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In this paper we give characterizations of the stable and ℵ0-stable theories, in terms of an external property
called representation. In the sense of the representation property, the mentioned classes of first-order theories
can be regarded as “not very complicated”.
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1 Introduction

1.1 Motivation and main results

Our motivation to investigate the properties under consideration in this paper comes from the following thesis:

It is very interesting to find dividing lines and it is a fruitful approach in investigating quite general
classes of models. A “natural” dividing property “should” have equivalent internal, syntactical, and
external properties (cf. [5] for more).

Of course, we expect the natural dividing lines will have many equivalent definitions by internal and external
properties.

The class of stable complete first order theories T is well known (cf. [4]); it has many equivalent definitions
by “internal, syntactical” properties, such as the order property. As for external properties, one may say “for
every λ ≥ |T | for some model M of T we have S(M) has cardinality > λ” is such a property (characterizing
instability). Anyhow, the property “not having many κ-resplendent models” (or equivalently, having at most one
in each cardinality) is certainly such an external property (cf. [8]).

Here we deal with another external property, representability. The results are phrased below, and the full
definition appears in Definition 2.1, but first consider a simplified version. We say that a a model M is k-
representable for a class k when there exists a structure I ∈ k with the same universe as M such that for any n and
two sequences of length n from M , if they realize the same quantifier free type in I then they realize the same (first
order) type in M . Of course, T is k-representable if every model of T is k-representable. We prove, e.g., that T is
stable iff it is k

unary
κ -representable for some κ where k

unary
κ is the class of structures with exactly κ unary functions

(and nothing else).
The main results presented in this paper are:

� Characterization of stable theories (Theorem 3.1): For a complete first-order theory T , the following
conditions are equivalent:

1. T is stable.
2. T is representable in Ex1

|T |+,|T |(k
eq) (cf. Definitions 2.1 & 2.10).

3. For some cardinals μ1, κ1, μ2, κ2, it holds that T is representable in Ex1
μ1,κ1

(Ex2
μ2,κ2

(keq)) (cf. Definition
2.11).
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4. T is representable in Ex0
μ,κ(k

eq) for some cardinals μ, κ (cf. Definition 2.8).
5. T is representable in Ex0

0,|T |(k
eq).

� Characterization of ℵ0-stable theories (Theorem 4.1): For a complete first-order theory T , the following
conditions are equivalent:

1. T is ℵ0-stable.
2. T is representable in Ex2

ℵ0,ℵ0
(keq).

3. T is representable in Ex1
ℵ0,2(k

eq).
4. T is representable in Ex0,lf

ℵ0,2
(keq) (cf. Definition 2.9)

In the attempt to extend the framework of representation it seemed natural, initially, to conjecture that if we
consider representation over linear orders rather than over sets, we could find an analogous characterizations for
dependent theories. However, such characterizations would imply strong theorems on existence of indiscernible
sequences. Lately (cf. [2]), some dependent theories were discovered for which it is provably “quite hard to find
indiscernible subsequences”, implying that this conjecture would fail in its original formulation.

Nevertheless, this raises various further questions:

1. Can we characterize by representability the property “T is strongly dependent”, and similarly for the various
relatives (cf. [6])?

2. For a natural number n, what is the class of theories representable by the class kn
κ of structures with just

κ n-place functions (or relations)?

The characterization of the superstable case will be treated in [7].

1.2 Set-theoretic Preliminaries

We use the greek letters μ, κ, λ for cardinal numbers. The letter T will be used to denote a first-order theory;
CT is a monster model for it. The set-theoretic facts that are used in this article are stated here for the sake of
completeness. We also prove the special version of the �-system lemma that is used later.

Theorem 1.1 (Fodor) Let λ a regular uncountable cardinal, f : λ → λ such that f (α) < α for all 0 < α < λ,
Then

{
α < λ : f (α) = β

}
is a stationary set of λ for some β < λ (cf. [1]).

Corollary 1.2 If f : λ → μ, λ > μ regular, then f −1({α}) is a stationary set of λ for some α < μ.

Theorem 1.3 Let λ be a regular cardinal, |W | = λ,|St | < μ ( for t ∈ W ) such that χ < λ → χ<μ < λ. Then:

1. (The �-system lemma) There exist W ′ ⊆ W, |W ′| = λ and S such that s 
= t → St ∩ Ss = S holds for all
s, t ∈ W ′.

2. If z̄t = 〈zα
t : α < α(t)〉 enumerates St for t ∈ W , then we can add:

(a) t ∈ W ′ ⇒ α(t) = α0 holds for some α0.
(b) For some U ⊆ α0 it holds that s 
= t ∈ W ′ ⇒ z̄t�U = z̄s�U, U = {

α < α0 : zα
t = zα

s

}
.

(c) For some equivalence relation E on α0 it holds that t ∈ W ′ ⇒ zα
t = zβ

t ↔ (α, β) ∈ E.

P r o o f . For (1), cf. [1,4]. Let us prove (2): The map t → α(t) fulfills the assumptions of Theorem 1.1 (α(t) <

μ < λ), therefore (a) holds for some W0 ⊆ W . By part 1 there exist S ⊆ {
zα

t : α < α0, t ∈ W0
}
, W1 ⊆ W0 of

cardinality λ, such that S = St ∩ Ss for all t 
= s. Define a map W1 � t �→ Ut where: Ut = {
α < α0 : zα

t ∈ S
}
,

Since the range has cardinality 2|α0| ≤ 2<μ < λ this map also fulfills the assumptions of Theorem 1.1, and we get
that for some W2 ⊆ W1 of cardinality λ and U it holds that t ∈ W2 → Ut = U . The range of the map t → z̄t�U
is U S whose cardinality is ≤ |α0||α0| < λ, and by another use of Theorem 1.1 we get W3 ⊆ W2 of cardinality λ

such that (b) holds. The map t → Et where Et =
{
(α, β) : zα

t = zβ
t , α, β < α0

}
has cardinality at most |α0||α0|

and again by Theorem 1.1 the result holds for some E and W ′ ⊆ W3 of cardinality λ, now W ′ is as required. �
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1.3 Model-theoretic and Stability-theoretic preliminaries

This subsection is organized in three parts: general, stable and ℵ0-stable theories.

General

For the rest of this paper, T is assumed to be a complete first-order theory. By EC(T ), we denote the elementary
class of T , i.e., the class of all models satisfying T . By ECλ(T ), we denote the class of models of cardinality λ

satisfying T . We will use the name “structure” for any triple consisting of a set (the structure’s universe or domain),
a vocabulary (i.e., function symbols and relation symbols with prescribed arities), and an interpretation relation.
Structures will be denoted by I, J and their domains by I, J , respectively. The word “model” will only be used for
the elements of EC(T ). Models will be denoted by M, N and their domains by |M |, |N |, respectively. The fraktur
letter k will denote a class of structures in a fixed vocabulary τk. For a model M and set A ⊆ |M |, Sm(A, M)
denotes all the complete m-types in M over A. If M = CT , we may omit it.

Although any model is a structure, we shall use the words “structure” and “model” carefully since in this paper
we use structures to analyse models of the theory T . Usually we will deal with quantifier-free properties of the
structures, but with general first-order properties of the models.

Definition 1.4 For a set A ⊆ CT , we let FE(A) denote the set of formulas ϕ(x, y, a) such that T |= “ϕ(x, y, a)
is an equivalence relation with finitely many classes”.

