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Abstract. In this note we interpret Voevodsky’s Univalence Axiom in the language of (abstract)
model categories. We then show that any posetal locally Cartesian closed model category Qt in

which the mapping Hom(w)(Z × B,C) : Qt −→ Sets is functorial in Z and represented in Qt
satisfies our homotopy version of the Univalence Axiom, albeit in a rather trivial way. This work
was motivated by a question reported in [Gar11], asking for a model of the Univalence Axiom not

equivalent to the standard one.

1. introduction

Though the notion of a categorical model of dependent type theory was known for quite
some time now, it is only in recent years that it was realized that the extra categorical
structure required to model the structure of equality in dependent type theory corresponds
to the structure of weak factorization equivalence, occurring in Quillen’s model categories
([Gar11, p.2]). This connection is the basis for V. Voevodsky project known as univalent
foundations whose main objective is to give new foundations of mathematics based on de-
pendent type theory, which is intrinsically homotopical, and in which types are interpreted
not as sets, but rather as homotopy types (cf.). A central idea in Voevodsky’s univalent
foundations is the extension of Martin-Löf’s dependent type theory by a “homotopy theory
reflection principle”, known as the Univalence Axiom. Roughly speaking, the Univalence
Axiom is the condition that the identity type between two types is naturally weakly equiv-
alent to the type of weak equivalences between these types (V. Voevodsky, talk at UPENN,
May 2011).

Within the category (or, rather, the model category) of simplicial sets sSets, Voevodsky
constructs ([KLV12]) a model of Martin-Löf dependent type theory, satisfying also the
Univalence Axiom. The models constructed in this way are called the standard univalent
models (cf. Definition 3.2). During a mini-workshop around these developments held in
Oberwolfach in 2010 the following question was raised: “Does UA have models in other
categories (e.g., 1-topoi) not equivalent to the standard one?”, [Gar11, p.27]. Though this
question is probably referring to a univalent universe (for type theory), it seems to be
meaningful also if taken literally. It turns out that the Univalence Axiom can be given a
precise meaning in the framework of Quillen’s model categories (provided they are locally
Cartesian closed). It is then meaningful to ask whether such a model category satisfies the
Univalence Axiom.

∗ Partially supported by Israel Science Foundation grant number 1156/10. The third author was supported in
part by SFB Grant 878.
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In this note we give what could well be the simplest possible example of a model category
satisfying the univalence axiom. We start from an interpretation of the univalence axiom
in abstract model categories (apparently, folklore among experts) and show that there
are posetal model categories (i.e., posetal categories with an additional model structure)
satisfying that interpretation of the axiom. Though the univalence axiom degenerates
in posetal model categories (because all fibrations are automatically univalent), in our
examples the extra structure needed for the axiom to make sense (e.g., internal Hom-
objects for weak equivalences in slice categories) is meaningful, and the interpretation of
the axiom in these categories is natural (though, as it turns out, its validity is automatic).
It is our hope that, viewed this way, the present note will allow mathematicians not versed
in the nomenclature of type theory to get some intuition regarding the meaning of the
Univalence Axiom, and that our construction and possible variants thereof could serve as
easy test cases in studying its properties and consequences.

There are two main parts to this note. In the first of these parts (Section 3) we give
an interpretation of the notion of a univalent fibration in the language of abstract model
categories. To formulate this notion we introduce, for a model category C, a correspondence
Hom(w)(Z×B,C) : C −→ Sets, intended to capture the class of weak equivalences between

given fibrant objects B,C ∈ ObC. We then show that, given a fibration p : C
(f)−−→ B, if

Hom
(w)
B×B(−×B×C,C×B) is a representable functor (in the slice category C/(B×B)), the

“obvious” morphism (in C/(B×B)) from the diagonal Bδ to HomB×B(B×C,C×B) factors
“naturally” (and uniquely in that sense) through the object representing this functor,
((C × B)B×C)w. We can then define the fibration p to be univalent if the morphism
m : Bδ −→ ((C ×B)B×C)w is a weak equivalence.

