �nB, �0,1�B�

Equip it with a neighbourhood structure using the metric: ε ` Hompreorders �nB, �0,1�B�
is a neighbourhood iff there is ε A 0 such that �t1 B ... B tn� > ε whenever
tn @ t1�ε. This neighbourhood structure can be defined entirely in terms
of the simplicial set itself, cf. §4.4 for details: ε ` Hompreorders �nB, �0,1�B�
is a neighbourhood iff for any τ A 0 there is T A τ A n and a simplex
s � �s1 B .. B sT � such that t�i1 B .. B in� � �ti1 B .. B tin� > ε whenever
T � A 0, the simplex s is a face of a simplex t � �t1 @ t2 @ .. @ tT �� and
i1 B .. B in @ i1 � τ . Denote this simplicial neighbourhood by �0.1�B.

A path γ � �0,1� Ð� M in a metric space M is same as a morphism�0,1�B Ð�M√. An automorphism �0,1�B Ð� �0,1�B is a non-decreasing
(necessarily uniformly) continuous automorphism �0,1� Ð� �0,1� of the
unit interval.

2.2.2. Simplicies as ε-discretised homotopies.— A map f is homotopic
to a map g iff there is a sequence f � f0, f1, ..., ft,...,fT � g where ft
is as near as we please to ft�1, 0 B t B t � 1 B T . In Å̧ this is readily

formalised by saying that the simplex �f, g� is a face of simplex
Ð�

f with

�3�Denote by P l and P r the classes (properties) of morphisms having the left,
resp. right, lifting property with respect to all morphisms with property P :

P l
�� �f û g � g > P� P r

�� �f û g � f > P�

It is convenient to refer to P l and P r as the property of left, resp. right, Quillen
negation of property P .
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consecutive faces as small as we please, i.e. for each neighbourhood ε in

the set of 1-simplices there is a simplex
Ð�

f �
Ð�

fε in the space of maps from

X to Y such that �f, g� � Ð�f �0BT � for some t C 0, and
Ð�

f �t B t � 1� > ε
for 0 B t @ T � dim

Ð�

f ; here
Ð�

f �0 B T � denotes the face of simplex
Ð�

f
corresponding to ∆-morphism 0 B T � 2B Ð� TB, 0 ( 0, 1 ( T , and

similarly for
Ð�

f �t B t � 1�. This formalisation immediately suggests we
should let ε vary among neighbourhoods of arbitrary dimension T � and

rather require that
Ð�

f �
Ð�

fε,n and
Ð�

f �t0Bt1B ...BtT �� > ε whenever tT � Bt0�n
(where ε `XT � and n A 0).

This leads to the following definition.
For a neighbourhood ε ` MT and n A 0, a simplex s � MT � is ε~n-fine

iff s�t0 B ... B tk� > ε whenever 0 B t0 B ... B tk B t0 � n B T �. A simplex s is
Archimedean iff it can be split into finitely many arbitrarily small parts,
i.e. is a face of some ε~n-fine simplex for every neighbourhood ε ` Xk

and every T,n A 0.�4� For example, a pair of points �x, y� > M �M in
a metric space M is an Archimedean simplex in M√ iff for each ε A 0
there is an ε-discretised homotopy x � x0, x1, ..., xl � y, dist�xt, xt�1� @ ε
for 0 B t @ l, from x � �x, y��0� to y � �x, y��1�.

Archimedean simplices of a simplicial filter X � Å̧ form a subobject

(subfunctor) XArch, as the definition is invariant.
A well-known lemma says that two functions f, g � A Ð� M from

an arbitrary topological space A to a metric space M are homotopic iff
there is a ε-discretised homotopy f � f2, ..., fn � g such that for any x > A
dist�ft�x�, ft�1�x�� @ ε, under some assumptions on the metric space M ;
it is enough to assume that for every ε A 0 there is δ A 0 such that every
ε-ball contains a contractible δ-ball. We reformulate this by saying that
two functions f, g � A Ð�M are homotopic iff �f, g� is an Archimedean
simplex of the mapping space Func�A,M�√ with the sup-metric, or,
equivalently, a 1-simplex of �Func�A,M�√�Arch.

2.2.3. Topological spaces as simplicial filters. — See §3.1 for the intu-
ition and §4.2.1 for a precise definition.

As with metric spaces, with the set X of points of a topological space
associate the simplicial set

∆op
Ð� Sets, nB z� HomSets �n,X� �Xn

�4�This definition applies to any object of Å̧ but should likely be modified even for

the metric spaces. For explanation see the footnote in §4.6.1.
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Define the filters of neighbourhoods (of the diagonal) as follows. The
filter on X is antidiscrete, as X is the diagonal of itself and thus every
neighbourhood has to contain X. A subset ε `X �X is a neighbourhood
iff ε contains a set of the form

�
x>X

�x� �Ux
where Ux ? x is an open neighbourhood of x. The filter on Xn, n A 2, is
the coarsest filter compatible with all the face maps Xn

Ð� X �X. Let
Xæ denote the simplicial neighbourhood obtained in this way.

2.2.4. A forgetful functor to topological spaces. — The embedding of
topological spaces admits an inverse �æ�1 � Å̧ Ð� Top defined similarly
to the definition of the topology associated with a uniform structure
[Bourbaki,II§1.2,Prop.1,Def.3], as follows.

The set of points of Xæ�1 is the set of points which are ε-small for each
neighbourhood ε ` X0, i.e. Xpoints �� �

ε`X0 is a neighbourhood
ε. The topology

is generated by the subsets that together with each point contain all ε-
near points for some ε ` X1, i.e. subsets U with the following property:
Ux > x is a neighbourhood iff there is a neighbourhood ε ` X1 such that
y > Ux whenever y >Xpoints and �x, y� > ε or �y, x� > ε.

It is easy to check that for a topological space X, �Xæ�æ�1 � X, and
that ��0.1�B�æ�1 � �0,1� as a topological space.

2.2.5. Locally trivial bundles. — Let X,B,F be topological spaces. A

mapX
p
Ð� B is locally trivial iff it becomes a direct product after pull back

to the “local base” ��1� � Bæ��1� Ð� Bæ, i.e. it fits into the following
commutative diagram:

Bæ��1� � Fæ
((RRRRRRRRRRRRR

�iso� // Bæ��1� �Bæ Xæ //

��

Xæ

p

��

Bæ��1� // Bæ

That is, a map X
p
Ð� B is locally trivial iff there is an Å̧-isomorphism

Bæ��1� � Fæ �iso�
ÐÐ� Bæ��1� �Bæ Xæ over Bæ��1�.

Let us verify that this diagram represents the usual definition of local
triviality. To give a morphism of sSets

Bæ��1� �Bæ Xæ � +
b>B

�b� �Xæ �iso�
ÐÐ� Bæ��1� � Fæ � +

b>B

�b� �Bæ � Fæ

http://mishap.sdf.org/tmp/Bourbaki_General_Topology.djvu#page=180
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over Bæ��1� is to give for each b > B a morphism fb � X Ð� B � F ; to
check this, use that ssets Xæ and Bæ�Fæ are connected. The morphism
of ssets is an isomorphism of ssets iff each fb is an isomorphism of sets,
i.e. a bijection.

Let us now prove that each fb is a homeomorphism with a neighbour-
hood of form Ub � F where b > Ub ` B is open.

For each �b�, y�� > B �F pick a neighbourhood W�b�,y�� ` B �B ? �b�, y��
which is a counterexample to continuity of fb at the unique preimage of�b�, y�� if it is indeed not continuous at that point. The following is a
neighbourhood at the set of 2-simplicies of Bæ��1� � Fæ:

ε �� ��b, �b�, y��, �b��, y��� � � �b�, y�� > B � F, �b��, y��� >W�b�,y���8+
b�xb

�b����B�F ���B�F �
By continuity its preimage δb �� f

�1

b �ε� contains a set of the form

��b, x�, x��� > B �X �X � p�x�� > Ub, x�� > Vx��
where Ub ? b, Vx� ? x� are open. Hence f�Vx�� ` Wfb�x�� for all x� such
that p�x�� > Ub ` B, and, by choice of the neighbourhoods W�b�,x��, the
function fb is continuous over the preimage of Ub � F ` B � F .

A similar argument establishes continuity of f
�1

b .

2.3. Geometric realisation as path mapping spaces: the ap-
proach of Besser, Grayson and Drinfeld. — [Grayson, Remark
2.4.1-2] interprets the geometric realisation of a simplex ∆N as a space
of non-decreasing maps �0,1�Ð� �N � 1�B.
S∆N S � ��s1, .., sN� > RN

� 0 B s1 B ... B sN B 1� � �s ��0,1�B Ð� �N � 1�B�
0 B s1 B ... B sN B 1 � ��0, s1�( 0, ..., �sN�1, sN�( N � 1, �sN ,1�( N�

with a metric analogous to Levi-Prokhorov or Skorokhod metrics on the
spaces of discontinuous functions used in probability theory; roughly, two
functions are close in such a metric iff one can be obtained from the other
by a small perturbation of both values and arguments; in other words,
a small neighbourhood of the graph of one function contains the other
one.

We use this observation and the construction of geometric realisation
by [Drinfeld] to define, for a simplicial set X, a Å̧-structure on the inner
Hom in sSets

HomsSets �Hompreorders ��, �0,1�B�,X�
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analogous to the Skorokhod metric. We then argue that the metric space
associated with this Å̧-object is the geometric realisation of X, under
some assumptions.

2.3.1. Drinfeld construction of geometric realisation as a space of paths
with Skorokhod metric. — As a warm-up, for the reader familiar with
[Grayson, §2.4] and [Drinfeld], we sketch a construction of a metric on

HomsSets �Hompreorders ��, �0,1�B�,X�
analogous to the Skorokhod metric in probability theory.

A finite subset F ` �0,1� and an x > X�π0��0,1� � F �� determines a
morphism of sSets Hompreorders ��, �0,1�B�Ð�X as follows:

Hompreorders �nB, �0,1�B�Ð�X�nB�

Ð�
t z� x

<@@@@>
nB

Ð�

t
Ð��0,1�Ð�π0��0,1��F �

ÐÐÐÐÐÐÐÐÐÐÐÐÐ�

=AAAA?
>X�nB�

where �0,1� Ð� π0��0,1� � F � is the obvious map contracting the con-
nected components (we need to make a convention where to send points
of F ).

A verification shows that this defines, moreover, a map of sets

SX S �� lim
Ð�

F`�0,1� finite

X�π0��0,1��F ��Ð� HomsSets �Hompreorders ��, �0,1�B�,X�

Conversely, a map π � Hompreorders ��, �0,1�B�Ð�X of ssets determines
a system of points as follows:

π � θ �nBÐ��0,1�
ÐÐÐÐÐÐ�� >X ��0,1� � �θ�0�, .., θ�n � 1���

and thereby a point of SX S.
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Define the following pseudometric analogous to Levi-Prokhorov or Sko-
rokhod�5� metric (here we allow distance to be 0):

f, g � Hompreorders ��, �0,1�B�Ð�X

dist�f, g� �� inf�ε A 0 � ¦n A 0¦
Ð�
t � �t1 B ... B tn�§Ð�t �

� �t�1 B ... B t�n�
� f�Ð�t � � g�Ð�t �� & St1 � t�1S @ ε & ... & Stn � t�nS @ ε �

Let us now compare this construction with [Grayson, Remark 2.4.1-2]
for X � Hompreorders ��,NB� the �N � 1�-simplex ∆N�1. In this case the
Yoneda lemma gives us that a map �0,1�B � Hompreorders ��, �0,1�B� Ð�
Hompreorders ��,NB� is the same as a map �0,1�B Ð� NB, which, in turn, is
essentially the same as a sequence 0 B s1 B ... B sN�1 B 1, i.e. a point of
the geometric realisation

S∆N�1S � ��s1, .., sN�1� � 0 B s1 B ... B sN�1 B 1� ` RN�1.

We also see that the metric coincides with the metric defined by [Grayson,
Remark 2.4.1-2].