The formula ϕ(x, a) divides over a set A iff there exists a sequence 〈an : n < ω〉 such that tp(an, A) = tp(a, A)
for all n < ω, but there exists an m < ω such that |= ¬∃x

∧
n∈w ϕ(x, an) holds for all w ∈ [ω]m . The type

p(x) forks over A if there exist formulas ϕi (x, ai ) (i < n), such that for all i < n, ϕi divides over A and
p(x) � ∨

i<n ϕi (x, ai ). We say that a formula ϕ(x, c) (with parameters from C) is almost over A ⊆ C iff for some
E(x, y) ∈ FE(A) and some di ∈ C (i < n) it holds that T |= E(x, di ) ↔ ϕ(x, c). A formula is over A ⊆ C iff it
is equivalent in T to a formula with parameters taken only from A.

Theorem 1.5 (Forking is preserved under elementary maps) If p(x) forks over A, and f is an elementary map
in M, dom( f ) ⊇ dom(p) ∪ A, then f (p) forks over f (A) (cf. [4, III.1.5]).

Theorem 1.6 (cf. [4, III.2.2(2)]) There are (up to logical equivalence mod T ) at most |T | + |A| formulas
almost over A.

Stable theories

A theory T is called κ-stable iff |Sm(A, M)| ≤ κ for every M |= T , set A ⊆ M, |A| ≤ κ and m < ω. The theory
T is called stable if T is κ-stable for some κ .

Theorem 1.7 (The order property) A theory T is unstable if and only if there exist a formula ϕ(x, y) and a
sequence 〈an : n < ω〉 such that |= ϕ(ai , a j )if(i< j) holds for all i, j < ω (cf. [4, II.2.13]).

For the rest of this subsection, T is assumed to be stable.

Theorem 1.8 (Type definability in stable theories) For every formula ϕ(x, y) there exists another formula
ψϕ(y, z) satisfying for every A ⊆ C, |A| ≥ 2 and b ∈ C that there exists c ∈ A such that for every a ∈ A

|= ϕ(b, a) ⇔ |= ψϕ(a, c).

(Put differently, for any b the (ϕ, A)-type of b is (ψϕ, A)-definable; cf. [4, II.2.2].)

Theorem 1.9 For stable T and distinct types p, q ∈ S(B) non-forking over A ⊆ B, there exists E ∈ FE(A)
such that

p(x) ∪ q(y) � ¬E(x, y)

(cf. [4, III.2.9(2)]).
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We let κ(T ) be the first cardinal such that for any model M |= T , any increasing sequence of sets
〈Ai ⊆ |M | : i ≤ κ〉 and any type p(x̄) ∈ Sm(Aκ) there is some i < κ such that p�Ai+1 does not fork over
Ai (cf. also [4, III, Definition 3.1]).

Theorem 1.10 Assuming that T is stable, then κ(T ) ≤ |T |+ and for every B ⊆ |M | and every type p(x̄) ∈
Sm(B), there exists A ⊆ B with |A| < κ(T ) such that p does not fork over A (cf. [4, III, Corollaries 3.2 & 3.3]).

Lemma 1.11 Suppose A ⊂ M |= T , and a ∈ M. There exists B ⊆ A, |B| ≤ |T | such that for every c ∈ A and
ϕ(x, c) almost over B there exists ϑ(x, d) over B such that

M |= ∀x(ϑ(x, d) ↔ ϕ(x, c)),

and tp(a, A, M) does not fork over B.

P r o o f . First, define an increasing sequence Bn by induction on n. Let |B0| < κ(T ) ≤ |T |+, B0 ⊆ A such
that tp(a, A) does not fork over B0. Now assume Bn was defined and let

Sn := {
ϕ(x, c) ∈ LT : c ⊆ A, ϕ(x, c) is almost over Bn

}
By Theorem 1.6 there exist at most |T | + |Bn| = |T | non equivalent formulas almost over Bn . Therefore, without
loss of generality, |Sn| ≤ |T | and define Bn+1 as follows:

Bn+1 := Bn ∪ {
c : ϕ(x, c) ∈ Sn

}
That the required properties of B := ⋃

n<ω Bn hold is easily verified.

ℵ0-Stable theories

For the rest of this subsection, T is assumed to be ℵ0-stable.

Theorem 1.12 Let p ∈ S(A). For a given B ⊇ A there are only finitely many non-forking extensions of p in
S(B) (cf. [4, III]).

Corollary 1.13 For p ∈ S(A) there exists a finite B ⊆ A such that p is the unique non-forking extension of
p�B to S(A).

P r o o f . By Theorem 1.12 there are finitely many non-forking extensions of p�B in S(A), therefore there
exists a finite B0 ⊆ A such that q0�B0 
= q1�B0 holds for every distinct q0, q1 ∈ S(A) non-forking extensions of
p. Also p does not fork over some finite B1 ⊆ A. Now, the conclusion easily follows for B = B0 ∪ B1. �

Theorem 1.14 A formula ϕ(x, c) is equivalent to a formula over B if and only if ϕ(x, f (c)) ≡ ϕ(x, c) holds
for every f ∈ Aut(C/B) (cf. [4, III.2.3(2)]).

2 Structure classes and representation

We start with a number of conventions:
The vocabulary is a set of individual constants, (partial) function symbols and finitary and relation symbols

(=predicates) with fixed arity; e.g., for a function symbol F, arityτ (F) is the number of places of the symbol F .
Individual constants may be considered as 0-place function symbols; here, function symbols are interpreted as
partial functions.

A structure I = 〈τ, I, |=〉 is a triple of vocabulary, universe (domain) and the interpretation relation for the
vocabulary: let |I| = I, ‖I‖ the cardinality of I and τI = τ ; I is called a τ -structure. By k, we denote a class of
structures in a given vocabulary τk.

By Lτ
qf , we denote the set of quantifier-free formulas with terms from τk. That is, finite Boolean combinations

of atomic formulas, where atomic formulas (for τ ) have the form P(σ0, . . . , σn−1) or σ0 = σ1 for some n-ary
predicate P ∈ τ, σ0, . . . are terms in the closure of the variable by function (and partial function) symbols.

If � is a set of formulas in the vocabulary τ, I a τ -structure, ā = 〈ai : i < α〉 ∈α|I|, then

tp�(ā, B, I) =
{
ϕ(x̄, b̄) : ϕ(x̄, ȳ) ∈ �, I |= ϕ(ā, b̄), b̄ ∈ lh( ȳ) B

}
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2.1 Defining representations

We now reach the central definitions:

Definition 2.1 Consider a structure I and a set of formulas � ⊆ LI (they are either as in the conventions at the
beginning of this section or just first order).

For a structure J, a function f : |I| → |J| is called a �-representation of I in J iff

tpqf( f (a), ∅, J) = tpqf( f (b), ∅, J) ⇒ tp�(a, ∅, I) = tp�(b, ∅, I)

for any two sequences a, b ∈<ω I of equal length.
We say that I is �-represented in a class of models k if there exists a J ∈ k such that I is �-represented in J.

For two classes of structures k0, k we say that k0 is �-represented in k if every I ∈ k0 is �-represented in k. We say
that a first-order theory T is �-represented in k if EC(T ) is �-represented in k. We may omit � from the notation
for the set of first order formulas or use qf for the set of quantifier-free formulas.

For a sequence s we use the shorthand as := as0
� . . .� aslh( s)−1 .

For a structure I,� ⊆ LT and sequences at(t ∈ I ) from CT we say that a = 〈at : t ∈ I 〉 is a �-indiscernible
sequence over A in M if tp�(at , A, M) = tp�(as, A, M) holds for all s, t ⊆ I with the same quantifier-free type
in I. (This definition also appears in [9] and [3, II].) For a class of structures k, M |= T and subset A ⊆ |M | we
denote by Ind�(k, A, M) the class of structures a = 〈at : t ∈ I 〉 ( I ∈ k, at ⊂ |M |) which are �-indiscernible in
M over A ⊆ |M |. We omit the respective symbol from the above notation in the specific cases � = L(τM), M = C
and A = ∅.

Finally, by keq we denote the class of structures of the vocabulary {=}.