We observe that in a posetal model category where the above definition makes sense all
fibrations are univalent. This is, of course, to be expected in view of Voevodsky’s informal
description of a univalent fibration as “...one of which every other fibration is a pullback
in at most one way (up to homotopy)”.

The second of the main parts of the paper (Section 4) is dedicated to a self-contained
construction of a posetal locally (w/f)-Cartesian closed model (i.e., where the functor

Hom
(w)
B×B(− × B × C,C × B) is represented), QtNaamenc. This construction is a special

case of a more general construction introduced in [GH10]. Though, as mentioned above, the
Univalence Axiom degenerates in any posetal model category, we aim for a closer analogy
with Voevodsky’s construction – one having a natural interpretation of all the key features
in the construction, and we show – in addition to the structure needed to define the notion
of a univalent fibration – that QtNaamenc admits a notion of smallness such that there
exists a universal (univalent) fibration, of which all “small” fibrations are a pullback (in a
unique way), [Voe10, Theorem 3.5].

Admittedly, the model category QtNaamenc may be too simple an object to be of real
interest. In [GH10] we suggest a construction of a (c)-(f)-(w)-labelled category analogous to
that of QtNaamenc resulting in a non-posetal category whose slices are equivalent to those
of QtNaamenc. This category satisfies axioms (M1)-(M5) of Quillen’s model categories,
but does not have products (and co-products). We ask whether this richer category can
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be embedded in a model category, and whether such a model category would satisfy the
Univalence Axiom, as formulated in this note.

It should be made clear that none of the authors of this note is familiar with type
theory and its categorical models. Since most of the technical literature on Voevodsky’s
univalent foundations exists only in the form of Coq code, we decided to base our homotopy
theoretic interpretation of the Univalence Axiom on the somewhat less formal presentation
appearing, e.g., in [Voe10], [Gar11] and similar sources whose language is closer to the
categorical language for which we were aiming. To keep track of our interpretation we
used [KLV12] verifying that in the context of sSets our definitions conform with the ones
appearing there. To compensate for the lack of precise references, we have taken some pains
in giving a detailed formal account of our interpretation of those sources. M. Warren’s
comments and clarifications, [War], were of great help to us, but all mistakes, are – of
course – ours.

A couple of words concerning terminology and notation are in place. In this text we
refer to Quillen’s axiomatization of model categories, as it appears in [Qui67]. Our usage
of “Axiom (M0). . . (M5)” refers to Quillen’s enumeration of his axioms in that book. Our
commutative diagram notation is pretty standard, and is explained in detail in [GH10]. The
labeling of arrows, (c) for co-fibrations, (f) for fibrations and (w) for weak equivalences, is
borrowed from N. Durov.

2. Cartesian closed posetal categories

We remind some category theoretic terminology that we need. Recall that a category C
is Cartesian if it is closed under finite Cartesian products (including the empty product,

i.e., admitting a terminal object). Observe that if C is Cartesian, X
f−→ Y and W

g−→ Z,
then there exists a unique arrow X ×W −→ Y × Z making the diagram commute:

X ×W πX //

πW

��

f×g

%%

X
f
// Y

Y × Z

πY

;;

πZ
##

W g
// Z

We denote this arrow f × g. More generally, the universal property of the Cartesian

product assures that whenever Z
f−→ X and Z

g−→ Y there exists an arrow Z −→ X×Y such
that the resulting diagram is commutative. In particular, if X = Y = Z and f = g = idX

the resulting arrow X
δ−→ X ×X is the diagonal morphism.