2.3.2. The Skorokhod filter on a Hom-set. — For N A 2n, δ `XN and ε `
Yn, a εδ-Skorokhod neighbourhood of Hom-set HomsSets �Xas sSet, Yas sSet�
of the underlying simplicial sets of X and Y is the subset consisting of
all the function f �Xas sSet Ð� Yas sSet with the following property:

�5� This definition is similar to the definition of Skorokhod metric as
phrased by [Kolmogorov, §2, Def.1 of ε-equivalence], particularly if we
consider functions taking values in a discrete metric space 0,1, ..,N ,
ρ�n,m� �� Sn �mS: two functions f, g are called ε-equivalent iff there exists r and

such that for k � 1, ..., r the following inequalities hold:

The original goal of the definition was to define a distance or convergence for
(distributions of) stochastic processes such that a small distortion of either timings
of events or their values results in a small distance.
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there is a neighbourhood δ0 ` Xn such that each “δ0-small” x > δ0

has a “δ-small” “continuation” x� > XN , x � x��1..N� such that its
“tail” maps into something “ε-small”, i.e. f�x��N � n � 1..N�� > ε.
As a formula, this is

�f �X Ð� Y � §δ0 `Xn¦x > δ0 §x
�
> δ�x � x��1...n� & f�x��N�n�1, ...,N�� > ε��

The Skorokhod filter on HomsSets �Xas sSet, Yas sSet� is the filter gener-
ated by all the Skorokhod εδ-neighbourhoods for N C 2n A 0 (sic!),
neighbourhoods δ `XN and ε ` Yn.

Let HomsSets
Å �X,Y � denote HomsSets �Xas sSet, Yas sSet� equipped with

the Skorokhod neighbourhood structure. This allows to define mapping
spaces in Å̧ by equipping the inner Hom of ssets with the Skorokhod
filters.

Definition 2.3.2.1 (Mapping space). — The Skorokhod mapping space
HomsSets

Å̧ �X,Y � is the inner Hom HomsSets �Xas sSet, Yas sSet� of the under-

lying simplicial sets of X and Y equipped with the neighbourhood struc-
ture as follows. Equip Hompreorders ��, nB� with the antidiscrete filter,
equip X �Hompreorders ��, nB� with the product filter, and, finally, equip
the set of �n�1�-simplicies HomsSets �Xas sSet �Hompreorders ��, nB�, Yas sSet�
with the resulting Skorokhod neighbourhood structure.

The mapping space Hom Å̧ �X,Y � is the subspace of the Skorokhod

mapping space consisting of “continuous functions”, i.e. the simplicies
“over” 0-simplicies in Hom Å̧ �X,Y �. That is, it is formed by the sim-

plicies s > HomsSets �Xas sSet, Yas sSet� such that all its 0-dim faces s�t� �
X Ð� Y , 0 B t B dim s, are Å̧-morphisms.

2.3.3. The geometric realisation of a simplex and its Skorokhod space
of paths. — We now rephrase [Grayson, Remark 2.4.1-2] in terms of
Å̧. Let �∆N�diag denote the standard simplex ∆N � HomsSets ��,N � 1B�

equipped with the filter of diagonals, i.e. the filter on �∆N�0 is antidis-
crete and for n A 0 the filter on �∆N�n is the coarsest filter such that the
diagonal degeneracy map �∆N�0 Ð� �∆N�n is continuous.

Let us now follow [Grayson, Remark 2.4.1-2] and see that the Haus-
dorffisation of the topological space corresponding to the Skorokhod
space of maps from �0,1�B to �∆N�diag is the geometric realisation of
∆N :

S∆N S � �HomsSets
Å̧ ��0,1�B, �∆N�diag�æ�1�

Hausdorff
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Let us explicitly describe the underlying simplicial set. By Yoneda Lemma

HomsSets ��0,1�B,∆N� � HomB ��0,1�B, �N � 1�
B
�

For M A 0 and n A 0, a map
Ð�

f � �0,1�B �∆M Ð� ∆N of sSets is neces-
sarily of form

�t1 B ... B tn, nB θ
Ð�MB�z� �fθ�1��t1�, fθ�2��t2�, .., fθ�n��tn��

where fi � �0,1�B Ð� �N � 1�B, 1 B i BM .
Let us now verify the following. The Skorokhod filter on 0-simplicies

is antidiscrete. A subset U of the set of 1-simplicies is a Skorokhod

neighbourhood iff a 1-simplex
Ð�

f � �f, g� > U whenever dist�f, g� @ δ
where Skorokhod distance dist�f, g� is defined in §2.3.1.

Let us check this. In dimension 0, in the definition of the εδ-Skorokhod
neighbourhood necessarily each 0-simplex of �0,1�B, resp. ∆N , is δ-small,
resp. ε-small, hence each function is εδ-Skorokhod-small. In dimension 1,
we may assume that ε is as small as possible, i.e. the diagonal, and that
δ � ��t0 B t1 B t2 B t3� � t3 B t0�δ� and δ0 � ��t0 B t1� � t1 B t0�δ0� for some
δ A 0 and δ0 A 0. “Each x > δ0” means we take arbitrary t0 B t1 B t0 � δ.
Choosing an δ-small “continuation” x� of x amounts to choosing �t2 B t3�
such that t0 B t1 B t2 B t3 B t0�δ, and that its “tail” maps into something
ε-small means that f�t2� � g�t3�.

3. A convenient category for topology

3.1. The intuition of general topology. — Here we argue that the
category Å̧ of simplicial filters (see §2.1.1 and §4.1 for a definition) is
one of the “ structures which give a mathematical content to the intuitive
notions of limit, continuity and neigh- bourhood” and that the intuition
of general topology as described by [Bourbaki] applies to Å̧ almost ver-
batim.

We do so by paraphrasing the Introduction of [Bourbaki], which we
quote in full for reader’s convenience.

http://mishap.sdf.org/tmp/Bourbaki_General_Topology.djvu#page=15
http://mishap.sdf.org/tmp/Bourbaki_General_Topology.djvu#page=15


16 PRELIMINARY NOTES



SIMPLICIAL SETS WITH A NOTION OF SMALLNESS 17

With help of Å̧ “precision can be given to the concept of sufficiently
small error”. In this direction, our idea was to suppose an “error” is but
a pair �a, a�� > E�E of elements of E and to be thought of as a 1-simplex
of a simplicial set, and that to give a precise meaning to the concept of
sufficiently small error it is enough to associate with E, by some means
or other, for each finite Cartesian power of E, a family of subsets of
“n-simplicies” E � ... � E which are called neighbourhoods — provided
of course that these neighbourhoods satisfy certain conditions (namely,
form an object EY � Å̧, i.e. a contravariant functor from the category of

finite linear orders to the category of filters.)
Following up “the first idea” [Bourbaki], let us first suppose that a set

E carries a notion of “distance” between two elements which can be mea-
sured by a (positive) real number. Once the “distance” between any two
elements of a set has been defined, it is clear how the “neighbourhoods”
on E � E in Å̧ should be defined: a subset of E � E will be a neigh-

bourhood if for every element a it contains all pairs �a, a�� of elements
whose distance dist�a, a�� is less than some preas- signed strictly positive
number. Of course, we cannot expect to develop an interesting theory
from this definition unless we impose certain conditions or axioms on the
“distance” (for example, the inequalities relating the distances between
the three vertices of a triangle which hold in Euclidean geometry should
continue to hold for our generalized distance).

In this way we arrive at a generalization of topology. It is convenient
to continue to use the language of topology: thus the 0-simplicies on
which a “distance” has been defined are called points, and an object of
the category Å̧ itself is called a space.

http://mishap.sdf.org/tmp/Bourbaki_General_Topology.djvu#page=16
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Nevertheless, the Å̧-spaces so defined have a great many properties
which can be stated without reference to the “distance” which gave rise
to them. For example, every subset which contains a neighbourhood
is again a neighbourhood, and the intersection of two neighbourhoods
is a neighbourhood, and, more generally, the neighbourhoods form a
functor ∆op

Ð� Å. These properties and others have a multitude of
consequences which can be deduced without any further recourse to the
“distance” which originally enabled us to define neigh- bourhoods. We
obtain statements in which there is no mention of magnitude or distance.

We are thus led at last to the general concept of a Å̧-space, which does
not depend on any preliminary theory of the real numbers or topology.
We shall say that a set E carries a Å̧-structure whenever we have asso-
ciated with each finite Cartesian power of E, by some means or other, a
family of subsets of E�..�E which are called neighbourhoods — provided
of course that these neighbourhoods satisfy certain conditions (namely,
form a simplicial object ∆op

Ð� Å in the category of filters; see §3.1.2
for an explanation how to reformulate the axioms of topology in terms
of neighbourhoods as being a simplicial object). Of course, there are
Å̧-spaces which are not associated to a set in this way.

The goal of this paper is to suggest to the reader that it may be
worthwhile to view Å̧ as a replacement of the axioms of topology and
to consider the question whether the system of axioms represented by Å̧

is broad enough for the present needs of topology/mathematics, without
falling into excessive and pointless generality.

As [Bourbaki] have said, a topological structure on a set enables one
to give an exact meaning to the phrase “whenever x is sufficiently near
a, x has the property P�x�”. But, apart from the situation in which a
“distance” has been defined, it is not clear what meaning ought to be
given to the phrase “every pair of points x,y which are suffi- ciently near
each other has the property P�x, y�”, since a priori we have no means of
comparing the neighbourhoods of two different points. Now the notion of
a pair of points near to each other arises fre- quently in classical analysis
(for example, in propositions which involve uniform continuity). It is
therefore important that we should be able to give a precise meaning to
this notion in full generality, and we are thus led to define Å̧-structures
which are richer than ones associated with topological structures, and
in fact are associated with uniform structures which are the subject of
Chapter II of [Bourbaki].

http://mishap.sdf.org/tmp/Bourbaki_General_Topology.djvu#page=176
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We do this as follows; we speculate that the fact that this is possible
is an indication that the notion of an Å̧-space is more flexible than the
usual notion of a topological space.

Whenever a “distance” has been defined, to give a precise meaning to
the notion of a pair of points near to each other, we associate with it
an Å̧-object such that its filter of 1-simplicies is defined as follows: a

subset of E �E will be a neighbourhood if it contains all the pairs �a, a��
of elements whose distance dist�a, a�� is less than some preas- signed
strictly positive number (note that in the previous construction of the Å̧-
structure corresponding to a topology, this number was allowed to depend
on a, and this is why we had no means to compare the neighbourhoods
of two different points). More generally, a subset of E � ... � E will be
a neighbourhood if it contains all the tuples �a1, ..., an� of elements such
that the distance dist�ai, aj� for all 1 B i B j B n is less than some preas-
signed strictly positive number.

Paraphrasing slightly these intuitive words of [Bourbaki,p.19], we say
that intuitively, a function is continuous at a point if its value remains
the same up to an error as small as we please whenever the argument
remains the same up to a sufficiently small error. The precise meaning
of this phrase in terms of Å̧ is straightforward: a map f � XY Ð� YY in
Å̧ is continuous iff for every n C 0, for every neighbourhood ε ` Yn there

is a neighbourhood δ ` Xn such that f�δ� ` ε; equivalently, f
�1�ε� is a

neighbourhood in Xn.
Note that when we consider the Å̧-structures defined above and take

n � 2, we recover the standard definitions of continuity and uniform
continuity [Bourbaki, I§2.1,II§2.1]. The similarity to the exposition of

http://mishap.sdf.org/tmp/Bourbaki_General_Topology.djvu#page=15
http://mishap.sdf.org/tmp/Bourbaki_General_Topology.djvu#page=179
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the definition of uniform continuity is particularly startling:

3.1.1. The notion of limit via an endofunctor “shifting” dimension. —
We now show how to rewrite the definition of a limit of a function as
a Quillen lifting property involving an endofunctor of ��1� � Å̧ Ð� Å̧

“shifting” dimension.
Thus here we show that the notion of the “shift endofunctor ��1� �

∆op
Ð�∆op is related to that of a limit, and later we show that it appears

also in other contexts in topology involving local properties, namely the
definition of a locally trivial bundle, cf. §2.2.5 and §4.8.
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Whenever we speak of limit, we are considering a mapping f of a set
E into a topological space F , and we say that f has a point a of F
as a limit if the set of elements x of E whose image f�x� belongs to
a neighbourhood V of a [this set is just the ”inverse image” f�1�V �]
belongs, whatever the neighbourhood V , to a certain family F of subsets
of E, given beforehand.