2.2 The free algebras Mμ,κ

Definition 2.2 For a given structure I, we define the structure Mμ,κ(I) as the structure whose vocabulary
is τI ∪ 〈Fα,β : α < μ, β < κ〉, with a β-ary function symbol Fα,β for all α < μ, β < κ . The vocabulary of I
includes a unary relation symbol I for the structure’s universe, and we will assume Fα,β /∈ τI.

We now define a structure Mμ,κ,ζ (I) by recursion:

1. Mμ,κ,0(I) := |I|;
2. for limit ζ , Mμ,κ,ζ (I) = ⋃

ξ<ζ Mμ,κ,ξ (I); and
3. for ζ = γ + 1,

Mμ,κ,ζ (I) = Mμ,κ,γ (I) ∪ {
Fα,β(b) : b ∈ βMμ,κ,γ (I), α < μ, β < κ

}

where Fα,β(b) is treated as a formal object. Then the universe for the structure I is

Mμ,κ(I) =
⋃

γ∈Ord

Mμ,κ,γ (I).

By Remark 2.3 below, Mμ,κ(I) is a set and not a proper class. The symbols in τI have the same interpretation
as in I. In particular, α-ary functions may be interpreted as (α + 1)-ary relations. The β-ary function Fα,β(x) is
interpreted as the mapping a �→ Fα,β(a) for all a ∈β |Mμ,κ(I )|, where Fα,β(a) on the right side of the mapping
is the formal object. If μ = κ = ℵ0 we may omit them from the notation.

We denote

reg(κ) =
{

κ κ = cfκ,

κ+ otherwise,

for every cardinal κ .

Remark 2.3 Since reg(κ) ≥ κ is regular, for all β < κ and sequences of terms σi (ci ) ∈ Mμ,reg(κ)(i < β) there
exists γ < reg(κ) such that σi (ci ) ∈ Mγ for all i < β. Therefore Fα,β(〈σi (ci ) : i < β〉) ∈ Mγ+1 ⊆ Mμ,reg(κ) ,
hence Mμ,κ(S) = Mμ,κ,reg(κ)(S) and particularly Mμ,κ(S) is a set (though defined as a class).
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We observe that
∥∥Mμ,κ(S)

∥∥ ≤ (μ + |S|)<reg(κ) . We can prove by induction on γ ≤ reg(κ) that |Mγ | ≤
(μ + |S|)<reg(κ) .

For a sequence a ⊆ Mμ,κ(S) we define its closure under subterms as the set cl(a) defined by induction on
the construction of the term and the sequence length as cl(a) := a for a ⊆ S. If lh(a) = 1 and a0 = Fα,β(b) then
cl(a) := {a0} ∪ ⋃ {

cl(bi ) : i < β
}
. Otherwise, cl(a) := ⋃ {

cl(ai ) : i < lh(a)
}
.

Observation 2.4 For any set S and sequence a ⊂ (Mμ,κ(S)) of length < reg(κ), the closure of a under
subterms has cardinality less than reg(κ).

Remark 2.5 If λ is regular, λ ≥ κ then for every set S and sequence a ∈<λ(Mμ,κ(S)) there exist a subset
S′ ⊆ S of cardinality χ < λ and a term σ (b) ∈ Mμ,κ(S′) such that a = σ (b).

Definition 2.6 Denote ϑμ,κ := (reg(κ) + μ)<reg(κ) . (In particular, ϑμ,κ = ∥∥Mμ,κ(I)
∥∥ for ‖I‖ = reg(κ).)

Definition 2.7 Consider a free algebra M(S). We shall say that a set A of τM-terms is a minimal system of
terms for M if for every term σ (v) ∈ M(S) there exists a single σ ′(x) ∈ A such that for some u ∈ S without
repetitions it holds that σ (v) = σ ′(u).

It follows from the Axiom of Choice that every free algebra has a minimal system of terms.

2.3 Extensions of classes of structures

For a class of structures k, we define several classes of structures that are based on k.

Definition 2.8 We let Ex0
μ,κ(k) be the class of structures I+ which, for some I ∈ k satisfy |I+| = |I|; τI+ =

τI ∪ {Pα : α < μ} ∪ {
Fβ : β < κ

}
for new unary relation symbols Pα and new unary function symbols Fβ ; if

μ > 0 then 〈PI+
α : α < μ〉 is a partition of |I|; and 〈F I+

β : β < κ〉 are partial unary functions.

Definition 2.9 We let Ex0,lf
μ,κ(k) be the class of structures in Ex0

μ,κ(k) for which the closure of every element
under the new functions is finite. (Here, “lf” stands for “locally finite”.)

Definition 2.10 We let Ex1
μ,κ(k) be the class of structures in Ex0

μ,κ(k) for which Fβ(Pα) ⊆ P<α := ⋃
γ<α Pγ

holds for every α < μ, β < κ .

Definition 2.11 We let Ex2
μ,κ(k) be the class of structures of the form I+ = Mμ,κ(I), for some I ∈ k (cf.

Definition 2.2).

In the following, we use the convention that Exμ,κ will be one of the above classes.

2.4 Some properties of representation and extension classes

Let us note several properties of representations:

Observation 2.12 Let I1, I2, I3 be structures. If f : I1 → I2 is a �-representation of I1 in I2 and g : I2 → I3

is an Lqf
I2

-representation of I2 in I3, then g ◦ f is a �-representation of I1 in I3.

Observation 2.13 We have that Ex0,lf
μ,κ(k) and Ex1

μ,κ(k) are included in Ex0
μ,κ(k).

Observation 2.14 For κ finite, we have that Ex0,lf
μ,κ(k) ⊇ Ex1

μ,κ(k).

P r o o f . Let I ∈ Ex1
μ,κ(k) and fix a ∈ |I|. Consider the tree formed by finite sequences η̄ ∈ <ω[κ] for

which (Fη�−1 ◦ . . . ◦ Fη0)(a) is well-defined (i.e., (Fηs ◦ . . . ◦ Fη0)(a) ∈ dom(Fηs+1) for every s < � − 1, where
� = lh(η̄)). Now, since it holds that Fβ(Pα) ⊆ P<α for any β < κ, α < μ, and by the well-ordering of the ordinals
each branch of this tree is finite. Kőnig’s Lemma implies that the tree is finite, and since there is a map from the
tree onto the closure of a under the functions, we see that I is actually locally finite. �

For any cardinals μ and κ , k is qf-representable in all the extension classes of k defined above. The classes
Exμ1+μ2,κ1+κ2(k) and Exμ2,κ2(Exμ1,κ1(k)) are qf-representable in each other (for Ex = Ex0, Ex0,lf, Ex1, or Ex2).
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Observation 2.15 If μ2 ≤ μ1, κ2 ≤ κ1 then Exμ2,κ2(k) is qf-representable in Exμ1,κ1(k) (for Ex =
Ex0, Ex0,lf, Ex1, or Ex2).

Observation 2.16 For any μ1, μ2, κ2, κ1 ≥ ℵ0, the class Ex2
μ2,κ2

(Ex1
μ1,κ1

(k)) is qf-representable in
Ex1

μ1,κ1
(Ex2

μ2,κ2
(k)).