The Cartesian category C is Cartesian closed if for any object X the functor −×X has
a right adjoint, or, equivalently, Hom(− × X,Z) is representable for any objects X and
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Z. This is equivalent to saying for any object Z there exists an object, ZX , (also called

the internal Hom) equipped with a morphism ZX ×X εZ−→ Z inducing a bijection, natural
in both Y and Z, between Hom(Y ×X,Z) and Hom(Y,ZX), i.e., C is Cartesian closed if

for any object Y and morphism Y × X g−→ Z there is a unique arrow Y
g̃−→ ZX such that

g = εZ ◦ (g̃ × idX).
Thus, a posetal category (where we let X −→ Y if and only if X ≤ Y ) is Cartesian if it

is a meet semi-lattice (i.e., that any two elements have an infimum). It is Cartesian closed
if for all X,Z as above there exists an object, ZX , such that for any object Y , Y ×X ≤ Z
if and only if Y ≤ ZX . Indeed, if C is posetal and Cartesian closed, then Y × X ≤ Z
implies straight from the definition that Y ≤ ZX , and Y ≤ ZX implies (by the uniqueness
of arrows) that Y ×X ≤ ZX ×X, so composing with ε we get Y ×X ≤ Z. In the other
direction, if C is posetal and for all X,Z there exists an object ZX such that for all Y ,
Y × X ≤ Z if and only if Y ≤ ZX , then taking Y = ZX we get from ZX ≤ ZX that

ZX ×X ≤ Z (giving us the arrow ZX ×X εZ−→ X), and given Y ×X −→ Z we get that
Y ≤ ZX , with the commutativity of the resulting diagram following automatically.

Let us consider a Cartesian closed posetal model category, C, and let X be any object.
Then the above condition tells us that Y ×X ≤ X (some object Y ) if and only if Y ≤ XX .
But the former condition is always true, by definition of the Cartesian product, so Y ≤ XX

for any object Y , i.e., for any object X the internal Hom, XX , is the terminal object of
C.

Given a category C and A ∈ ObC, the slice of C over A, denoted C/A is the category
of arrows B −→ A: its objects are arrows B −→ A in C and an arrow from B −→ A to
C −→ A is an arrow in C making the triangular diagram commute. For a posetal category
the slice C/A can be identified with the full sub-category whose objects are all B ∈ ObC
such that B −→ A. A category is locally Cartesian closed if C/A is Cartesian closed for
all A ∈ ObC, [Awo10, Prop.9.20,p.206]. Observe that a posetal category with a terminal
object is Cartesian closed if and only if it is locally Cartesian closed. Indeed, C has a
terminal object, > and C/> — which is, by assumption, Cartesian closed — is merely
C, so locally Cartesian closed implies Cartesian closed. The other direction follows from
the identification of C/A with the full sub-category of elements smaller than A, and our
characterisation of Cartesian closed posetal categories: if X,Z are objects in C/A for some
A, we can identify them with the corresponding objects in C, where we can find the object
ZX , and ZX ×A is the exponential object in C/A.

3. The Univalence Axiom

As explained in the introduction, the original formulation of the Univalence Axiom is
given in the language of type theory (and, apparently, its precise formulation exists only in
Coq code). The axiom asserts that, given a universe of type theory, the homotopy theory
of the types in this universe should be fully and faithfully reflected by the equality on the
universe. To prove that the universes of type theory he constructs in the category sSets is
univalent, Voevodsky proves, [Voe10, Theorem 3.5], that there is a fibration universal for
the class of small fibrations, and that this fibration is univalent. Apparently, this statement
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is the right reformulation of the Univalence Axiom in the context of the model category of
simplicial sets. Thus, we will be working with the following (re)formulation of Voevodsky’s
axiom:

Univalence Axiom: Let C be a locally Cartesian closed model category, equipped
with a notion of smallness. Then there exists a fibration, universal for the class of
small fibration, and this fibration is univalent.