In terms of Å̧, this is expressed as follows: the mapping fa � E Ð�

F �F, x( �a, f�x�� is continuous with respect to the filter on E defined
by the family F, and the filter of neighbourhoods on F � F associated
with the topology on F . However this is a mapping from 0-simplices to
1-simplices, and thus “shifts” dimension: this is not a problem, as the
category ∆op of finite linear orders admits an endofunctor ��1� � ∆op

Ð�

∆op equipped with a natural transformation ��1� Ô� id, and therefore
Å̧ admits an endofunctor ��1� � Å̧ Ð� Å̧ shifting dimension equipped

with a natural transformation ��1� Ô� id.
Considerations above lead to the following reformulation of the notion

of a limit in terms of Å̧:

– To give a mapping of sets f � E Ð� F is to give a map of simplicial
sets

Ð�

f � HomSets ��,E�Ð� HomSets ��, F � , �x1, .., xn�z� �f�x1�, ..., f�xn��
– The mapping f has a point a of F as a limit iff

Ð�

f factors as

HomSets ��,E� Ð�

fa
Ð� HomSets ��, F � X ��1�Ð� HomsSets ��, F �

Ð�

fa � �x1, .., xn�z� �a, f�x1�, ..., f�xn��
via a map continuous with respect to appropriate filters.

On HomSets ��, F � these are the filters associated with the topology
on F . On HomSets ��,E� these are the F-diagonal filters, i.e. the finest
filters such that the filter on 0-simplicies is F and the degeneration map
from the set of 0-simplicies to the set of n-simplicies is continuous for
each n A 0; explicitly, a subset of En � HomSets �n,E� is a neighbourhood
iff it contains ��x,x, .., x� � x > ε� for some ε > F.

Let us check this is indeed a reformulation. As simplicial sets, the
source of the morphism is connected whereas the target is not and its
connected components are parametrised by a > F . Hence, to pick such
a decomposition is to pick an a > F . Above we saw that the morphism

�Ð�fa�0 � E Ð� F � F of 0-simplicies is continuous iff f has a point a of F
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as a limit. A slight extension of this argument shows this holds for
Ð�

fa
itself. See details at §2.1.3 and §4.9.

3.1.2. Axioms of topology as being simplicial. — A topology is a collec-
tion of (filters of) neighbourhoods of points compatible in some sense.
We now show that it is “compatible” in the sense that it is “functorial”,
i.e. defines a functor from ∆op to the category of filters.

This is almost explicit in the axioms �VI�-�VIV� of [Bourbaki,I§1.2] of
topology in terms of neighbourhoods if we rewrite them in terms of Å̧.
We now quote:

http://mishap.sdf.org/tmp/Bourbaki_General_Topology.djvu#page=24
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Call a subset of X �X a neighbourhood iff it is of the form

�
x>X

�x� �Ux where Ux >B�x�
Axiom �VI� says that a subset containing a neighbourhood is itself a
neighbourhood. Axiom �VII� says that the neighbourhoods are closed
under finite intersection. Hence, the first two axioms say that the neigh-
bourhoods so defined form a filter on E �E.

Axiom �VIII� states the continuity of the diagonal map E Ð� E �

E, x z� �x,x� from the set E equipped with the antidiscrete filter
(i.e. the filter where E itself is the unique neighbourhood).

Axiom �VIV� needs a little argument, as follows.
Equip E �E �E with the coarsest filter such that the following coor-

dinate projections E �E �E Ð� E �E are continuous:

�x, y, z�z� �x, y� and �x, y, z�z� �y, z�
Axiom �VIV� says that the remaining coordinate projection �x, y, z�z��x, z� is continuous. To see this, consider the preimage of a neigh-
bourhood containing �x� � V . By continuity, there are neighbourhoods
�
x�>X

�x�� �Wx� and �
y>X

�y� � Vy such that

�x� �Wx �X � X � ��
y>X

�y� � Vy� ` �x� �X � V

Now take W �Wx and see that Vy ` V for each y >Wx.
Finally, note that the considerations above amount to the following

satisfied, then there is a “unique 2-dimensional Å̧-structure on X” such that

the set of neighbourhoods in X �X is

��
x>X

�x� �Ux � Ux > B�x�¡ .
By this we mean the following: there is a unique object of Å̧ such that

– (“ Å̧-structure on X”) its underlying simplicial set is HomSets ��,X�
– �VIII� the set X0 �X of 0-simplicies carries antidiscrete topology
– ��VI�&�VII�� the filter on the set X1 �X �X of 1-simplicies is

��
x>X

�x� �Ux � Ux >B�x�¡
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– ��VIV�� XY is 2-dimensional, i.e. the filter on Xn�1 � Xn is the
coarsest filter such that the face maps

Xn�1 �X
n
Ð�X1 �X �X, �x1, ..., xn�z� �xi, xi�1�, 0 @ i @ n

are continuous.

A similar reformulation can be given to the axioms of uniform structure
[Bourbaki,II§1.1,Def.1], cf. Exercise 4.2.1.5.

3.1.3. A flexible notion of space. — The discussion above suggests this
notion of space is somewhat more flexible than the usual notion of a
topological space. Filters, uniform structures and topological spaces are
Å̧-spaces. and a limit of a function is an Å̧-morphism.

This allows to talk in category-theoretic terms about equicontinuous
sequences of functions and their limits, by considering

HomSets ��,N� �HomSets ��,X�Ð� HomSets ��, Y �
HomSets ��,N� �HomSets ��,X� X ��1�Ð� HomSets ��, Y � X ��1�

where the simplicial sets are equipped with various filters representing
the topology or metric on X and Y , and the filter of cofinite subsets of
N. See §2.1.3 and §4.11.3 for a discussion.

We saw how the endofunctor ��1� � Å̧ Ð� Å̧ is used to talk about
limits, a local notion. In a similar way it can be used to talk about families
of functions defined locally. Let XY and YY be Å̧-objects corresponding

to topological spaces X and Y . To give an Å̧-morphism XY X ��1�Ð� YY
is to give a family of functions fx � X Ð� Y , x > X such that fx is
continuous in a neighbourhood of x (under some assumptions on X and
Y ). The definition of local triviality is formulated in terms of Å̧ as

follows: a X
p
Ð� B is a locally trivial bundle with fibre F iff in Å̧ there

is an isomorphism BY X ��1� �BY XY

�iso�
ÐÐ� BY X ��1� � FY over BY X ��1�,

cf. §2.2.5 and §4.8 for explanation.

3.2. Algebraic topology. — Here we offer a couple of vague specula-
tions about a possible intuition in Å̧ originating in homotopy theory.

3.2.1. Simplicies as ε-discretised homotopies. — In a metric space, for
ε A 0 small enough, we may think of a sequence x0, .., xT , dist�xt, xt�1� @
ε, t � 0, .., T � 1 as an ε-discretised homotopy from x0 to xT , and the
indices t, T as time. In terms of Å̧, this sequence Ð�x � �x0, ..., xT � is an
T -simplex the Å̧-object MY corresponding to the metric space, and the
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condition dist�xt, xt�1� @ ε, t � 0, .., T �1 says that the “consecutive” faces
Ð�x �t @ t � 1� > ε where ε �� ��x, y� � dist�x, y� @ ε� is the neighbourhood
associated with distance ε. This consideration suggests a generalisation
of this intuition to an arbitrary object X � Å̧ : for a small enough
neighbourhood ε ` Xτ for τ @ t� @@ T , think of a simplex s > XT as
ε-discretised homotopy provided its “consecutive” faces s�t0 @ ...@ tτ � > ε
whenever tτ B t0 � t�. Note that the essential asymmetry (direction of
time) of this notion, or rather intuition, of homotopy, which is apparently
a desirable property in the context of ª-categories.

A well-known lemma says that two functions f, g � A Ð� M from
an arbitrary topological space A to a (sufficiently nice) metric space
M are homotopic iff for each ε A 0 there is a ε-discretised homotopy
f � f0, ..., fT � g such that for any x > A supx dist�ft�x�, ft�1�x�� @ ε.
This allows us to think of homotopies of functions as simplicies in a
certain function space with sup-metric.

3.2.2. Inner Hom and mapping spaces. — Think of the inner hom of
the underlying simplicial sets of objects of Å̧ as a space of discontin-
uous functions. Such spaces of discontinuous functions are considered
in probability theory as spaces of functions describing stochastic pro-
cess, and there are standard metrics called Levi, Levi-Prokhorov, and
Skorokhod metric on such spaces [Kolmogorov]. We need the following
non-symmetric variant of Skorokhod metric defined on functions between
metric spaces:

dist�f, g� �� inf �ε A 0 � ¦x§y�dist�x, y� @ ε & dist�f�x�, g�y�� @ ε�
This definition generalises to Å̧ as follows (see §2.3.2 details): For N A

2n, δ ` XN and ε ` Yn, a εδ-Skorokhod neighbourhood in the Hom-set
Hom �X,Y � is the subset consisting of all the function f � X Ð� Y with
the following property:

there is a neighbourhood δ0 ` Xn such that each “δ0-small” x > δ0

has a “δ-small” “continuation” x� > XN , x � x��1..N� such that its
“tail” maps into something “ε-small”, i.e. f�x��N � n � 1..N�� > ε.

This defines the Skorokhod filter on the Hom-set Hom �X,Y � and thereby
Skorokhod neighbourhood structure on the inner Hom HomsSets �X,Y � of
the underlying simplicial sets of X and Y , and in fact a functor

Hom Å̧ ��,�� � Å̧op
� Å̧Ð� Å̧
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which we call Skorokhod mapping space. The “usual” mapping space
of continuous functions may be defined by taking the subspace of the
Skorokhod mapping space consisting of simplicies whose 0-dimensional
faces are Å̧-morphisms.

The Skorokhod mapping spaces have the desirable property (cf. §2.3.2
and §4.6.2) that there is an evaluation map

Hom Å̧ �A,Hom Å̧ �X,Y ��Ð� Hom Å̧ �A �X,Y �
and in fact there is a sort of left adjoint functor

Hom Å̧ �A %X,Y � �iso�
ÐÐ� Hom Å̧ �A,Hom Å̧ �X,Y ��

which admits a map A %X Ð� A �X.
In §2.3.1 and §2.3.3 we show a construction of [Besser], [Grayson, Re-

mark 2.4.1-2], and [Drinfeld] can be interpreted in Å̧ as saying that the
geometric realisation may be thought as the Skorokhod space of discon-
tinuous paths, and thus an endofunctor of Å̧.

3.3. Ramsey theory and model theory. — Ramsey theory sug-
gests Å̧-spaces which do not come from topology. Given an sset X and
a colouring c of simplices, call a simplex c-homogeneous iff all of its non-
degenerate faces have the same c-colour. A collection of colourings allows
one to define a notion of neighbourhood: a neighbourhood (of the diag-
onal) is a subset containing all the simplices homogeneous with respect
to finitely many colours. This construction allows to generalise the no-
tion of the Stone space of types in model theory if we consider formulae
as colourings on the sset nB z� HomSets �n,M� of tuples of elements
of a model M : the neighbourhoods in the Å̧-Stone space consists of

sequences (with repetitions) indiscernible with respect to finitely many
formulae. See §5.1-5.2 for details.

4. Definitions and constructions

4.1. The main category: the definition. — We now state formally
the definition of the key categories of the paper.



SIMPLICIAL SETS WITH A NOTION OF SMALLNESS 27

4.1.1. The two categories of filters (sets with a notion of smallness.)—
First we quote the definition of a filter by [Bourbaki, I§6.1, Def.I], again.

Subsets in F are called neighbourhoods or F-big. Unlike [Bourbaki], we
do not require �FIII� and allow both X � g and g > F; necessarily X > F..

Definition 4.1.1.1. — A filter on a set X is a collection of subsets of
X called neighbourhoods satisfying �FI� and �FII� above.

A morphism of filters is a function of the underlying sets such that
the preimage of a neighbourhood is necessarily a neighbourhood; we call
such maps of filters continuous.