P r o o f . Note that Ex1
μ1,κ1

(·) expands each structure of the class k by preserving the structure and enriching it
with a partition and partial functions between classes of the partition (particularly such that the order of the classes
is preserved). On the other hand, Ex2

μ2,κ2
(·) extends the structure by adding formal terms. Now, consider structures

I ∈ k, I+ ∈ Ex1
μ1,κ1

(k), I++ ∈ Ex2
μ2,κ2

(Ex1
μ1,κ1

(k)), such that I++ is formed from I+ which is formed from I in the
obvious way, using the extension classes we defined. In order to show that I++ is qf-representable in the latter
class, we extend I+ to a new structure I∗ by defining the partition P ′

α as follows: we will take the partition {Pα}
(of |I+| only) and extend it to a partition of |I++|. Define (as sets) P ′

n = Pn−1 for all 2 ≤ n < ω, P ′
α = Pα for

all ω ≤ α, and P ′
0 = |I++|\|I+|. Note that we did not extend the domain of the structure, nor have we changed

any of the partial or full functions. It should be clear that the identity map I++ → I∗ is a qf-representation as
required. �

Observation 2.17 The class Ex1
2κ ,κ(k

eq) is qf-representable in Ex1
0,κ(k

eq).

P r o o f . Let 〈I, 〈Pα : α < 2κ〉, 〈Fβ : β < κ〉〉 be the vocabulary of I+. Without loss of generality |P I+
0 | ≥ 2

(every model such that |PI+
0 | = 1 can be represented in such a model). We select two distinct t0, t1 ∈ P I+

0 and let
h : 2κ → P(κ) a bijection. Consider the structure I′ = 〈I, 〈Fβ : β < κ〉, 〈Gβ : β < κ〉〉 whose universe is |I+|,
F I′

β = F I+
β and also define for all γ < κ, x ∈ P I+

γ ,

GI′
β(x) =

{
t0 γ ∈ h(β),
t1 γ 
∈ h(β).

Here, I means that P0 ∈ τI′ and P I′
0 = I . It is easy to verify that the identity is a Lqf

I+ -representation of I+ in I′. �
Observation 2.18 The class Ex2

μ,ℵ0
(keq) is qf-representable in Ex1

μ,2(k
eq) for μ ≥ ℵ0 (in fact, it is representable

by a structure with only two unary functions).

P r o o f . Consider a structure from Ex2
μ,ℵ0

(keq). By the definition, we may assume that the struc-
ture is Mμ,ℵ0(S) for some S ∈ keq. Let 〈σα(xα) : α < μ〉 be a minimal system of terms of Mμ,ℵ0(S) (cf.
Definition 2.7, ω is the upper bound on function symbol arities, μ is the number of functions). Without loss of gener-
ality, lh(x0) = 1, σ0(x0) = x0. We now construct a structure I+ whose vocabulary is 〈I, flast, fhead, 〈Pβ : β < μ〉〉
and whose universe is

I I+ = {〈α, i, s0, . . . , si 〉 : α < μ, i < lh(xα), s0, . . . , si ∈ S
}

Let 〈〈αβ, iβ〉 : β < μ〉 enumerate the pairs
{〈α, i〉 : α < μ, i < lh(xα)

}
in increasing lexicographic order. Let

PI+
β be the set of sequences in |I+| whose head is 〈αβ, iβ〉, and let

f I+
last(〈α, i, s0, . . . , si 〉) := 〈0, 0, si 〉

f I+
head(〈α, i, s0, . . . , si 〉) := 〈α, i − 1, s0, . . . , si−1〉 (i > 0)

we define a map h : Mμ,ℵ0(S) → |I+| by h(σα(v)) = 〈α, lh(xα) − 1, v0, . . . , vlh(xα)−1〉. That h is a qf-
representation of Mμ,ℵ0(S) in I+ is easy to verify. �

We say that a function f with domain and range contained in a structure I is a partial automorphism when for
every sequence a ∈ |I| of members of dom( f ), it holds that tpqf(a, ∅, I) = tpqf( f (a), ∅, I).

3 Stable theories

The central result for this section is the following theorem:

Theorem 3.1 Let T be a complete first-order theory. Then the following conditions are equivalent:
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1. T is stable.
2. T is representable in Ex1

0,|T |(k
eq) (cf. Definitions 2.1 & 2.10).

3. T is representable in Ex1
|T |+,|T |(k

eq).
4. T is representable in Ex1

2|T |,|T |(k
eq).

5. For some cardinals μ1, κ1, μ2, κ2, it holds that T is representable in Ex1
μ1,κ1

(Ex2
μ2,κ2

(keq)) (cf. Definition
2.11).

6. T is representable in Ex0
μ,κ(k

eq) for some cardinals μ, κ (cf. Definition 2.8).

7. T is representable in Ex0
0,|T |(k

eq).

We can add to the above list of equivalences the following:

5′. For some μ1, κ1, μ2, κ2, and λ > (μ1 + |T |)<κ1 + (μ2 + |T |)<κ2 , it holds that ECλ(T ) is representable in
Ex1

μ1,κ1
(Ex2

μ2,κ2
(keq))

This is a better condition, as it is a condition only on one ECλ(T ); similar modifications can be done for 2., 3.,
4., 6., or 7.

P r o o f . Theorem 3.11 below proves 1.⇒3. Observation 2.15 implies 2.⇒3.⇒4. immediately. Similarly,
4.⇒5. and 7.⇒6. are immediate by properties of representations. 5.⇒1. follows from Theorem 3.3. 4.⇒2. follows
from Observations 2.12 & 2.17. So far we have equivalence of conditions 1. to 5.. Now, 2.⇒7. is immediate since
Ex0

0,|T |(k
eq) ⊇ Ex1

0,|T |(k
eq). We leave 6.⇒1. without a complete proof, since it is very similar to 5.⇒1.

3.1 Stability of representable theories

We shall first prove the first direction of the main theorem. Namely, that a theory which is representable in
Ex2

μ2,κ2
(Ex1

μ1,κ1
(keq)) is stable. The method relies on the combinatorial properties of models of stable theories,

particularly that all order indiscernibles are indiscernible sets.

Theorem 3.2 Assume that

1. T is representable in Ex2
μ2,κ2

(Ex1
μ1,κ1

(keq)), for fixed cardinals μ1, μ2, κ1, κ2;
2. μ ≥ reg(κ2) + μ+

1 ;
3. λ > μ + ϑμ2,κ2 + κ1 is a regular cardinal (cf. Definition 2.6); and
4. λ > χ<μ for all cardinals χ < λ.

Then, for every sequence b = 〈bα : α < λ〉 ⊆ <μ[CT ] of length < μ there exists S ∈ [λ]λ such that 〈bα : α ∈ S〉
is an indiscernible set.

P r o o f . Let M |= T such that bα ∈ <μ|M | for all α < λ and assume that f : M → I+ :=
(Mμ2,κ2(I ), Pα, Fβ)α<μ1,β<κ1 is a representation, I = ⋃

α<μ1
Pα where 〈Pα : α < μ1〉 is a partition of I, Fβ :

Pα → ⋃
γ<α Pγ (So, dom(Fβ) = I ) and let aα = f (bα) for all α < λ.

Without loss of generality, we can add the following assumptions

(a) Each aα is closed under subterms in Mμ2,κ2(I ). (Since μ ≥ κ2 is regular, we can apply Observation 2.4
for (μ, κ2).)

(b) The set
{

Fβ : β < μ1
}

is closed under composition. (Including the empty composition which is the identity;
recall that those are unary functions.)

(c) Each aα is closed under the partial functions Fβ . (To find the closure of aα under the functions we need to
add at most μ1 elements, so the closure of aα is < μ.)