This section is dedicated to an explanation of the Univalence Axiom, as stated above. In
Voevodsky’s model of the Univalence Axiom within sSets a fibration is considered small if
all its fibres are in the usual set theoretic sense (depending on the choice of the set theoretic
setting, this could mean, e.g., “of cardinality smaller than λ”, for some inaccessible λ).
Lacking an intrinsic definition of smallness (i.e., one not referring to the internal structure
of the objects of the category) our reformulation of the Univalence Axiom assumes that
the model category C comes equipped with its own notion of smallness, and we do not
attempt to further clarify this aspect of the axiom. Therefore, this section is dedicated to
the definition of the notion of a univalent fibration in arbitrary model categories.

Recall that Voevodsky’s formulation of the Univalence Axiom takes place in the category
of simplicial sets. Thus, in order to achieve our goal we have to build a dictionary between
Voevodsky’s terminology and the common terminology of model categories. Apparently,
such a translation is folklore among experts, but since we were unable to find a precise
formulation meeting both levels of generality and accuracy needed for this note, we give
the details. Since there is no literature on the subject, our translation of this notion relies
almost entirely on Voevodsky’s notes, [Voe10], and some clarifications corresponded to us
by Warren, [War].

Let us recall Voevodsky’s definition of a univalent fibration in the category sSets of
simplicial sets, [Voe10, p.71]1:

For any morphism q : E −→ B consider the simplicial set HomB×B(E ×
B,B × E). If q is a fibration then it contains, as a union of connected
components, a simplicial subset weq(E × B,B × E) which corresponds to
morphisms which are weak equivalences. The obvious morphism from the
diagonal δ : B −→ B × B to HomB×B(E × B,B × E) over B × B factors
uniquely through a morphism mq : B −→ weq(E ×B,B × E).
[...] In this terminology the fibration q : E −→ B is univalent if the mor-
phism mq : B −→ weq(E × B,B × E) is a weak equivalence (cf. Definition
3.4 [ibid.])

For the sake of clarity, we explain the above text word for word.

3.1. The obvious morphism. Let C be a locally Cartesian closed model category, E,B ∈
ObC and q : E −→ B a fibration. Thus, E ×B q×idB−−−−→ B ×B and B ×E idB×q−−−−→ B ×B are
objects in the slice category C/(B×B). Since C is locally Cartesian closed, we can identify

1In order to keep a clear distinction between Voevodsky’s text and our interpretation of it, in the quote below we

keep the original notation, though it does not conform with our own. Thus, below HomB×B(E×B,B×E) denotes

the internal Hom-object (in the slice category over B×B) and not — as may be more common, the adjoint functor.
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HomB×B(E × B,B × E) with the object ((B × E)E×B)B×B (the internal Hom-object in

the slice category over B × B). So ((E × B)B×E)B×B and Bδ := B
δ−→ B × B are objects

in C/(B ×B), so it is meaningful to have a morphism between them. To explain what the
“obvious morphism” is recall that we have identified Hom(X × Y, Z) with Hom(X,ZY ),
so in order to find a morphism in HomB×B(Bδ, (E × B)B×E), it will suffice to find an
“obvious morphism” in HomB×B(Bδ × (B × E), E ×B).

To avoid confusion, letX×Y denote the product in the category C/(B×B). By definition

Bδ×(B × E) is the pullback, in C, of the diagram B
δ−→ B ×B idB×q←−−−− B × E. So we get a

commutative diagram:

(B × E)×B π2 //

π1
��

B

δ
��

B × E
idB×q

// B ×B

In any Cartesian category, for any two objects A,C there is an isomorphism A×C −→
C × A, applying this observation twice we get an isomorphism of τ : (B × E) × B −→
B × (E ×B), obtaining the following commutative diagram:

(B × E)×B π2 //

π1
��

τ

))

B

δ
��

E ×B

idB×qzz

B×(E ×B)
π2oo

π1
xx

B × E
idB×q

// B ×B B
δ
oo

Figure 1

We have thus constructed, in C/(B ×B) a morphism, between Bδ×(B ×E) and E ×B
(corresponding in the above diagram to the composition of π2 ◦ τ and the isomorphism
Bδ×(B × E) −→ (B × E)×Bδ referred to above.). The corresponding morphism in
HomB×B(Bδ, (E ×B)B×E) is the “obvious morphism”.