Let Å denote the category of filters. Let Æ denote the category of filters
where we identify the maps equal almost everywhere: ObÆ � ObÅ and
HomÆ �X,Y � � HomÅ �X,Y � ~ �Æ where f �Æ g iff �x � f�x� � g�x� is a
neighbourhood in X.

We sometimes refer to Å as the category of neighbourhoods.
The category Å of filters is equivalent�6� to the category of topological

spaces with a base-point and morphisms being functions continuous at
the base-point (not in a neighbourhood of the base-point), and—not a

�6�The equivalence is given by adjoining/removing the base-point: a filter F on a set
X corresponds to the topological space with points X @ �x0� where a subset is open
iff it is of form �x0� @ U , U > F is an F -neighbourhood; a topological space X with
a base-point x0 corresponds to the filter on X � �x0� induced by the neighbourhood
filter of x0. The requirement “no point other than the base-point goes into the base-
point” means the map of sets X ��x0�Ð� Y ��y0� is well-defined, and continuity at
the base-point means precisely that it is a morphism of filters.
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natural requirement—no point other than the base-point goes into the
base-point.

Example 4.1.1.2 (Filters). — – In a topological space, (not nec-
essary open) neighbourhoods of a point form a filter.

– The filter consisting of subsets containing a given subset. For a set
X, the filter of diagonals consists of subsets of X � ..�X containing��x, ..., x� � x >X�.

– Given a measure µ on a set X, subsets of full measure form a filter;
so do subsets of positive measure.

– An ultrafilter on a set X is a filter such that either A or X �A is a
neighbourhood, i.e. is either open or closed. In other words, a not
necessarily countably additive “measure” such that each subset is
measurable and has measure either 0 or 1.

– The filter of cofinite subsets of a set: a subset is a neighbourhood
iff its complement is finite.

– Sets of points of a metric space whose complement has finite diam-
eter form a filter.

– Sets of pairs of points of a metric space which contain all pairs
sufficiently close to each other, i.e. subsets of M �M which contain
the following set for some ε A 0:

��x, y� >M �M � dist�x, y� @ ε�
– Sets of pairs of points of a metric space which contain all pairs suf-

ficiently far apart, i.e. subsets of M �M which contain the following
set for some d A 0:

��x, y� >M �M � dist�x, y� A d�
– fixme: other examples..

4.1.2. Simplicial sets: notations and first definitions. — Recall a pre-
order Bb P�P , i.e. a reflexive transitive binary relation on a set P , defines
a topology on P : a subset U b P is open iff x > U whenever x B y for
some y > U . Recall also that the preorder also defines a category whose
objects are elements of P and where all diagrams commute: there is a
necessarily unique morphism xÐ� y iff x B y. Monotone non-decreasing
maps correspond to continuous maps and, resp., functors.

In fact, a preorder on a finite set can be viewed in three equivalent
ways: as a reflexive transitive relation, a finite topological space, and a
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category where all diagrams commute. Maps (morphisms) of preorders
are then viewed as monotone maps, continuous maps, and functors.

Let ∆ be the category whose objects are finite linear orders nB ���0, .., n� 1�, n > N, and whose morphisms are non-decreasing maps; note
that in ∆ each isomorphism is an identity, in other words, there is a
unique object in each isomorphism class. Let ∆op be its opposite cate-
gory. Let ∆big denote the equivalent category of all finite linear orders
and non-decreasing maps. A simplicial object of a category C is a functor
XY � ∆op

Ð� C. A simplex is an element of X�nB� for some n A 0. An
n-simplex is an element of X��n � 1�B�.

An increasing sequence 1 B t1 B ... B tn B m determines a morphism
mB Ð� nB in ∆op. We denote the corresponding faces and degenerations
of a simplex s by s�t1B ...Btn� or s�t1, ..., tn�.

In a category C, the set of all maps from an object X to Y is denoted
by HomC �X,Y �. The space of maps from X to Y , if defined, is denoted
by HomC �X,Y �; typically it is an object of the category C itself.

Sometimes we borrow notation from type theory and write X � C to
indicate that X is an object of X.

4.1.3. The definition of the categories of simplicial sets with a notion of
smallness.—

Definition 4.1.3.1. — Let Å̧ � Func�∆op,Å� be the category of func-
tors from ∆op, the category opposite to the category ∆ of finite linear
orders, to the category Å of filters.

Let ºÆ be the category Å̧ localised as follows: Ob ºÆ � Ob Å̧, Hom
ºÆ

�X,Y � �
Hom Å̧ �X,Y � ~ � where f �

ºÆ
g iff there is N A 0 such that for every

n A N there is a neighbourhood ε ` Xn such that for all x > ε it holds
f�x� � g�x�.

We think of an object of Å̧ as a simplicial set equipped with a notion
of smallness, and that it provides us with a notion of a space which is
more flexible than the notion of a topological space. We suggest no good
name for these spaces and refer to such a space as either a simplicial
neighbourhood, a neighbourhood structure, a simplicial filter; the reader
preferring a short word may want to call it a situs.

We think of an object of ºÆ as a space where we only care about local
properties.
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4.2. Topological and metric spaces as simplicial filters. — Here
we show that Å̧ contains both categories of topological and of metric

spaces (with uniformly continuous maps) as full subcategories.

4.2.1. Topological and metric spaces as neighbourhood structures. — See
§2.2.3 and §3.1 for examples and intuition.

Definition 4.2.1.1 (Topological and metric spaces in Å̧)
A metric dist �X�X Ð� R on a setX defines a filter of ε-neighbourhoods

of the diagonal on Xn � HomSets �nas Set,X�: a subset ε ` Xn is a
neighbourhood iff there is an ε A 0 such that �x1, .., xn� > ε whenever
dist�xi, xj� @ ε for all 1 B i, j B n.

A topology on a set X defines a filter of topoic neighbourhoods of the
diagonal on Xn � HomSets �nas Set,X� as follows:

1. for n � 1, X itself is the unique neighbourhood of X �X1.
2. for n � 2, U bX �X is a neighbourhood iff for all x >X there is an

open neighbourhood Ux ? x such that �x� �Ux b U .
3. the filter on Xn is the coarsest filter such that maps Xn

Ð� X �

X, �x1, ..., xn� ( �xi, xi�1� are maps of filters for each 0 @ i @ n. Ex-
plicitly, a subset ε of Xn is a neighbourhood iff either of the following
equivalent conditions holds:

– there exist neighbourhoods εi ` X � X,0 @ i @ n, such that�x1, ..., xn� > ε whenever for each 0 @ i @ n, �xi, xi�1� > εi.
– for each x > X there a neighbourhood εx b Xn�1 such that�x� � εx b ε

Denote the simplicial filters associated with a metric and a topology
on X by X√ and Xæ, resp.

Exercise 4.2.1.2. — A verification shows that �æ � Top Ð� Å̧ and

�√ � (Metric Spaces, Uniformly Continuous Maps) Ð� Å̧ define fully
faithful embeddings of the category of topological spaces and the category
of metric spaces and uniformly continuous maps.

Exercise 4.2.1.3. — Check these two embeddings have inverses.

– Check that the embedding of topological spaces admits an inverse
�æ�1 � Å̧ Ð� Top defined as follows. See §2.2.4 for another brief
exposition, and note the similarity to the definition of the topology
associated with a uniform structure [Bourbaki,II§1.2,Prop.1,Def.3].
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The set of points of Xæ�1 is the set of 0-simplicies which are ε-
small for each neighbourhood ε `X0, i.e.Xpoints �� �

ε`X0 is a neighbourhood
ε.

The topology is generated by the subsets that together with each
point contain all ε-near points for some ε ` X1, i.e. Ux ? x is a
neighbourhood of x iff there is a neighbourhood ε ` X1 such that
y > Ux whenever y >Xpoints and �x, y� > ε or �y, x� > ε.

– Check that for a topological space X, �Xæ�æ�1 � X, and that��0.1�B�æ�1 � �0,1� is the usual unit interval.
– Check whether the embedding of uniform spaces admits an inverse
�√�1 � Å̧Ð� UniformSpaces defined as follows.

The set of points of the uniform space X√�1 corresponding to
a simplicial neighbourhood X is the set X0 of 0-simplicies. The
uniform structure on X0 is the coarsest such that the obvious map
X Ð�X√�1 is continuous.

Remark 4.2.1.4. — The neighbourhood structure of topoic subsets as-
sociated with a topology lacks symmetry of the filter associated with the
neighbourhood structure of ε-neighbourhoods of the diagonal associated
with a metric. This accords well with a remark of in the introduction of
(Bourbaki, General Topology):

a topological structure on a set enables one to give an exact
meaning to the phrase “whenever x is sufficiently near a, x has
the property P�x�”. But, apart from the situation in which a
“distance” has been defined, it is not clear what meaning ought
to be given to the phrase “every pair of points x, y which are
sufficiently near each other has the property P�x, y�”, since a
priori we have no means of comparing the neighbourhoods of
two different points.

In fact, a metric gives rise to a functor FiniteSetsÐ� Å, and the notion
of a uniform structure is equivalent to such a functor satisfying the “2-
dimensionality” Condition of Def. 4.2.1.1(3).

Exercise 4.2.1.5. — Show that the definition of a uniform structure
[Bourbaki,General Topology, II§1.1,Def.1] in fact describes a 2-dimensional
(i.e. satisfying Def. 4.2.1.1(3)) symmetric simplicial filter, where symmet-
ric means that it factors as ∆op

Ð� FiniteSetsop
Ð� Å.
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4.2.2. Simplicial neighbourhoods associated with metric maps on the large
scale. — We shall now show that Å̧ contains the opposite to the cate-

gory of geodesic (on the large scale) metric spaces with surjective quasi-
Lipschitz maps.

Call a map f � X Ð� Y of metric spaces injective on the large scale
[Gromov,§0.2.D] iff there is a monotone unbounded real function λ�d�, d A
0, such that either of the equivalent conditions hold:

– distX�x, y� B λ�distY �f�x�, f�y��� for all x, y >X
– distY �f�x�, f�y�� C λ�1�distX�x, y�� for all x, y >X

Associate with a metric spaceX the sset ∆op
Ð� Sets, nz� HomSets �n,X�

represented by the set of its points. Call a subset U of Xn a neighbour-
hood iff there is d A 0 and a set B of diameter @ d such that

– �x0, ..., xn� > U whenever x0, ..., xn ~> B and
dist�xi, xj� A d for all 0 B i @ j B n such that xi x xj

Let XL � Å̧ be the simplicial neighbourhood obtained.

Exercise 4.2.2.1. — Check that �L defines a contravariant fully faith-
ful embedding of the category of geodesic (on the large scale) metric
spaces with surjective quasi-Lipschitz maps, cf. [Gromov,§0.2.D,§0.2.A�

2].

– A morphism XL Ð� YL in Å̧ is a map of metric spaces X Ð� Y
injective on the large scale.

– If X and Y are geodesic and f � X Ð� Y is surjective, then f�1 is
quasi-Lipschitz iff f �XL Ð� YL is well-defined, i.e. iff f is injective
on the large scale.

– Conclude that �L defines a contravariant fully faithful embedding
of the category of geodesic (on the large scale) metric spaces with
surjective quasi-Lipschitz maps.

– Work out the geometric meaning of the lifting property defining
connectedness (see Exercise 4.7.0.4 for notation and explanations):

Y X Ð� �0 � 1�æ û �0,1�æ Ð� �0 � 1�æ
Exercise(todo) 4.2.2.2. — In §2.3.1We define the notion of geometric
realisation as an endofunctor of Å̧. Define in Å̧, and then work out the

geometric meaning of, XL Ð� B�GL�: does B�GL� classify something
which may be called a G-bundle on the large scale ?