(d) lh(aα) = ξ = |ξ | for all α < λ (Since λ = ⋃
ξ<μ

{
α < λ : ξ = lh(aα)

}
and λ > μ is regular, and by

reordering.)
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The rest of the proof is by taking subsequences of the original sequence, while preserving the length λ, as follows
(in brackets we note the common property of the desired subsequence):
First subsequence (sequences constructed by the same terms): By Remark 2.5, for each i < ξ, α < λ there
exist terms σα,i (xα,i ) in the language of Mμ2,κ2 and sequences tα,i ∈<reg(κ2) I such that aα,i = σα,i (tα,i ), and
also | ⋃ {

xα,i :α<λ,i<ξ

} | ≤ reg(κ2). Since λ > [ϑμ2,κ2 ]
ξ is regular, there exist 〈σi (xi ) : i < ξ 〉, S0 ∈ [λ]λ such that

〈σα,i (xα,i ) : i < ξ 〉 = 〈σi (xi ) : i < ξ 〉 for all α ∈ S0.
Second subsequence (the quantifier free type of aα relative to the Pα): since (κ1)ξ < λ , there exists a S1 ∈ [S0]λ

such that the function α �→ {
(i, β) ∈ ξ × κ1 : ai

α ∈ Pβ

}
is constant on S1 (denote this constant as the relation R1).

Third subsequence (the quantifier free type of aα relative to the Fα): since ξμ1+ξ ≤ ξ<μ < λ, there exists a
S2 ∈ [S1]λ such that the function α �→ {

(β, ζ0, ζ1) : ζ0, ζ1 < ξ, β < μ1, Fβ(aζ0
α ) = aζ1

α

}
is constant on S2 (denote

this constant as the relation R2).
Final subsequence: By the �-system lemma (Theorem 1.3(2)), there exist S3 ∈ [S2]λ, U ⊆ ξ, E ⊆ ξ × ξ such

that

(a) aα�U = aβ�U for all α, β ∈ S3;
(b) E is an equivalence relation such that for all α ∈ S3: ai

α = a j
α ↔ (i, j) ∈ E ;

(c) ai
α = a j

β → i, j ∈ U for all α 
= β ∈ S3.

We now show that for any finite u, v ⊆ S3 of length � without repetition, it holds that av and au have the same
quantifier-free type in I+.

Let ϕ(x�×ξ ) an atomic formula. By symmetry, it suffices to show that ϕ(au) → ϕ(av).
Case 1: ϕ(x�×ξ ) = “σ1(x�×ξ ) = σ2(x�×ξ )”. The proof is carried by induction on the complexity of the term σ1.
For σ1(x�×ξ ) = Fα,β(σ ∗

1(x�×ξ )) it follows from properties of the free algebra that for some sequence of terms
σ ∗

2(x�×ξ ) it holds that σ2(x�×ξ ) = Fα,β(σ ∗
2(x�×ξ )) and also σ ∗

1,i (au) = σ ∗
2,i (au) for all i < α. The induction

hypothesis implies that σ ∗
1,i (av) = σ ∗

2,i (av) and thus σ1(av) = σ2(av) as required.
For σ1(x�×ξ ) = Fα∗

1
(σ ∗

1 (x�×ξ )), the validity of ϕ(au) implies that σ2(au) = σ1(au) ∈ I . It is easy to verify (by
induction on the complexity of the term) that the terms σs(s = 1, 2) contains only symbols from x�×ξ , Fα (since
dom(Fα) ⊆ I ). Now, for a finite sequence of ordinals α, denote Fα := Fα0 ◦ . . . ◦ Fαlh(α) , (F〈 〉 is the identity). It
is easy to verify that the term σs(x�×ξ ) takes the form Fαs (xis ,ζs ) for some sequence α. And the formula ϕ can be
rewritten as Fα1(xi1,ζ1) = Fα2(xi2,ζ2).

Since the family 〈Fα : α < μ1〉 is closed under composition (cf. above), there exists a βs < μ1 such that Fαs =
Fβs . The sequences auis

are closed under 〈Fα : α < μ1〉, hence for some ζ ∗
s < ξ it holds that Fβs (auis ,ζs ) = auis ,ζ ∗

s

and aui1 ,ζ ∗
1

= aui2 ,ζ ∗
2
. The former implies 〈βs, ζs, ζ

∗
s 〉 ∈ R2 and the latter implies that ζ ∗

1 , ζ ∗
2 ∈ U and 〈ζ ∗

1 , ζ ∗
2 〉 ∈ E .

Now, since avi1
�U = avi2

�U it follows that Fβs (avis ,ζs ) = avis ,ζ ∗
s

and avi1 ,ζ ∗
1

= avi2 ,ζ ∗
2
, so easily |= ϕ(av).

Case 2: ϕ(x�×ξ ) = Pα(σ (x�×ξ )). That |= ϕ(av) implies that σ (x�×ξ ) = Fα(xi,ζ ) for some i < �, ζ < ξ . Now
by the closure of the functions under composition, the formula is equivalent to Pα(Fβ(xi,ζ )). And for some ζ ∗

we get that Fβ(aui ,ζ ) = aui ,ζ ∗ and Pα(aui ,ζ ∗) implying 〈β, ζ, ζ ∗〉 ∈ R2 and 〈α, ζ ∗〉 ∈ R1, respectively. Similar
arguments give |= ϕ(au).

Theorem 3.3 If T is representable in Ex2
μ2,κ2

(Ex1
μ1,κ1

(keq)), then T is stable.

P r o o f . Assume towards contradiction that T is unstable. By the order property (Theorem 1.7), and
compactness, we can construct a sequence 〈ai : i < λ〉, where

λ = �2(μ + ϑμ2,κ2 + κ1)+, μ = reg(κ2) + μ+
1

such that |= ϕ(ai , a j )if(i< j) holds for all i, j < λ.
Now by the assumptions let f : M → I+ be a representation of M in Ex2

μ2,κ2
(Ex1

μ1,κ1
(keq)). It is easily verified

that the conditions in Theorem 3.2 hold. Hence, there exists S ∈ [λ]λ such that {ai : i ∈ S} is an indiscernible set
and particularly |= ϕ(ai , a j ) ↔ ϕ(a j , ai ) holds for all i, j ∈ S, contradicting the assumption. �
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3.2 Stability implies representability

Here we turn to proving the other direction of the main result. We recall several facts about stable theories (from
[4, II & III]).

Theorem 3.4 If p(x) forks over A and B ⊆ A, q � p then q forks over B (monotonicity of forking). Moreover,
for a stable T , tp(a, A ∪ b) does not fork over A iff tp(b, A ∪ a) does not fork over A (symmetry); and for sets
A ⊆ B ⊆ C such that tp(a, C) does not fork over B, and tp(a, B) does not fork over A it holds that tp(a, C)
does not fork over A (transitivity). Finally, a type p forks over A iff it divides over A (equivalence of forking and
dividing).

Definition 3.5 A set C ⊆ C will be called strongly independent over A if for any a ∈ C , the type tp(a, A ∪
(C\ {a})) is the unique extension in S(A ∪ (C\ {a})) of tp(a, A) which does not fork over A.

Definition 3.6 We say that a sequence 〈Iα : α < γ 〉 (where Iα 
= ∅ and α < γ ) is a strongly independent
decomposition of M of length γ if for all α < γ , it holds that Iα is strongly independent over I<α (in M), and
that |M | = I<γ , where I<α = ⋃

β<α Iβ , of course.

Lemma 3.7 (Symmetry of strong independence) Let a1, a2 ∈ C, A ⊇ B1, B2 such that tp(ai , A ∪ {a3−i }) does
not fork over Bi and tp(ai , A) is the unique non-forking extension of tp(ai , Bi ) in S(A) for i = 1, 2. Then
(∗)1 ⇔ (∗)2, where:

The type tp(ai , Bi ) has a unique extension to A ∪ {a3−i } which is non-forking. (∗)i

P r o o f . By symmetry it suffices to show that ¬(∗)2 ⇒ ¬(∗)1. Assume that p := tp(a2, B2) has two different
non-forking extensions p1, p2 ∈ S(A ∪ {a1}). Since both types are complete, there exists a formula ϕ = ϕ(x, a1, c)
with c ⊆ A such that ϕ ∈ p1, ¬ϕ ∈ p2. Let b1, b2 realize p1, p2, respectively.