Now that we understand what are HomB×B(E×B,B×E) and the ”obvious morphism”
we turn to the object weq(E×B,B×E) and to the factorisation of the obvious morphism
through it.

3.2. The Hom-object for weak equivalences. Recall that, in Voevodsky’s words, ”[the
object weq(E × B,B × E)] corresponds to morphisms [i.e., elements of HomB×B(E ×
B,B×E)] which are weak equivalences. The class of weak equivalences is a sub-class of all
morphisms. So, having identified (given objects B,C) Hom(B,C) with the (representable)
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functor Hom(−×B,C), we are now looking for a representable sub-functor corresponding
to weak equivalences:

Definition 1. Given Z,B,C ∈ ObC, let

Hom(w)(Z ×B,C) := {h : Z ×B −→ C|(π1 × h) : Z ×B (w)−−→ Z × C}.

To make the definition somewhat clearer, recall that Hom(Z,CB) is in a natural one to
one correspondence with Hom(Z × B,C), which in turn is in one to one correspondence

with those morphisms in Hom(Z×B,Z×C) that do not change Z, i.e. Hom/Z(Z×B π1−→
Z,Z×C π1−→ Z) in the slice category over Z. However, weak equivalences are not preserved
under these correspondences and it turns out, that the seemingly more natural choice of
taking Hom(w)(Z × B,C) to be the class of weak equivalences in Hom(Z × B,C) is not
functorial in Z. Our definition corresponds to Voevodsky’s (see, Lemma 22 of [KLV12],
and the comment preceding Corollary 24 there) and though, in general, we cannot show
that our definition is functorial, the following, is true, and will suffice for our needs:

Lemma 2. Let C be a right proper Cartesian closed model category, B,C fibrant objects

(i.e., B
(f)−−→ >, C

(f)−−→ >) ). Then Hom(w)(Z ×B,C) is functorial in Z.

Proof. Recall that a model category is right proper if weak equivalences are stable under
pullbacks along fibrations. Let f : Z ′ −→ Z be any arrow. Then f induces an arrow
f∗ : Hom(Z × B,C) −→ Hom(Z ′ × B,C). The mapping Z −→ Hom(Z × B,C) is,

therefore, functorial, and our goal is to show that Hom(w)(−×B,C) is a sub-functor, i.e.,

that if g ∈ Hom(w)(Z × B,C) and f : Z ′ −→ Z then f∗(g) ∈ Hom(w)(Z × B,C). More
precisely, we have to show that, in the following diagram,

Z ′ ×B
f×idB

//

π1×f∗(g)
��

Z ×B

π1×g
��

Z ′ × C
f×idC

// Z × C

Figure 2

if the right hand side arrow is a weak equivalence then so is the left hand side arrow.
The key observation is that this diagram is a pullback. The proof of this observation is a
standard and straightforward diagram chasing argument, but as it is lengthy we omit it.
Assuming this, we can now proceed to the proof of the lemma.

Case I Z ′
f−→ Z is a fibration.

Proof. It follows immediately from the definitions that
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Z ′ × C π1 //

f×idC

��

Z ′

(f)
��

Z × C π1 // Z

is a pullback. Therefore, by the axioms of model categories, the arrow f × idC in the above

diagram is a fibration, i.e., Z ′ ×C (f)−−→ Z ×C. Therefore, in Figure 2 the bottom arrow is
a fibration. Since, by properness, weak equivalences are preserved under such pullbacks, it

follows that, in Figure 2, Z ′×B π1×f∗(g)−−−−−−→ Z ′×C is a weak equivalence if Z×B π1×g−−−→ Z×C
is, as claimed. �Case I

Case II Z ′
g−→ Z is a (wc)-arrow.