4.3. The subdivision neighbourhood structure on a simplicial
set. — We give precise meaning to “subdivide a simplex into simplexes
small enough”, as follows.
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Definition 4.3.0.3. — Let X � sSet and let ε >Xk be a simplex, m C 0.
A subset ε ` Xn is �ε,m�-neighbourhood, resp. �ε,m�A-neighbourhood or�ε,m�@-neighbourhood, iff for each N A 0 and each simplex ε� � XN such
that ε is a face of ε� it holds:

– ε��t1B ... Btn� > ε whenever 0 B t1 B ... B tn B t1 �m B N
– ε��t1B ... Btn� > ε whenever 0 B t1 B ... B tn Bm B N
– ε��t1B ... Btn� > ε whenever N �m @ t1 B ... B tn B N

The subdivision, resp. A-subdivision or @-subdivision, filter on Xn is
generated by the �ε,m�-neighbourhoods where ε �Xk varies through sim-
plices of arbitrary dimension k C 0, m A 0.

Let Xsubd denote the simplicial set equipped with the subdivision
neighbourhood structure, and similarly for @-subdivision and A-subdivision
neighbourhood structures.

Example 4.3.0.4. — – For the simplicial set of Cartesian powers
HomSets ��,M� , n ( Mn of a set, the subdivision filter is trivial:
Mn is the only neighbourhood of Mn.

– (see details in the next subsection) For a linear order �0,1�B, in the
simplicial set consider “co-represented” by I

nB z� Hompreorders �nB, �0,1�B� ,
the subdivision filter is generated by the sets ��t1 B ... B tn� �

dist�ti, ti�1� @ ε� where ε A 0. Equivalently, this is the filter is
generated by the subsets of simplices of diameter ε, for ε A 0.

4.4. The real line interval �0,1�. — We now may define the interval
object in Å̧ by equipping the sset corepresented by a linear order with
the subdivision neighbourhood structure.

Definition 4.4.0.5. — Let the interval object �0,1�B in Å̧ be the sset

∆op
Ð� Sets

nB z� HomB �nB, �0,1�B�
equipped with the subdivision neighbourhood structure. Let �0,1�B� ,�0,1�B� , and �0,1�B� a denote the same sset equipped with the @-subdivision,
A-subdivision, and the union of @-subdivision and A-subdivision neigh-
bourhood structures, resp.

We also use similar notation for any preorder �I,B�.
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Exercise 4.4.0.6. — The subdivision neighbourhood structure on �0,1�B
is induced by the metric in the following sense: it is generated by the
ε-neighbourhoods of the diagonal �0 B t0 B ... B tn B 1 � dist�ti, ti�1� @ ε�,
for ε A 0.

Exercise 4.4.0.7. — Let X be a topological space, M a metric space.

– A continuous function �0,1� Ð� M is the same as a morphism�0,1�B Ð�M≈ in Å̧.

– A continuous function �0,1� Ð� X is the same as a morphism�0,1�B� Ð�Xæ in Å̧.

– A upper semi-continuous function �0,1�Ð�X is the same as �0,1�B� Ð�
Xæ in Å̧.

– A lower semi-continuous function �0,1�Ð�X is the same as �0,1�B� Ð�
Xæ in Å̧.

4.5. A notion of homotopy based on the interval �0,1�B. — In
the standard way this notion of an interval leads to a notion of homotopy.
Note that we later define a notion of homotopy based on a notion of the
mapping space, which we feel is more appropriate.

Remark 4.5.0.8 (Homotopy on Å̧). — The definition above lets us
define a notion of homotopy in Å̧ in the usual way: two maps f, g �

X Ð� Y are homotopic iff there is a linear order I, elements if and ig,

a morphism X � IB
h
Ð� Y such that f factors as X � �if�Ð�X � IB

h
Ð� Y

and g factors as X � �ig�Ð�X � IB
h
Ð� Y .

Exercise(todo) 4.5.0.9. — Compare this to the notion of homotopy
defined in §4.6.3.

4.6. Mapping spaces, geometric realisation and a notion of ho-
motopy. —

4.6.1. Discretised homotopies as Archimedean simplices. —

Definition 4.6.1.1. — A simplex s is ε~n-fine iff s�t1 B ... B tk� > ε
whenever t1 B ... B tk B t1 � n. A simplex s is Archimedean iff it can
be split into finitely many of arbitrarily small parts, i.e. is a face of an
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ε~n-fine simplex for every neighbourhood ε `Xk and every k,n A 0. Call
such an ε~n-fine simplex an ε~n-refinement of s.�7�

Call a set of simplices bounded iff its simplices are Archimedean and
there is an upper bound on the dimension of their ε~n-refinements for
each n and neighbourhood ε.

Exercise 4.6.1.2. — Check that for a metric space M , a pair of points
s � �x, y� >M �M form an Archimedean simplex in M√ iff for each ε A 0
there is an ε-discretised path x � x0, x1, ..., xl � y, dist�xt, xt�1� @ ε for
0 B t @ l, from x � �x, y��0� to y � �x, y��1�.

Note we do not require that these ε-discretised path converge on an
actual path; perhaps this hints the definition of an Archimedean simplex
should be modified.

Check that in a metric space M with an inner metric a subset B `

M �M is bounded iff there is a bound on the distance between points for�x, y� > B, i.e. there is d A 0 such that dist�x, y� B d whenever �x, y� > B.

Exercise 4.6.1.3. — Archimedean simplices form a subobject (sub-
functor) XArch of X, for X � Å̧. Check that a surjective map X Ð� Y
induces a map XArch Ð� YArch.

Exercise 4.6.1.4. — A well-known lemma says that two functions f, g �
AÐ�M from an arbitrary topological space A to a metric space M are
homotopic iff there is a ε-discretised homotopy f � f0, ..., fn � g such
that for any x > A dist�ft�x�, ft�1�x� @ ε, under some assumptions on the
metric space M ; it is enough to assume that for every ε A 0 there is δ A 0
such that every ε-ball contains a contractible subset containing a δ-ball
with the same centre. (Ref!)

Check that the lemma says that two functions f, g � A Ð� M are
homotopic iff �f, g� is an Archimedean simplex of the mapping space
Func�A,M� with the sup-metric, or, equivalently, iff �f, g� is an Archimedean
simplex of the mapping space �Func�A,M�√�Arch.

�7�The geometric intuition suggests this definition should possibly be modified: ε~n-
refinement of a simplex may “go off to infinity” as ε and n vary; in the case of a
metric space, the ε-chains (i.e. ε-discretised homotopies) connecting two points go
off to infinity rather than converge on an actual path). One may want to require
something like that a simplex s is Archimedean iff for every neighbourhood ε ` Xk

and every k,n A 0 it has an ε~n-refinement which in its ε-neighbourhood has δ~m-
refinement with the same property, for every neighbourhood δ `Xl and every l,m A 0.
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4.6.2. Skorokhod mapping spaces: the definition. — We now repeat some-
what more formally the definition of the Skorokhod filters given in §2.3.2.

Definition 4.6.2.1. — Let X,Y � Å̧ be objects of Å̧. For N A 2n, δ `

XN and ε ` Yn, a εδ-Skorokhod neighbourhood of the Hom-set HomsSets �Xas sSet, Yas sSet�
of underlying simplicial sets of X and Y is the subset consisting of all
the functions f �Xas sSet Ð� Yas sSet with the following property:

there is a neighbourhood δ0 ` Xn such that each “δ0-small” x > δ0

has a “δ-small” “continuation” x� > XN , x � x��1..N� such that its
“tail” maps into something “ε-small”, i.e. f�x��N � n � 1..N�� > ε.
As a formula, this is

�f �X Ð� Y � §δ0 `Xn¦x > δ0 §x
�
> δ�x � x��1...n� & f�x��N�n�1, ...,N�� > ε��

The Skorokhod filter on HomsSets �Xas sSet, Yas sSet� is the filter generated
by all the Skorokhod εδ-neighbourhoods for N C 2n A 0 (sic!), neighbour-
hoods δ `XN and ε ` Yn.

As a formula, it is

�f �X Ð� Y � §δ0 `Xn¦x > δ0 §x
�
> δ�x � x��1...n� & f�x��N�n�1, ...,N�� > ε��

Let HomsSets
Å �X,Y � denote HomsSets �Xas sSet, Yas sSet� equipped with

the Skorokhod neighbourhood structure.

This allows to define mapping spaces in Å̧ by equipping the inner Hom
of ssets with Skorokhod filters.

Definition 4.6.2.2 (Mapping space). — The Skorokhod mapping space
HomsSets

Å̧ �X,Y � is the inner Hom HomsSets �Xas sSet, Yas sSet� of the under-

lying simplicial sets of X and Y equipped with the neighbourhood struc-
ture as follows. Equip the �n � 1�-simplex ∆n�1 � HomB ��, nB� with the
antidiscrete filter, equip X�∆n�1 �X�HomB ��, nB� with the product fil-
ter, and, finally, equip the set of �n�1�-simplicies HomsSets �Xas sSet �Hompreorders ��, nB�, Yas sSet�
with the resulting Skorokhod neighbourhood structure.

The mapping space Hom Å̧ �X,Y � is the subspace of the Skorokhod

mapping space consisting of “continuous functions”, i.e. the simplicies
“over” 0-simplicies in Hom Å̧ �X,Y �. That is, it is formed by the sim-

plicies s > HomsSets �Xas sSet, Yas sSet� such that all its 0-dim faces s�t� �
X Ð� Y , 0 B t B dim s, are Å̧-morphisms.

Remark 4.6.2.3. — It is possible to define a different neighbourhood
structure. We give this definition to demonstrate that there are implicit
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choices made in formalisation, and care needs to be taken. Another
reason is that we are not sure our definitions are most appropriate.

Call U ` HomsSets �X �HomB ��, n � 1B�, Y � a neighbourhood iff for
some m C 0, neighbourhoods δ `Xm and ε ` Ym, some (equivalently, all)

sequences
Ð�
t �� �0 B t0 B ... B tm B n�, Ð�s �� �0 B s0 B ... B sm B n� such

that t0 B s0, t1 B s1,..., tm B sm, it holds

f > U whenever the following implication holds

fn�Ð�t ���δ � θ��Ð�t �� ` ε�Ð�t � Ô� fn�Ð�s ���δ � θ��Ð�s �� ` ε�Ð�s �
For example, if n � 0 the only neighbourhood is U � HomsSets �X �HomB ��,1B�, Y �
itself.

Exercise(todo) 4.6.2.4. — Let X be a locally compact space, and let
M be a metric space such that each ball contains a contractible subset
containing an open ball around the same point.

– Calculate the mapping space Hom Å̧ �Xæ,M√� and the Skorokhod

mapping space HomsSets
Å̧ �Xæ,M√�.

– Check whether f � X Ð� M is homotopic to g � X Ð� M iff
the simplex �f, g� is Archimedean in either Hom Å̧ �Xæ,M√� or

in HomsSets
Å̧ �Xæ,M√�.

Exercise(todo) 4.6.2.5. — Check the following basic properties of the
evaluation map for the Skorokhod mapping spaces or the mapping spaces.

– Check whether the isomorphism of the underlying ssets (natural in
A,X,Y ) is necessarily continuous:

ev
�
� HomsSets

Å̧ �A,HomsSets
Å̧ �X,Y ��Ð� HomsSets

Å̧ �A �X,Y �
– Check whether for the “point” object ∆0 � HomB �nB,1B� of Å̧,

both the Skorokhod mapping space and the mapping space from
∆0 to an Y � Å̧ is Y itself:

ev
�
� HomsSets

Å̧ �HomB �nB,1B�, Y � �iso�
ÐÐ� Y

Exercise 4.6.2.6. — Check whether HomsSets
Å̧ ��, Y � has an “inner”

analogue of the left adjoint in the following sense.
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– Define a semi-direct product A%X in Å̧ as follows. The underlying
simplicial set is that of the direct product in sSets, or, equivalently,
in Å̧: �A %X�n �� �A �X�n. The filter is defined as follows: δ `
An�Xn is a neighbourhood iff there is a neighbourhood α ` An such
that for each “α-small” a > α there is a neighbourhood δa `Xn such
that �a, x� > δ whenever a > α and x > δa.

– Check whether there is an isomorphism in Å̧ natural in A,X,Y :

ev
�
� HomsSets

Å̧ �A,HomsSets
Å̧ �X,Y �� �iso�

ÐÐ� HomsSets
Å̧ �A %X,Y �

– Ponder the similarity to the definition of the topoic filter in the
definition of the Å̧-neighbourhood structure associated with topo-
logical spaces.