So, tp(bi , A) = pi�A is a non-forking extension of p, by uniqueness it follows that p1�A = p2�A. Hence, for
i < 2 there exist elementary maps Fi in C such that Fi�A = idA, Fi (bi ) = a2.

Let qi ∈ S(A ∪ {bi }) be a non-forking extension of tp(a1, B1). Then Fi (qi ) ∈ S(A ∪ {a2}) is a non-forking
extension of tp(a1, B1) (since Fi�A = idA, and non-forking is preserved under elementary maps).

Now, note that |= ϕ(b1, a1, c) ∧ ¬ϕ(b2, a1, c) which implies ϕ(a2, x, c) ∈ F1(q1) and also ¬ϕ(a2, x, c) ∈
F2(q2). This implies that F1(q1), F2(q2) are distinct extensions of tp(a1, B1), as needed. �

An order-preserving refinement is a partition 〈Jα : α < γ ′〉 which refines 〈Iα : α < γ 〉 such that for all
α < β < γ , if α′, β ′ < γ ′, Iα ⊇ Jα′ and Iβ ⊇ Jβ ′ , then α′ < β ′.

Proposition 3.8 If 〈Iα : α < γ 〉 is a strongly independent decomposition of M, then every order-preserving
refinement of this partition is also a strongly independent decomposition of M.

P r o o f . Use the basic properties of non-forking. �

Theorem 3.9 Assume T is stable, and let A ⊂ B such that for every formula ϕ over B which is almost over
A, ϕ is equivalent (in T ) to a formula over A. If p, q ∈ S(B) are distinct and non-forking over A, there exists a
ϕ∗(x, c) over A such that p � ϕ∗ and q � ¬ϕ∗.

P r o o f . By Theorem 1.9, there exists an equivalence relation E ∈ FE(A) such that p(x) ∪ q(y) � ¬E(x, y).
Let

{
bi : i < n(E)

} ⊆ C enumerate representatives for all the distinct equivalence classes of E and let

w := {
i < n(E) : p(x) ∪ {

E(x, bi )
}

is consistent
}
.

Without loss of generality, assume that bi realizes p for all i ∈ w. Let ϕ(x) := ∨
i∈w E(x, bi ). It can be easily

verified that p(x) � ϕ(x) and similarly, q(x) � ¬ϕ(x). We will show that ϕ(x) is preserved by every f ∈
Aut(C/B):

Since p is over B and E is a formula over B, they are preserved by f and so, we have:

1. p(x) ∪ {
E(x, bi )

} ⇔ p(x) ∪ {
E(x, f (bi ))

}
holds for all i < n(E).

2. ¬E(bi , b j ) holds for every i, j < n(E) with i 
= j and hence also ¬E( f (bi ), f (b j )).
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Hence, f can be regarded as a permutation on {bi/E : i ∈ w}, the equivalence classes of E in C, and therefore

f (ϕ(C)) = f (
⋃
i∈w

bi/E) =
⋃
i∈w

f (bi )/E = ϕ(C).

Consequently, |= ϕ(x) ≡ f (ϕ(x)). Now use Theorem 1.14, which gives the required equivalent formula. �

Lemma 3.10 Let μ = |T |+. For a stable T , for each model M |= T there exists a strongly independent
decomposition of length γ ≤ μ.

Since our definition of a decomposition does not allow empty sets, we use ordinals γ ≤ μ. Such a decomposition
is trivial for ‖M‖ ≤ μ (e.g., by taking an enumeration of |M | and converting to singletons).

P r o o f . We choose by induction a sequence 〈Iα : α < μ〉 such that Iα is strongly independent over I<α , and
is also maximal in |M |\I<α with respect to this property for every α < μ. Indeed this process may end within at
most μ steps, so we define γ = min({α < μ : Iα = ∅} ∪ {μ}).

Assume towards contradiction that the elements of M were not exhausted after μ iterations, then there exists
an a ∈ M\I<μ. Recall that for a stable theory κ(T ) ≤ μ (cf. [4, III.3.2 & III.3.3]) and so, by the definition of
κ(T ) there exists a set B ⊆ I<μ with |B| < κ(T ) ≤ μ such that p(x) := tp(a, I<μ) is non-forking over B, and
by regularity of μ there exists α0(∗) < μ such that I<α0(∗) ⊇ B. Now, recalling Theorem 1.6, let

� :=
{
ϕ(x ; c) : ϕ(x, c) almost over B, ϕ(x ; y) ∈ L, c ∈lh(y) I<μ

}
,

and choose �∗ ⊆ � a minimal set of representatives up to logical equivalence from �. By Theorem 1.6 we have
|�∗| ≤ |B| + |T | < cf(μ), and since μ is regular, there exists α1(∗) < μ such that b ⊆ I<α1(∗) for all ϕ(x, b) ∈ �∗.
Let α(∗) = max

{
α0(∗), α1(∗)

}
. Let B ′ = ⋃

(b : ϕ(x, b) ∈ �∗) ∪ B be such that B ′ ⊆ I<α(∗), |B ′| ≤ |T |. We
will now prove that the type p�I≤α(∗) is the unique extension in S(I≤α(∗)) of p�I<α(∗) .

Clearly p�I≤α(∗) extends p�I<α(∗) , now assume that q ∈ S(I≤α(∗)) extends p�I<α(∗) , and does not fork over
I<α(∗) .

By the transitivity of non-forking, q does not fork over B. Assume towards contradiction that p 
= q. By
Theorem 1.9 there exists E ∈ FE(B) such that q(x) ∪ p(y) � ¬E(x, y), and particularly q(x) � ¬E(x, a).

The formula E(x, a) is almost over B, so by the choice of α1(∗) (q � ¬E(x, a) implies that ¬E(x, a) is
logically equivalent to a formula in x overI<μ), there exist a b ⊆ I<α(∗) and ϕ(x, b) logically equivalent to E(x, a).
Now since E(a, a) holds, we also get |= ϕ(a, b), and since b ⊆ I<α(∗) , we get ϕ(x, b) ∈ tp(a, I<α(∗)) = q�I<α(∗) ,
a contradiction.

So we have proved that tp(a, I≤α(∗)) is the unique non-forking extension of tp(a, I<α(∗)) in S(I≤α(∗)\ {b}).
Recall from the choice of Iα(∗) that for all b ∈ Iα(∗) , tp(b, I≤α(∗)\ {b}) is the unique extension in S(I≤α(∗)\ {a})
which does not fork over I<α(∗) . Also, Lemma 3.7 implies that tp(b, I≤α(∗)\ {b} ∪ {a}) is the unique non-forking
extension of tp(b, I<α(∗)) in S(I≤α(∗)\ {b} ∪ {a}).

From the last two sentences it follows that the condition in Definition 3.5 holds for Iα(∗) ∪ {a} over I<α(∗) ,
which contradicts the maximality of Iα(∗) .

Theorem 3.11 A stable first order theory T is representable in Ex1
|T |+,|T |(k

eq).

P r o o f . Let M |= T . By lemma 3.10 we get a strongly independent decomposition 〈Iα : α < γ ≤ |T |+〉 of
M . By Proposition 3.8, we can assume without loss of generality that |I1| = |I0| = 1.

Define I+ = 〈F∗
i , Pα, Fϕ(x,y), j : α < γ, i < |T |, ϕ(x, y) ∈ L, j < kϕ(x,y)〉 ∈ keq as follows: |I+| = |M |,

P I+
α = Iα for all α < γ .