Proof. The proof is quite similar to the one given in the first case. In fact, we will only be
using the fact that g is a weak equivalence. Observe, first, that by definition

Z ×X π1 //

π2
��

X

��

Z // >

is a pullback (where > is the terminal object) for any objects X and Z. Thus, by the axioms

of a model category, if X is a fibrant object (i.e., X
(f)−−→ >), then the arrow Z ×X π2−→ Z

is also a fibration. Since, by assumption, B,C are fibrant, it follows that Z ×B π2−→ Z and

Z × C π2−→ Z are both fibrations. Because, as above,

Z ′ × C π1 //

f×idC

��

Z ′

(wc)
��

Z × C π1 // Z

is a pullback diagram, and the bottom arrow is a fibration, properness implies Z ′×C (w)−−→
Z × C and Z ′ × B (w)−−→ Z × B. Applying Axiom 2-of-3 to the diagram of Figure 2 yields

Z ′ ×B (w)−−→ Z ′ ×B for the arrow π1 × f∗(g), as claimed. �Case II

In order to prove the lemma in the general case, let Z ′
f1−→ Zwc

f2−→ Z be a (wc) − (f)
decomposition of f , and consider the following diagram:
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Z ′ × CB
f1×idB

//

π1×f1∗ (f2∗ (g))
��

Zwc ×B

π1×f2∗ (g)
��

f2×idB
// Z ×B

π1×g
��

Z ′ × C
f1×idC

// Zwc × C
f2×idC

// Z × C

Since f2 is a fibration, by Case II, if π1 × g is a weak equivalence then so is, π1 × f2
∗ (g),

and by Case I (since f1 is a weak equivalence) it follows that π1 × f1
∗ (f2
∗ (g)) too is a weak

equivalence. But f1
∗ (f2
∗ (g)) = f∗(g), so we are done. �

To simplify the discussion, we set:

Notation. If Hom(w)(−×B,C) is a functor, and as such if it is represented in C we let CBw
denote the representing object. In particular we obtain a natural isomorphism of functors:

(∗∗) Hom(w)(Z ×B,C) ≡ Hom(Z,CBw ).

Remark 3. In Voevodsky’s text quoted above the object CBw is denoted weq(B,C), and
in [KLV12] it is denoted Eq(B, c).

Definition 4. Let C be a model category. Say that C is (w/f)-Cartesian closed, if it

is Cartesian closed and, in addition, Hom(w)(− × B,C) : C −→ Sets is represented (in

the sense of (∗∗) above) for all fibrant B,C ∈ ObC (i.e., B
(f)−−→ > and C

(f)−−→ >). Say
that C is locally (w/f)-Cartesian closed, if for any X ∈ ObC the slice category C/X is
(w/f)-Cartesian closed.

Remark 5. Lemmas 21 and 22 of [KLV12] show that the model category sSets is (w/f)-
Cartesian closed (and see also the remarks following Definition 23 and preceding Corollary
24 there).

We will now show that if C is a (locally) Cartesian closed model category such that

Hom
(w)
B×B(−× (E × B), B × E) is represented in C/(B × B) then the object representing

this functor satisfies the requirement in Voevodsky’s text, namely, the “obvious” morphism
from the diagonal to (B × E)E×BB×B factors uniquely through this representing object.

Referring back to Figure 1, we see that since τ is an isomorphism (and therefore a weak
equivalence), as a morphism in C/(B × B) it is again a weak equivalence, so Bδ×(B ×
E)

τ−→ Bδ×(E × B) is also a weak equivalence. By definition of the Hom-object for weak

equivalences this means that, in the notation of Figure 1, π2 ◦ τ ∈ Hom
(w)
B×B(Bδ×(B ×

E), E×B). By (**) this gives rise to a morphism in HomB×B(Bδ, ((E×B)B×EB×B)w). Since,

in general, CBw is a sub-functor of CB this gives rise to a unique factorisation of the ”obvious

morphism” through ((B × E)
(E×B
B×B )w, as claimed.