4.6.3. A notion of homotopy based on the mapping space. — Now that
we have a notion of a mapping space, we define a notion of homotopy
using Archimedean simplices. Recall that a pair of continuous functions
f0, f1 �X Ð� Y defines a mapX�∆1 Ð� Y , �s, θ�( �fθ�0��s�, ..., fθ�n��s�� >
Y n�1 � Yn and thus can be viewed as a 1-simplex in Hom Å̧ �X,Y � `

HomsSets
Å̧ �X,Y �.

Definition 4.6.3.1 (Skorokhod homotopic). — Say that a map f �
X Ð� Y is Skorokhod homotopic to g � X Ð� Y iff the simplex �f, g� is
Archimedean in HomsSets

Å̧ �X,Y �.
Say that a map f �X Ð� Y is homotopic to g �X Ð� Y iff the simplex�f, g� is Archimedean in Hom Å̧ �X,Y �.

Exercise(todo) 4.6.3.2. — Are these notions symmetric? transitive?
Study these notions of homotopy. For example:

– Let X,Y � sSets be ssets equipped with antidiscrete filters: the only
neighbourhood is the whole set. Check that this is equivalent to the
definition of simplicial homotopy in [Goerss-Jardine, I§6].

– Check whether this gives the standard notion of homotopy of maps
from topological spaces to metric spaces. Compare Exercise 4.6.1.4
and Exercise 4.6.2.4.

4.6.4. The geometric realisation via the approach of Grayson. — We
now repeat more formally the construction of the geometric realisation



SIMPLICIAL SETS WITH A NOTION OF SMALLNESS 39

due to [Besser], [Grayson, Remark 2.4.1-2], and [Drinfeld] sketched in
§2.3.3.

[Besser, Def.3.3] and [Grayson, Remark 2.4.1-2] give a construction
of the geometric realisation of a simplicial set based on the observation
that the standard simplex ∆n � ��s1, .., sn� > �0,1�n � 0 B s1 B ... B sn B

1� is the space of maps �0,1�B Ð� �n � 1�B of preorders modulo some
identifications, i.e.

HomsSets �HomB ��, �0,1�B�,HomB ��, �n � 1�B�� .
The notion of a mapping space in Å̧ suggests we should try to de-
fine the geometric realisation of a simplicial set X as the Skorokhod
space HomsSets

Å̧ �Hompreorders ��, �0,1�B�,X� of (discontinuous) paths in

X equipped with an appropriate neighbourhood structure.

Definition 4.6.4.1. — The Besser geometric realisation of X � Å̧ is
the endofunctor

Å̧Ð� Å̧, X z� HomsSets
Å̧ ��0,1�B,X�

The Grayson subdivision is the endofunctor

Å̧Ð� Å̧, X z�X X e

where e � ∆op
Ð�∆op is the endofunctor defined following [Grayson,§3.1,

esp. Def.3.1.4, Def.3.1.8]):

nz� 2n, f �m� nz� �n�i( n�f�i�, n�i( n�f�i�, for i � 0, ..., n�1�
Exercise(todo) 4.6.4.2. — Verify details of the argument in §2.3.3
and prove the following.

– Verify §2.3.3 gives a well-defined map of ssets

SX SÐ� HomsSets ��0,1�B,X�
– Let Xdiag denote the simplicial set X equipped with the finest neigh-

bourhood structure such that the set X0 of 0-simplicies is antidis-
crete. Explicitly, a subset of Xn is a neighbourhood iff it contains
the diagonal, i.e. the image of X0 in Xn under the unique degeneracy
map. Verify that Xdiag � Å̧ is well-defined.

– Verify that for X � ∆n�1 � HomB ��, nB�, n A 0, the Hausdorffisation
of the topologisation of the Skorokhod paths space is the standard
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simplex:

�HomsSets
Å̧ ��0,1�B, �∆n�diag�æ�1�

Hausdorff

�iso�
ÐÐ� S∆nS

– Verify that HomsSets
sSets ��0,1�B,�� � sSets Ð� sSets preserves finite di-

rected limits, and is also compatible with Skorokhod neighbourhood
structure, i.e. that HomsSets

Å̧ ��0,1�B,�� � Å̧Ð� Å̧ also preserves fi-

nite directed limits.
– (todo) Conclude that for a finite simplicial set X there is an iso-

morphism of the geometric realisation and the Hausdorffisation of
the topologisation of the Skorokhod paths space:

SX S �iso�
ÐÐ� �HomsSets

Å̧ ��0,1�B,Xdiag�æ�1�
Hausdorff

– (todo) Give a precise meaning to the following argument. For ev-
ery n A 0 the sequence of xθ is determined, up to ε � 1~n, by xθ
where θ � nB Ð� �0,1�, θ � �0 @ 1~n @ ... @ �n � 1�~n�. Hence, the
topological geometric realisation of a simplicial set X is dense in
the topologisation of its Skorokhod paths space.

Remark 4.6.4.3. — A.Smirnov suggested it maybe worthwhile to see
whether the use of geometric realisation by [Suslin, On the K-theory of
local fields] can be interpreted in terms of Å̧.

4.7. The connected components functor π0 as M2(l-lr)-replacement.—
We observe that the connected components functor π0 is analogues to
the (co)fibrant replacement postulated by Axiom M2 of model categories
where the (co)fibrant replacement is taken with respect to a morphism
implicitly appearing in the definition of connectivity.

Recall that �0,1� Ð� �0 � 1� denotes the map of topological spaces
gluing together the points of the discrete space with two points. As usual,
we denote by �0,1�æ Ð� �0 � 1�æ the corresponding map in Å̧.

Recall that �0,1�æ can be explicitly described as follows: nÐ� �0,1�n,
and a subset of �0,1�n is a neighbourhood iff it contains the diagonal��0, ..,0�, �1, ...,1��.

Exercise 4.7.0.4. — Check the following.

– A topological space X is connected iff X Ð� �0 � 1� û �0,1� Ð��0 � 1�.
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– A simplicial set is connected iff X Ð� �0 � 1�æ û �0,1�æ Ð� �0 �

1�æ.

Denote by P l and P r the classes (properties) of morphisms defined
with respect to the left, resp. right, lifting property:

P l
�� �f û g � g > P� P r

�� �f û g � f > P�
It is convenient to refer to P l and P r as the property of left, resp. right,
Quillen negation of property P .

Definition 4.7.0.5. — In Top, let π0 be the functor defined by the
following M2�l � lr� decomposition:

X
��0,1�Ð��0�1��l

ÐÐÐÐÐÐÐÐ� π0�X� ��0,1�Ð��0�1��lr

ÐÐÐÐÐÐÐÐÐ� �0 � 1�
In Å̧, let π0 be the functor defined the following M2�l � lr� decompo-

sition:

X
��0,1�æÐ��0�1�æ�l

ÐÐÐÐÐÐÐÐÐÐ� π0�X� ��0,1�æÐ��0�1�æ�lr

ÐÐÐÐÐÐÐÐÐÐÐ� �0 � 1�æ
Exercise 4.7.0.6. — Check this definition is consistent with the usual
definition of π0 in sSets. Recall there is an embedding sSetsÐ� Å̧, nz�

�Xn�antidiscrete which sends a simplicial set X into itself equipped the
antidiscrete filters, i.e. the filter such that the only neighbourhood is the
whole set.

Check that the set of 1-simplices π
Å̧

0 �X�1 is the set of connected com-

ponents of Xantidiscrete, and, in fact, π
Å̧

0 �X� � diag�πsSets
0 �X�antidiscrete�.

Exercise 4.7.0.7. — Check this is consistent with the usual definition
(notation) of π0 on Top. For example, check the following.

Let X be a topological space such that the π0�X� is well-defined (be-
haved), e.g. X has finitely many connected components. Then in Top it

holds π
Å̧

0 �Xæ� � �πTop
0 �X��æ, or, in other words,

Xæ
��0,1�æÐ��0�1�æ�l

ÐÐÐÐÐÐÐÐÐÐ� πTop
0 �X�æ ��0,1�æÐ��0�1�æ�lr

ÐÐÐÐÐÐÐÐÐÐÐ� �0 � 1�æ
4.8. Locally trivial bundles. — Here we repeat somewhat more for-
mally §2.2.5 about local trivial bundles.

It is said that being locally trivial means being locally a direct product.
The precise meaning of this phrase in terms of Å̧ is straightforward:
a map over a base B is locally trivial iff it becomes a direct product
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after pullback along B��1� Ð� B. We state this in the next § and
then speculate whether this observation can be used to define a model
structure on Å̧.

4.8.1. Local triviality as being a product after pullback along B��1� Ð�
B. —

Exercise 4.8.1.1. — A map p � X Ð� B of topological spaces is a
locally trivial bundle with fibre F iff there is an Å̧-isomorphism

τ � Bæ��1� �Bæ Xæ �iso�
ÐÐ� Bæ��1� � Fæ over Bæ��1�

i.e. there is a commutative diagram as shown

Bæ��1� � Fæ
��

�iso� // Bæ��1� �Bæ Xæ
��

// Xæ

p

��

Bæ��1� id // Bæ��1� // Bæ

Verify the argument in §2.2.5 using the following steps.

– As simplicial sets, Bæ��1� �Bæ Xæ � @b>BXæ and Bæ��1� � Fæ �

@b>BBæ � Fæ where @ denotes disjoint union.
– To give a map of these simplicial sets over Bæ��1� is to give for

each b > B a map of sets fb � X Ð� B � F over B which extends to
a map of the corresponding simplicial sets Xæ Ð� Bæ � Fæ.

– The maps fb � X Ð� B � F , b > B represent a continuous Å̧-

isomorphism B��1� �B X �iso�
ÐÐ� B��1� � F in Å̧ iff for every b > B

there is a neighbourhood Ub ? B such that fb defines a homeomor-
phism between p�1�Ub� and Ub � F .

– Check whether the above holds for the √-embedding of metric
spaces.

– Check whether the above also holds for the localised category ºÆ.

Exercise(todo) 4.8.1.2. — Use the reformulation above to rewrite for
Å̧ a definition of the long exact sequence of a (co)fibration in terms of

the endofunctor ��1� � Å̧Ð� Å̧ and base change B��1�Ð� B.

4.8.2. Suggestions towards a model structure on the category of simplicial
filters. —
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Exercise(todo) 4.8.2.1. — Can this notion of local triviality be used
to define a model structure on Å̧? For example, do the following.

– Calculate in Å̧

�f� �� �X p
Ð� B � in ºÆ B��1��BX Ð� B��1� is of form B��1��F Ð� B��1��lr

– Is it true that maps in �f� have the homotopy extension property,
i.e. for any A AÐ� A � �0,1�B û �f� ?

– Does this define the class of fibrations in the category of topological
spaces, i.e. is it true under suitable assumptions that a map p of
topological spaces is a fibration iff pæ > �f� ?

– (todo) Does the morphism �0,1�B X ��1� Ð� �0,1�B have interesting
universal properties or lifting properties ? Calulate ��0,1�BX��1�Ð��0,1�B�rl.

– (todo) Is there a model structure on Å̧ where �wc� �� �f�l and �f�
are the classes of weak cofibrations and fibrations, resp.?

– (todo) More generally, define a model structure on Å̧ or ºÆ.

4.9. Taking limits of sequences and filters.— Here we show how
to reformulate about taking limits, convergence of sequences, equicon-
tinuous families of functions, Arzela-Ascoli theorems, compactness and
completeness, with help of the endofunctor ��1� � Å̧ Ð� Å̧ “shifting
dimension” and Quillen lifting properties.

4.9.1. Three embeddings const, diag, cart of filters into simplicial filters.
— Let F be a filter. There are two natural ways to equip HomSets �n,F �
with a filter:

(a) the finest filter such that degeneracy (diagonal) map

HomSets �1, F � � F Ð� HomSets �n,F � � F n, xz� �x,x, ..., x�
is continuous.

(b) the coarsest filter such that all the face “coordinate projection”
maps

HomSets �n,F � � F n
Ð� HomSets �1, F � � F, �x1, ..., xn�z� xi,0 @ i B n

are continuous.