By Lemma 1.11 we can find some B(a) ⊆ I<α for all a ∈ Iα , with the following properties:

1. |B(a)| ≤ |T |,
2. for every formula ϕ(x̄, c̄) over I<α which is almost over B(a), there exists a formula

ϑ(x̄, d̄)B(a) such that |= ∀x̄(ϑ(x̄, d̄) ↔ ϕ(x̄, c̄)), (�)
3. if α > 0, then I0 ⊆ B(a), and
4. tp(a, I<α) does not fork over B(a).
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Now, we define the functions 〈(F∗
i )I+

: i < |T |〉 on dom(F∗
i ) = |M |\(I0 ∪ I1) for all i < |T |. Fix α > 1, a ∈ Iα .

We define F∗
i (a) = bi (a)(i < |T |) for some enumeration 〈bi (a) : i < |T |〉 of B(a), possibly with repetitions.

Now, let ψϕ be a formula which is guaranteed to exist from Theorem 1.8 and define the partial unary functions
{F I+

ϕ(x,y), j (x) : j < kϕ(x,y)} as follows: Let a ∈ dom(F I+
ϕ(x,y), j ) = |M |\(I0 ∪ I1), and let α < μ be such that

a ∈ Iα . Since |I<α| ≥ 2 for all 2 ≤ α < μ, it follows from the definition of ψϕ (recall Theorem 1.8) that there
exists ca ∈lh(zϕ) I<α such that |= ϕ[a, b] ⇔ |= ψϕ [b, ca ]. Now we define F I+

ϕ(x,y), j (a) := (ca) j , for all j < lh(zϕ).
Thus we have defined I+ and we define f : M → I+ as f (a) = a for all a ∈ |M |. Now, to prove that f is indeed
a representation, it follows by Proposition 3.12 that it would suffice to prove that tp(h(a), ∅, M) = tp(a, ∅, M),
for every a ⊆ dom(h) and partial automorphism h of I+ with domain and range closed under functions.

Let Dα = Iα ∩ dom(h), Rα = Iα ∩ ran(h). It is easily verified that for α < γ, h�Dα is a partial automorphism
of I+ from Dα onto Rα . We will prove by induction on α < γ that

h(tp(a, D<α, M)) = tp(h(a), R<α, M) for all a ∈ Dα of length n that do not have repetitions, (�α,n)

holds for all n < ω.
Now, �α,n holds for α < 2 since by the definition, |Iα| = 1. Now let α ≥ 2 and assume that �β,n holds for all

n < ω, β < α. We prove by induction on n < ω that �α,n holds.
First, �α,1: Let a ∈ Iα , ϕ = ϕ(x, c) a formula over D<α . Without loss of generality, assume |= ϕ[a, c].

By the definition of the functions it follows |= ψϕ [c, Fϕ,0(a) . . . Fϕ,lh(z−1)(a)]. This formula contains only
constants from D<α , so by the induction hypothesis, |= ψϕ [h(c), h(Fϕ,0(a)) . . . h(Fϕ,lh(z−1)(a))] holds. Since
h is a partial automorphism (with closed range and domain) of I+, h commutes with the functions on
I+ so |= ψϕ [h(c), Fϕ,0(h(a)) . . . Fϕ,lh(z−1)(h(a))] holds. By the definitions of Fϕ, j ( j < lh(z)), ψϕ we get
M |= ϕ[h(a), h(c)], as needed.

For n > 1 we continue by induction, but first we state the following property of I+ (to be proven later):

If A ⊆ I+ is closed under the partial functions in the vocabulary τI+ , then A ∩ Iα

is strongly independent over A ∩ I<α.
(∗)

Now, let a ∈ Dα of length n and b ∈ Dα\a. By the induction hypothesis (on n), it follows that h�(D<α ∪ a) is
elementary. By (*), Dα is strongly independent over D<α . Hence, tp(b, D≤α\ {b}) does not fork over D<α and
particularly tp(b, D<α ∪ a) does not fork over D<α .

By the induction hypothesis, h�(D<α ∪ a) is elementary, and so q := h(tp(b, D<α ∪ a)) does not fork over
h(D<α) = R<α . Note that q ⊇ h(tp(b, D<α)) and by �α,1 (cf. above) h(tp(b, D<α)) = tp(h(b), R<α) holds.
Hence, q extends tp(h(b), R<α) to a type over R<α ∪ a and does not fork over R<α . Therefore there exists an
extension q ⊆ q ′ ∈ S(R≤α\h(b)) which does not fork over R<α .

Since Rα is closed under the partial functions, it follows from (*) above that Rα is strongly independent over
R<α , meaning that q ′ = tp(h(b), R≤α\ {

h(b)
}
). Now we reduce both types to the domain R<α ∪ h(a) to get

tp(h(a), R<α ∪ h(a)) = h(tp(b, D<α ∪ a)

and the induction step on n:

tp(h(b�a), R<α) = h(tp(b�a, D<α))

Hence, f is a representation.

We now prove (*) from the proof of Theorem 3.11:

P r o o f o f ( * ) . Let Aα = Iα ∩ A, a ∈ Aα , and recall that B(a) = {
F∗

i (a) : i < |T |}. We prove that
tp(a, A ∩ I≤α\ {a}) is the unique non-forking extension of tp(a, A ∩ I<α) in S(A ∩ I≤α\ {a}).

Since A is closed under the F∗
i , it follows that B(a) ⊆ A, and consequently B(a) ⊆ A<α . Also, tp(a, I<α)

does not fork over B(a) (Recall (�) above). By transitivity of non forking tp(a, I≤α\ {a}), which is a non-forking
extension of tp(a, I<α), does not fork over B(a) either. By the definition of B(a), we also get that every formula
over I<α which is almost over B(a) is equivalent to a formula over B(a) (again, cf. (�)).

Now, by monotonicity of non-forking we get that tp(a, A≤α\ {a}) ⊆ tp(a, I≤α\ {a}) does not fork over A<α .
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To prove uniqueness, let q0 ∈ S(A≤α\ {a}) be a non-forking extension of tp(a, A<α). The type q0 has a
non-forking extension q ∈ S(I≤α\ {a}). By transitivity, q does not fork over B(a). Recall that the functions F∗

i
are defined so that every formula over I<α and almost over B(a) is equivalent to a formula over B(a). The
types q�I<α, tp(a, I<α) are both non-forking over B(a). Since q extends tp(a, A<α) ⊇ tp(a, B(a)) we get that
q�I<α, tp(a, I<α) (both non-forking over B(a)) agree on all formulas over B(a), and by Theorem 3.9 this implies
q�I<α = tp(a, I<α). Now, since q is a non-forking extension of tp(a, I<α) and Iα is strongly independent over
I<α we get that q = tp(a, I≤α\α) and so q0 = q�(A≤α\ {a}) = tp(a, A≤α\ {a}), as required.

Proposition 3.12 Let I+ ∈ Ex1
μ,κ(k

or) and f : M → I+. Suppose that for every partial automorphism h of

I+ with domain and range which are closed under the partial functions, and sequences a, b ∈ M, we have that
h( f (a)) = f (b) implies that tp(a, ∅, M) = tp(b, ∅, M). Then f is a representation.

P r o o f . Let f be as described above. Now assume towards contradiction that f is not a representation.
Therefore there exist a, b ∈ M which have different types in M such that the map f (a) �→ f (b) is a partial
automorphism of I+. It is possible to extend this partial automorphism to one with domain and range closed under
the partial functions, contrary to the definition of f . �

4 ℵ0-stable theories

In this section we will prove the following result:

Theorem 4.1 (Characterization of ℵ0-stable theories) For a complete, countable first-order theory T , the
following conditions are equivalent:

1. T is ℵ0-stable.
2. T is representable in Ex2

ℵ0,ℵ0
(keq).

3. T is representable in Ex1
ℵ0,2(k

eq).
4. T is representable in Ex0,lf

ℵ0,2
(keq) (cf. Definition 2.9)

P r o o f . Theorem 4.4 gives 1.⇒2. and Observation 2.18 gives 2.⇒3. 3.⇒4. is immediate since Ex1
ℵ0,2(k

eq) ⊆
Ex0,lf

ℵ0,2
(keq) by Observation 2.14. 4.⇒1. is the content of Proposition 4.2.