Remark 6. Observe that for any B if q : E −→ B is a fibration then so is q × idB, being
the pullback of q along the projection B×B −→ B. Applying this to the diagram of Figure
1, our usage of Lemma 2 in the last proof is legitimate.
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3.3. The Univalence Axiom in posetal model categories. Having defined the object
CBw for a locally right proper (w/f)-Cartesian closed model category C, we can define a

fibration p : E −→ B to be univalent if the morphism m̄q : Bδ −→ ((E×B)(B×E))w is a
weak equivalence. The following observation is obvious:

Lemma 7. Let C be a locally right proper (w/f)-Cartesian closed posetal model category.
Then every fibration is univalent.

Proof. For any Cartesian category C and B ∈ ObC there are morphisms π : B ×B −→ B,
and δ : B −→ B × B. Thus, if C is posetal B × B is isomorphic to B. So in the slice
category over B×B, the object Bδ is isomorphic to the terminal object, and by force, any
arrow Bδ −→ Z is an isomorphism, and therefore a weak equivalence.

�

Having seen that in posetal locally Cartesian closed model categories the notion of
univalent fibrations degenerates, it remains to show that there exists a fibration p universal
for the class of small fibrations. Of course, the notion of smallness in this context should
be defined as well.

Definition 8. Let C be a model category, Fix a morphism Ũ
p−→ U . A morphism Y

f−→ X

is p-small if Y
f−→ X fits in a pull-back square:

Y //

f

��

Ũ

p

��

X fp // U

Figure 3. This is a pullback square if for any morphisms Z −→ X and Z −→ Ũ
making the diagram commute there is an arrow Z −→ Y making the diagram
commute.

Say that p is universal (with respect to a pre-defined class of small fibrations) if the
class of p-small fibrations contains all small fibrations.

Observe that in a posetal category, given morphisms p and f as in the above definition,

the morphism X
fp−→ U is unique if it exists. Therefore, Y

f−→ X is p-small if and only if
X −→ U and Y is isomorphic to Ũ ×X.

Lemma 9. Let Qt be a posetal model category. Consider the unique morphism ⊥−→ >
and let Ũ be the unique object such that ⊥ (wc)−−−→ Ũ

(f)−−→ >. Let p denote the fibration

Ũ
(f)−−→ >. Assume, in addition, that all morphisms in Qt are co-fibrations. Then a

fibration f : Y −→ X is p-small if and only if ⊥ (wc)−−−→ Y (where ⊥ is the initial object).

Proof. The key to the proof is the following observation:



THE UA IN POSETAL MC 11

Claim If Z −→ Ũ then Z
(wc)−−−→ Ũ .

Proof. Let Z
(wc)−−−→ Zwc

(f)−−→ Ũ It will suffice to prove that Ũ −→ Zwc, since then Zwc is
isomorphic to Ũ (remember that Qt is posetal). This is immediate, using the following
diagram:

⊥
(wc)
��

// Zwc

(f)
��

Ũ //

>>

Ũ

�Claim

Now, if ⊥ (wc)−−−→ Y
(f)−−→ X, then ⊥−→ Y lifts with respect to Ũ −→ > (in notation:

⊥−→ Y i Ũ −→ >), giving Y −→ Ũ , and — since Y −→ X — also Y −→ X × Ũ . It will

suffice to show that this is an isomorphism. Let Y
(wc)−−−→ Ywc

(f)−−→ X × Ũ . By the above

claim X × Ũ (wc)−−−→ Ũ and Ywc
(wc)−−−→ Ũ . So by (M5):

Ywc

∴(w)
{{

(wc)

  

X × Ũ (wc) // Ũ

Figure 4. By (M5) the arrow Ywc −→ X × Ũ is a weak equivalence.