Exercise 4.9.1.1. — Explicitly, these filters can be defined as:

(a’) a subset of F n is a diag-neighbourhood iff it contains ��x,x, .., x� �
x > U� for some U an F -neighbourhood
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(b’) a subset of F n is a cart-neighbourhood iff it contains U1�U2�..�Un,
for some U1, .., Un F -neighbourhoods

There is also the constant functor const � ÅÐ� Å̧, n( F .

Exercise 4.9.1.2. — Check these define three fully faithful embed-
dings diag, cart, const � ÅÐ� Å̧

4.10. Shift endofunctor ��1� � ∆Ð�∆. — The reformulation of the
definition of limit in Å̧ uses the following “shift” endofunctor of ∆op

“forgetting the first coordinate”. Let ��1� � ∆ Ð� ∆ denote the shift by
1 adding a new minimal element:

��1� � �1@ ...@n�z� ��ª@1@ ...@n�; ���1�f���ª� �� �ª; ���1�f��i� �� i
The endofunctor is equipped with a natural transformation ��1� � ��1� Ô�
id � ∆op

Ð�∆op, and its morphisms X��1� ��1�
ÐÐ�X are particularly useful

to us.
Now we recast in these terms a number of familiar notions in analysis:

limit, Cauchy sequence, etc.

4.10.1. Cauchy sequences and their limits.— A sequence �an� of points
of a metric space may be viewed as a map N Ð� M . Let Ncof be N
equipped with the filter of cofinite subsets: a subset U of N is a neigh-
bourhood iff there is N A 0 such that m > U whenever m A N .

Exercise 4.10.1.1. — The sequence �an� > M is Cauchy iff it deter-
mines a continuous map

HomSets ��,Ncof�cart Ð�M≈, �i1, .., in�z� �ai1 , ..., ain�
The sequence converges iff this map factors as

HomSets ��,Ncof�cart Ð�M≈��1� ��1�
ÐÐ�M≈,

and the map is necessarily of form �i1, .., in� z� �aª, ai1 , ..., ain� where
aª is the limit of the sequence.

Exercise 4.10.1.2. — A filter F onM is Cauchy iff HomSets ��, F �cart Ð�

M≈ is well-defined in Å̧.

A Cauchy filter converges on M iff the morphism HomSets ��, F �cart Ð�

M≈ factors as Fcart Ð�M≈��1�Ð�M≈.
A filter F converges on M iff the morphism HomSets ��, F �diag Ð�M≈

factors as Fdiag Ð�M≈��1�Ð�M≈.
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4.10.2. Limits on topological spaces.— The same construction works for
topological spaces.

Let F be a filter on the set of points of a topological space T .
The inclusion (equality) of underlying subsets F ` T defines a mor-

phism of sSets HomSets �n,F �Ð� HomSets �n,T �.
Exercise 4.10.2.1. — A filter F converges on a topological space T iff
the morphism HomSets ��, F �diag Ð� Tæ factors as HomSets ��, F �diag Ð�

Tæ��1�Ð� Tæ.

4.11. Compactness and completeness.— We reformulate compact-
ness and completeness in terms of iterated orthogonals/Quillen negation
and morphisms representing typical examples of these notions. See the
footnote in §2.1.4 for the definition of the Quillen negation/orthogonals.

4.11.1. Compactness and completeness as lifting properties/Quillen negation.—

Exercise 4.11.1.1. — – A metric spaceX is complete iff each Cauchy
filter converges, i.e. for each filter F it holds

gÐ� HomSets ��, F �cart û X≈��1�Ð�X≈

– A topological space X is quasi-compact iff each ultrafilter converges,
i.e. for each ultrafilter U it holds

gÐ� HomSets ��,U�diag û Xæ��1�Ð�Xæ

– A metric space X is compact iff each ultrafilter converges, i.e. for
each ultrafilter U it holds

gÐ� HomSets ��,U�diag û X≈��1�Ð�X≈

– A metric space X is pre-compact iff each ultrafilter is Cauchy, i.e. for
each ultrafilter U it holds

HomSets ��,U�diag Ð� HomSets ��,U�cart û X≈ Ð� �

– A metric space X is complete iff each Cauchy ultrafilter converges,
i.e. for each ultrafilter U it holds

gÐ� HomSets ��,U�cart û X≈��1�Ð�X≈
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– A map X Ð� Y of topological spaces is proper iff for each ultrafilter
U it holds

gÐ� HomSets ��,U�diag û Xæ��1�Ð�Xæ -Xæ��1� Yæ��1�
This lifting property is equivalent to [Bourbaki, I§10,2,Theorem 1d]:

4.11.2. Concise reformulations in terms of iterated orthogonals/Quillen
negations.— The reformulations above lead to a concise expression in
terms of iterated Quillen negations/orthogonals.

Consider the two element set �o,1� and let �o � 1� denote the filter
with the unique neighbourhood on this set. Let �o @ 1� and �o A 1�
denote the filters on this set generated by �o�, resp. �1�.

For a filter F , let Fcart denote the simplicial set HomSets ��, F �cart, and
let @ denote the disjoint union (equivalently, coproduct).

Finally, let �o @ 1�cart @ �o A 1�cart Ð� �o� 1�cart denote the obvious
map.

Exercise 4.11.2.1. — – A topological space K is quasi-compact iff

Kæ��1�Ð�Kæ > ��o @ 1�cart @ �o A 1�cart Ð� �o� 1�cart�lr

– A map X Ð� Y of topological spaces is proper iff

Xæ��1�Ð�Xæ-Xæ��1�Yæ��1� > ��o @ 1�cart @ �o A 1�cart Ð� �o� 1�cart�lr

(Hint: First check that a filter F is an ultrafilter iff

gÐ� Fdiag û �o @ 1�cart @ �o A 1�cart Ð� �o� 1�cart

(the lifting property means that the preimage of either o or 1 is a neigh-
bourhood). This is enough for the ‘if’ implication.)

Exercise 4.11.2.2. — Check whether the following holds for a reason-
able class of metric spaces. A metric space is complete iff

M≈��1�Ð�M≈ > �R≈��1�Ð� R≈�lr

where R denotes the real line with the usual metric.

http://mishap.sdf.org/tmp/Bourbaki_General_Topology.djvu#page=110110110110110110110110110110110
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Exercise 4.11.2.3 (Taimanov theorem). — Show that a map f be-

tween T4 topological spaces is proper iff in Top f > ���0�Ð� �0� 1��r
@5�lr

.
See [Gavrilovich-Pimenov,§2.2] for explanations.

Exercise(todo) 4.11.2.4. — Check whether the following reformula-
tions of topological properties hold in the category of topological spaces.
Can these expressions be interpreted in Å̧ ? What would they mean for
topological spaces ?

For example, start by calculating the iterated orthogonals/negations
below both in Top and Å̧ using the embedding of Top into Å̧. See

[Gavrilovich-Pimenov,§5,3] for the explnatation of the notation and a list
of other examples of topological properties expressed in terms of iterated
Quillen orthogonals/negation.

– {{}-->{o}}^r is the class of surjections.
– {{}-->{o}}^rr == {{x<->y->c}-->{x=y=c}}^l is the class of sub-

sets, i.e. maps of form X ` Y (where the topology on X is induced
from Y )

– {{}-->{o}}^rl is the class of maps of form X Ð�X @D where D
is discrete

– �Y�Ð�X > {{}-->{o}}^rll iff X is connected and non-empty
– {{}-->{o}}^l � �AÐ� B � A x g or A � B � g�
– {{}-->{o}}^lr � �gÐ� Y � Y arbitrary�
– {{}-->{o}}^lrr is the class of maps which admit a section
– {{c}-->{o->c}}^l is the class of maps with dense image
– {{x,y}-->{x=y}}^r == {{x<->y}-->{x=y}^l is the class of injec-

tive maps
– {{x<->y->c}-->{x<->y=c}}^l == {{c}-->{o->c}}^lr is the class

of closed subsets
– {{x<->y<-c}-->{x<->y=c}}^l is the class of open subsets
– X Ð� �Y� > {{a<-b->c<-d->e}-->{b=c=d}}^l iff X is normal (T4)
– (Tietze lemma) RÐ� �Y� > {{a<-b->c<-d->e}-->{b=c=d},{a<-b->c}-->{a=b=c}}^lr

– in Top the following expression means something similar to the
Urysohn lemma without taking care of the necessary(!) conditions
like being first countable:

R-->{a<-b->c} (- {{a<-b->c<-d->e}-->{b=c=d}}^lr

Exercise(todo) 4.11.2.5. — Being proper can also be defined as “uni-
versally closed”. Formulate an analogue of this definition in Å̧. The
following steps may be of use.

http://mishap.sdf.org/mintsGE.pdf#page=11
http://mishap.sdf.org/mintsGE.pdf#page=67
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– Reformulate the condition that a map of topological spaces is closed
in terms of neighbourhoods. Namely, a map f �X Ð� Y is closed iff
every system Ux ? x of neighbourhoods there exist a system Vy ? y
of neighbourhoods such that f�1�Vy� ` �

f�x��y
Ux, i.e.

Y f�x�� > Vy implies that x� > Ux for some x such that f�x� � y
– Reformulate the tube lemma in a similar manner.
– Rewrite the above in terms of the simplicial neighbourhoods fæ �

Xæ Ð� Yæ.
– Do the same for metric spaces.
– Ponder the syntactic similarity of the reformulations above to the

characterisation of non-forking in terms of indiscernible sequences
[Tent-Ziegler, 7.1.5] and to Definition 4.6.2.2 of neighbourhood struc-
ture of the mapping space.

Question 4.11.2.6. — Find a compact proper definition of compact
spaces and proper maps. Note that you probably want the following to
be examples of compact spaces: (i) function spaces in §4.11.5 coming from
the Arzela-Ascoli theorems (ii) Stone spaces of indiscernible sequences in
a model in §5.2.0.8.

4.11.3. Convergence of sequences of functions. — Here we reformulate
various notions of uniform convergence of a family of functions as saying
that a morphism in Å̧ is well-defined.

Let �N� denote the trivial filter on N with a unique neighbourhood N
itself, and Ncofinite denote the filter of cofinite subsets of N.

A sequence �fi�i>N of functions fi �X Ð�M from a topological space X
to a metric space M is equicontinuous if either of the following equivalent
conditions holds:

– for every x >X and ε A 0, there exists a neighbourhood U of x such
that dY �fi�x��, fi�x�� B ε for all i > N and x� > U

– the map Xæ � �N�const Ð�M√, �x, i�z� fi�x� is well-defined
– the map Xæ��Ncofinite�const Ð�M√, �x, i�z� fi�x� is well-defined
– the map Xæ � �N�diag Ð�M√, �x, i�z� fi�x� is well-defined
– the map Xæ��Ncofinite�diag Ð�M√, �x, i�z� fi�x� is well-defined

If X � �X,dX� is also a metric space, replacing Xæ by X≈ above
gives us the notion of being uniformly equicontinuous. The family fi is
uniformly equicontinuous iff either of the following equivalent conditions
holds:
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– for every ε A 0 there exists a δ A 0 such that dY �fi�x��, fi�x�� B ε for
all i > N and x�, x >X with dX�x,x�� B δ

– the map X≈ � �N�const Ð�M√, �x, i�z� fi�x� is well-defined
– the mapX≈��Ncofinite�const Ð�M√, �x, i�z� fi�x� is well-defined
– the map X≈ � �N�diag Ð�M√, �x, i�z� fi�x� is well-defined
– the map X≈��Ncofinite�diag Ð�M√, �x, i�z� fi�x� is well-defined

Replacing diag by cart gives us the notion of uniformly Cauchy. The
family fi is uniformly Cauchy iff either of the following equivalent condi-
tions holds:

– for every ε A 0 there exists a δ A 0 andN A 0 such that dY �fi�x��, fj�x�� B ε
for all i, j A N and x�, x >X with dX�x,x�� B δ.

– the map X≈ � �N�cart Ð�M√, �x, i�z� fi�x� is well-defined
– the map X≈��Ncofinite�cart Ð�M√, �x, i�z� fi�x� is well-defined

An equicontinuous family fi converges to a function fª iff either of the
following equivalent conditions holds:

– for every ε A 0 and x > X there exists a δ A 0 and N A 0 such that
dY �fª�x��, fi�x��� B ε for all i A N and x >X with dX�x,x�� B δ.