Proposition 4.2 If T is representable in Ex0,lf
ℵ0,2

(keq) then T is ℵ0-stable.

P r o o f . To prove ℵ0-stability it suffices to show that |S(B, M)| ≤ ℵ0 for every model M |= T and countable
B ⊆ |M |. Now, suppose that f : M → I is a representation, then for any a, b ∈ M such that tp(a, B, M) 
=
tp(b, B, M), it also holds that tpqf( f (a), f (B), I) 
= tpqf( f (b), f (B), I), so it suffices to show that |Sqf(I, A)| ≤
ℵ0 for every structure I ∈ Ex0,lf

ℵ0,2
(keq), and countable A ⊆ I = |I|. Let I, A be as above, then without loss of

generality A is closed under the functions of I. Furthermore, tpqf(a, I) ∈ Sqf(I) is determined by formulas of the
types Pα(σ (b)) (for b ∈ a), σ1(b0) = σ2(b1) (for b0, b1 ∈ a), and σ1(b0) = b1 (for b0 ∈ a and b1 ∈ A) for terms
σ, σ1, σ2 ∈ τI, and so necessarily unary. Moreover, since I is locally finite, tpqf(a, I) is determined by a finite
subset of these formulas. So, the number of unary types over A is at most |A|<ω ≤ ℵ0 �

We assume for the rest of this section that T is stable in ℵ0.

Lemma 4.3 Let M |= T and I0 ⊆ |M |. There exists a sequence of sets 〈In : 0 < n < ω〉 such that

1. for all a ∈ In, n < ω there exists a finite Ba ⊆ I<n such that tp(a, I≤n\ {a}) is the unique non-forking
extension of tp(a, Ba) in S(I≤n\ {a}),

2. In ∩ I<n = ∅, and
3. I<ω = |M |.

In particular, 〈In : n < ω〉 is a strongly independent decomposition of M.
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P r o o f . We choose the sequence In by induction on n ≥ 0. The case n = 0 is given in the assumptions.
For n > 0 assume that we have In and choose In+1 as a set In+1 ⊆ M\I≤n which is maximal (possibly empty)
under the requirements 1., 2. above. Now, assume towards contradiction that a ∈ M\I<ω. By Corollary 1.13,
there exists a finite Ba ⊆ I<ω such that tp(a, I<ω) is the unique non-forking extension of tp(a, Ba) in S(I<ω).
Similarly, for any b ∈ In , let Bb ⊆ I<n be such that tp(b, I<n) is the unique non-forking extension of tp(b, Bb)
in S(I<n). Let 0 ≤ n∗ < ω be minimal such that Ba ⊆ I<n∗ .

Now, for any b ∈ S(In∗) it holds that tp(b, Bb) has a unique non-forking extension in S(I≤n∗\{b}). Also,
tp(a, Ba) has a unique non-forking extension in S(I≤n∗) (since it has a unique non-forking extension in S(I<ω)).
Now by the symmetry of strong independence (Lemma 3.7) it follows that In∗ ∪ {a} is strongly independent over
I<n∗ , which contradicts the maximality of In∗ .

Theorem 4.4 Let M |= T, λ = ‖M‖, I0 a set of indiscernibles in M. Then M can be represented in
Mℵ0,ℵ0(I0 ∪ λ) ∈ Ex2

ℵ0,ℵ0
(keq) by an extension of the identity function on I0.

P r o o f . Let 〈In : n < ω〉 be as in Lemma 4.3. Let g : ‖M‖ → λ be a one-to-one function. The theory T is ℵ0-
stable and so Sm(∅) is countable for all m < ω. For convenience we use the symbols

{
Fp,n : n < ω, p ∈ S<ω(∅)

}
as the function symbols of Mℵ0ℵ0(I0 ∪ λ), such that for each m-type p, Fp,n is an m-ary function symbol.

We define an increasing sequence of one-to-one functions fi : I≤i → Mℵ0,ℵ0(I0 ∪ λ) by induction on n < ω:
Define f0 as the identity on I0. Assume that fn was defined and now define fn+1 ⊇ fn as follows. For each
a ∈ In+1 recall Ba from Lemma 4.3. Let ca ∈ �(I≤n) enumerate Ba . Now define p := tp(a�ca, ∅, M) ∈ S�+1(∅)
and fn+1(a) := Fp,n( fn(ca), g(a)). Let f = ⋃

n<ω fn . We will use (proof is omitted) an analogue of Proposition
3.12 to show that f is a representation:

Proposition 4.5 Let f : M → M(S). Suppose that for all a, b ∈ M and every partial automorphism h
of M(S) whose domain and range are closed under subterms, we have that h( f (a)) = f (b) implies that
tp(a, ∅, M) = tp(b, ∅, M). Then f is a representation.

First note that a ∈ In and also f (a) = Fp,n( f (ca), g(a)), so p = tp(a�ca, ∅, M) and tp(a, I≤n\ {a}) is the
unique non-forking extension of tp(a, ca).

We now show that f fulfills the conditions of the Proposition. Let h a partial automorphism of M(I0 ∪ λ) with
domain and range closed under the functions. Fix n < ω and sequences a, b ∈ I≤n such that h( f (a)) = f (b).
Since f is one-to-one, without loss of generality, a, b are without repetition. We prove that tp(a, ∅, M) =
tp(b, ∅, M) by induction on n:

For n = 0, the proposition holds since I0 is an indiscernible set. For n = m + 1, we prove the claim by
induction on � = |a ∩ In| = |b ∩ In| (the latter equality is easy to verify).

For � = 0, this is the proposition of the induction hypothesis (on n). For � = �0 + 1, let a0, b0 ∈ In, a1, b1 ∈
�In, b1, b2 ∈ <ωI<n such that h( f (a0a1a2)) = f (b0b1b2). By the definition there exist ca0 , cb0 such that f (a0) =
Fp,n( f (ca0), g(a0)), f (b0) = Fp′,n( f (cb0), g(b0)) for some sequences and types. Since dom(h) is closed under
subterms we get:

Fp′,n( f (cb0), g(b0)) = f (b0) = h( f (a0)) = h(Fp,n( f (ca0), g(a0))) = Fp,n(h( f (ca0)), h(g(a0)))

and by the definition of the free algebra p′ = p and h( f (ca0)) = f (cb0). The induction hypothesis implies that
the map G defined by G(a1) = b1, G(a2) = b2, and G(ca0) = cb0 is elementary. Now, let q = tp(a0, a1 ∪ a2 ∪
ca0). Since tp(a�

0 ca0) = p = p′ = tp(b�
0 cb0) holds, it follows that G(q)�cb0 = tp(b0, cb0). The definition of In

implies that tp(a0, I≤n\ {a0}) is non-forking over ca0 , and so is tp(a0, a1 ∪ a2 ∪ ca0). On the other hand, since
G is elementary, G(q) does not fork over cb0 . Let S(I≤n\ {b0}) � q ′ ⊇ G(q) a non-forking extension. Since
tp(b0, I≤n\ {b0}) is the unique non-forking extension of tp(b0, cb0), and by transitivity q ′ is also a non-forking
extension, it follows that q ′ = tp(b0, I≤n\ {b0}) and after reduction (b is without repetitions, so b0 /∈ b1 and
b1 ∪ b2 ∪ ba0 ⊆ I≤n\ {b0}), we get that G(q) = q ′�b1 ∪ b2 ∪ cb0 = tp(b0, b1 ∪ b2 ∪ ba0). Hence, G ∪ {

(a0, b0)
}

is elementary and the proof is complete.
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