– the following is a well-defined diagram:

Xæ��1� � �Ncofinite�diag
//

��1��id
��

M√��1�
��1��id

��

Xæ � �Ncofinite�diag �f1,f2,...� // M√

where the bottom morphism is �x, i� z� fi�x�, i A 0, and the top
morphism is �x0, i�z� fª�x0� �x, i�z� fi�x�, i A 0.

Moreover, the top morphism is necessarily of this form for some
function fª �X Ð�M .

An uniformly equicontinuous family fi uniformly converges to a func-
tion fª iff either of the following equivalent conditions holds:

– for every ε A 0 there exists N A 0 such that dY �f�x�, fi�x�� B ε for
all i A N and x >X.

– the following is a well-defined diagram:

X√��1� � �Ncofinite�diag
//

��1��id
��

M√��1�
��1��id

��

X√ � �Ncofinite�diag �f1,f2,...� // M√
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where the bottom morphism is �x, i� z� fi�x�, i A 0, and the top
morphism is �x0, i�z� fª�x0� �x, i�z� fi�x�, i A 0.

Moreover, the top morphism is necessarily of this form for some
function fª �X Ð�M .

A uniformly equicontinuous family fi has a subsequence which uni-
formly converges to a function f iff for some ultrafilter U extending the
filter Ncofinite of cofinite subsets either of the following equivalent condi-
tions holds:

– there is a sequence �ij�j>N such that for every ε A 0 there exists N A 0
such that dY �fª�x�, fi�x�� B ε for all i A N and x >X.

– the following is a well-defined diagram for some ultrafilter U extend-
ing the filter Ncofinite of cofinite subsets:

X√��1� �Udiag
//

��1��id
��

M√��1�
��1��id

��

X√ � �Ncofinite�diag �f1,f2,...�// M√

where the bottom morphism is �x, i� z� fi�x�, i A 0, and the top
morphism is �x0, i�z� fª�x0� �x, i�z� fi�x�, i A 0.

Moreover, the top morphism is necessarily of this form for some
function fª �X Ð�M .

Exercise(todo) 4.11.3.1. — M.Dubashinsky suggested it might be pos-
sible to attempt to reformulate Γ-convergence in these terms. “The
natural setting of Γ-convergence are lower semicontinuous functions”
[Braides, I,p.19], and this suggests that a Γ-convergent sequence of func-
tions fi � X Ð� R something like a morphism NB � X Ð� RB where
NB �� HomB ��,NB� and RB �� HomB ��,RB� are ssets of non-decreasing
(or non-increasing?) sequences equipped with appropriate filters, or per-
haps a simplex of an appropriate Skorokhod mapping space.

4.11.4. Arzela-Ascoli theorems as diagram chasing. — We now see that
the Arzela-Ascoli theorem can be reformulated in terms of diagram chas-
ing. The following exercise is a summary of the reformulations above.

Exercise 4.11.4.1. — Check that the following diagrams represent the
reformulation of the following Arzela-Ascoli theorem.
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Theorem (Arzela-Ascoli). Let M be a complete metric space
and X be a compact metric space, and let fi � X Ð� Y , i > N,
be a sequence of functions. Then the following are equivalent:

(i) �fi�i>N has a convergent subsequence.
(ii) �fi�i>N is pointwise precompact and equicontinuous.

(iii) �fi�i>N is pointwise precompact and uniformly equicon-
tinuous.

As diagram chasing:

– (X is compact) it holds

X≈��1�Ð�X≈ > ��o @ 1�cart @ �o A 1�cart Ð� �o� 1�cart�lr
,

or, equivalently, for each ultrafilter U it holds

gÐ� Udiag û X≈��1�Ð�X≈

– (M is complete) for each ultrafilter U it holds

gÐ� Ucart û M≈��1�Ð�M≈

or perhaps

M≈��1�Ð�M≈ > �R≈��1�Ð� R≈�lr

– (�fi�i>N is pointwise precompact, i.e. for each point x there is a
subsequence such that �fij�x��j converges)

for each ultrafilter U it holds

Xdiag��1� �Udiag
//

��

M√��1�
��

Xæ � �Ncofinite�diag �fi� // M√

where Xdiag � �Xdiscrete�√ denotes X equipped with the filter of di-
agonals, i.e. a subset is a neighbourhood iff it contains the diagonal.

– (�fi�i>N being uniformly equicontinuous imply they converge uni-
formly)

for each ultrafilter U it holds

X≈��1� �Udiag
//

��

M√��1�
��

X√ � �Ncofinite�diag �fi� // M√
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– (�fi�i>N being equicontinuous imply being uniformly equicontinuous)

Xæ � �Ncofinite�diag
//

��

M√

��

X√ � �Ncofinite�diag
// M√

4.11.5. Arzela-Ascoli theorems; compactness of function spaces. — Above
we saw that to give a convergent sequence of functions is the same as to
give a certain morphism in Å̧, and that to take the limit of the sequence

is to “lift” this morphism along shifts X��1� ��1�
ÐÐ�X and M��1� ��1�

ÐÐ�M .
This makes various Arzela-Ascoli theorems on pre-compactness of func-
tion spaces reminiscent of base change.

TODO 4.11.5.1. — Give a category theoretic approach to various Arzela-
Ascoli theorems including the Prokhorov theorem on tightness of mea-
sures and Γ-convergence.

The following exercises may be of use.

Exercise(todo) 4.11.5.2. — Calculate the Skorokhod mapping spaces
related to the morphisms above. Are these spaces pre-compact? com-
plete? Is the subspace of continuous functions relatively compact within
the mapping space under reasonable assumptions, i.e. is the subset

Hom Å̧ �X,Y � ` Hom Å̧ �X,Y �
relatively compact, and in what precise meaning ?

Calculate the following Skorokhod mapping spaces:

– equicontinuous:
Y HomsSets

Å̧ �Xæ � �N�const,M√�
Y HomsSets

Å̧ �Xæ � �Ncofinite�const,M√�
Y HomsSets

Å̧ �Xæ � �N�diag,M√�
Y HomsSets

Å̧ �Xæ � �Ncofinite�diag,M√�
– uniformly equicontinuous:

Y HomsSets
Å̧ �X≈ � �N�const,M√�

Y HomsSets
Å̧ �X≈ � �Ncofinite�const,M√�

Y HomsSets
Å̧ �X≈ � �N�diag,M√�
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Y HomsSets
Å̧ �X≈ � �Ncofinite�diag,M√�

– uniformly Cauchy:
Y HomsSets

Å̧ �X≈ � �N�cart,M√�
Y HomsSets

Å̧ �X≈ � �Ncofinite�cart,M√�
Exercise(todo) 4.11.5.3. — In measure theory Prokhorov’s theorem
relates tightness of measures to relative compactness (and hence weak
convergence) in the space of probability measures. Reformulate the
Prokhorov’s theorem and give a uniform approach to both Prokhorov
theorem and Arzela-Ascoli theorems.

Exercise(todo) 4.11.5.4. — Rewrite the Arzela-Ascoli theorems en-
tirely in terms of iterated orthogonals/Quillen negations, taking M2-
decompositions (i.e. (co)fibrant replacement), and, more generally, rules
for manipulating labels on morphisms.

5. Model theory

5.1. Ramsey theory. — Let X � sSet be a simplicial set, and c �

Xnd
n Ð� C be a colouring of the set Xnd

n of non-degenerate n-simplices,
i.e. an arbitrary function defined on the set of non-degenerate simplices
of X of dimension n. Call a simplex s � XN c-homogeneous iff all its
non-degenerate faces of dimension n have the same c-colour. Let c�X�
be the subsset of X consisting of c-homogeneous simplices in X.

Exercise 5.1.0.5 (Ramsey theorem). — – Verify that c�X� � sSet
is indeed a well-defined simplicial set; it is a disjoint union of subs-
sets corresponding to different c-colours.

– (Ramsey theorem) Let the set of c-colours be finite. If X � sSet has
non-degenerate simplices of arbitrarily high dimension, then so does
c�X�. In more detail, if for unboundedly many N there is a simplex
in XN which is not a face of a simplex of lower dimension, then the
same holds for c�X�.

– Take X � sSet to be HomSets ��, S� where S is an infinite set. Verify
that the item above is the usual statement of Ramsey theorem: for
each colouring of subsets of S of size n, there is an arbitrarily large
subset of S such that all its subsets of size n have the same colour.

TODO 5.1.0.6. — Ponder the discussion of Ramsey theory-type the-
orems in [MLGrovov], [Gromov2014].
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5.2. Indiscernible sequences in model theory. — Ramsey theory
provides a basic tool in model theory known as the indiscernible se-
quences.

Definition 5.2.0.7 (L-indiscernability neighbourhood structure
on a model M I)

Let M be a model in a language L, and let IB be a linear order. For a
n-ary formula ϕ of L, we say that a sequence �ai� >M I is ϕ-homogeneous
iff

M à ϕ�ai1 , ..., ain� � ϕ�aj1 , ..., ajn� whenever i1 @ i2 @ ... @ in, j1 @

j2 @ ... @ jn, and all the aik ’s are distinct, and all the ajk ’s are
distinct, i.e. aik x ail and ajk x ajl whenever 1 B k @ l B n

For a type π, a sequence is π-homogeneous iff it is ϕ-homogeneous for
each formula in π. A ϕ-neighbourhood of the diagonal in M I is the subset
consisting of all the ϕ-homogeneous sequences. The L-indiscernability
filter on M I is generated by the ϕ-neighbourhoods of the diagonal, for ϕ
a formula of L.

The requirement that all the aik ’s are distinct, and all the ajk ’s are
distinct, is needed to show that a non-decreasing map f � J Ð� I induces
a continuous map f� �M I

Ð�MJ of indiscernability filters.

Definition 5.2.0.8 (The Stone space of a model.)
Let M be a model in a language L, and let A `M be a subset. Also

assume that M is card �A��-saturated. Call the Stone space ”M1 �A� �

”M1 �A� of a model M with parameters A the sset nB z� HomSets �n,M�
where Mn � HomSets �n,M� is equipped with the L�A�-indiscernability
neighbourhood structure. Similarly define ”Mn �A� as the Stone space of
n-tuples.

The following exercise is based on the syntactic similarity of the charac-
terisation of non-forking in terms of indiscernible sequences [Tent-Ziegler,
Lemma 7.1.5], the reformulation Exercise 4.11.2.5 of ’being a closed map’
in terms of neighbourhoods, and of Definition 4.6.2.2 of neighbourhood
structure of the mapping space.

Exercise 5.2.0.9. — Check that the usual Stone space S1�A� is the
Hausdorff quotient of the topologisation of Å̧-Stone space ”M1 �A� when-

ever M is card �A��-saturated.

TODO 5.2.0.10. — – Is ”Mn �A� quasi-compact? complete?
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– Is the map ”Mn �B�Ð� ”Mn �A� proper, cf. Exercise 4.11.2.5 ? Is this
related to the fact that every type has a non-forking extension?

– Interpret [Tent-Ziegler, Lemma 7.1.5] as a property of neighbour-
hoods of Stone spaces, e.g. that a projection of a certain subset is
closed, cf. Exercise 4.11.2.5.

– Are there are non-trivial maps ”Mn �A�Ð� ”Nn �B� for different mod-
els M and N ; what does it mean model-theoretically?

– More generally, ponder if Å̧-Stone spaces allow to define interesting
homological or homotopical invariants of models.

TODO 5.2.0.11. — – Check whether a modelM is stable iff ”Mn �A�
is symmetric for every A ` M , i.e. ”Mn �A� � ∆op

Ð� Å factors as
”Mn �A� � ∆op

Ð� FiniteSetsop
Ð� Å

– Are there similar characterisations of e.g. simple or NIP theories in
terms of their Stone spaces?

TODO 5.2.0.12. — Do these Stone spaces allow to express neatly the
theory of forking?

– For example, do pushforwards mentioned in [Simon, Exercise 9.12
(distality of T eq)] are indeed pushforwards in Å̧?

– Reformulate the definition [Simon, Def. 9.28] of distality in terms
of endomorphisms of Å̧-Stone spaces or similar objects of Å̧.
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