Since all morphisms in Qt are co-fibrations, we conclude that Ywc
(wcf)−−−→ X × Ũ , and

since Qt is posetal, this must be an isomorphism. Therefore Y −→ X × Ũ i Y −→ X,
giving an arrow X × Ũ −→ Y , with the conclusion that Y is isomorphic to the product, as
required.

In the other direction. If Y
(f)−−→ X is p-small then Y −→ Ũ , and by the claim Y

(wc)−−−→
Ũ . Similarly, if ⊥ (wc)−−−→ Ywc

(f)−−→ Y then Ywc
(wc)−−−→ Ũ . So (M5), applied to the triangle

Ũ ←− Ywc −→ Y −→ Ũ , assures that Ywc
(w)−−→ Y . Since, by assumption, all arrows are

co-fibrations, we get Ywc
(wcf)−−−→ Y , with the conclusion that ⊥ (wc)−−−→ Y , as required. �

We conclude that:

Proposition 10. Let Qt be a posetal model category all of whose morphisms are co-

fibrations. Let ⊥ (wc)−−−→ Ũ
(f)−−→ >, and define a fibration Y

(f)−−→ X to be small if ⊥ (wc)−−−→ Y .
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Then the fibration p : Ũ −→ > is universal. If, in addition, Qt is locally right proper (w/f)-
Cartesian closed then Qt meets the Univalence Axiom, with respect to the above notion of
small fibrations.

In the next section we give an example of a model category satisfying all the assumptions
of Proposition 10, and whose model structure is not degenerate in the sense that not all
morphisms are both fibrations and co-fibrations.

4. The model category QtNaamenc

In [GH10] we construct a posetal model category, QtNaamen, for set theory. Roughly
speaking, this model category is obtained by constructing the simplest possible model
category whose objects contain all sets, and where the notions of finiteness, countability
and infinite equi-cardinality are to be reflected in the model structure. To our surprise this
model category, with just a little extra spice from set theory, was able to extract meaningful
set theoretic notions such as Shelah’s covering numbers (from PCF theory), the notion of
measurable cardinals and some more. The example we give in the present section is a full
sub-category, QtNaamenc of co-fibrant objects in QtNaamen.

With the possible exception of the fact that QtNaamenc is (w/f)-Cartesian closed, all
other properties of QtNaamenc needed to apply Proposition 10 can be found in [GH10].
However, for the sake of completeness, we give the details. We do not attempt to justify
the intuition behind the construction of QtNaamenc (or its name2). Readers interested in
the rational of the construction of QtNaamenc that we are about to give are referred to
[GH10].

To simplify the exposition, and in order to avoid irrelevant foundational issues, we give
a slightly simplified version of the model category QtNaamenc. Let QtNaamenc be the
category whose objects are the non-empty directed members of {X : ∅ ∈ X, ∀x ∈ X x ⊆
N, ∀x, y ∈ X x ∪ y ∈ X} and for X,Y ∈ ObQtNaamenc let X −→ Y precisely when for
every x ∈ X there exists y ∈ Y such that x ⊆ y. We leave it as an easy exercise for the
reader to verify that this is indeed a (posetal) category with the initial object ⊥= {∅} and
terminal object > = P(N).

Claim 11. The category QtNaamenc has limits. Direct limits are given by the directed
closure X ∨Y = {x∪ y : x ∈ X, y ∈ Y } of the union X ∪Y , and inverse limits are given by
pointwise intersection, namely X × Y = {x ∩ y : x ∈ X, y ∈ Y }. The same formulas hold
for infinite limits.

Proof. This is straightforward. Assume, e.g. that we are given X,Y and Z −→ X, Z −→
Y . By definition, this means that for all z ∈ Z there are x ∈ X, y ∈ Y such that z ⊆ x
and z ⊆ y. This means that for all z ∈ Z there are x ∈ X and y ∈ Y such that z ⊆ x ∩ y.
This proves that X × Y as defined above is the inverse limit of X and Y . The proof for
direct limits is similar. �

2Indeed, for the latter there is no justification, except for the fact that StNaamen, our first attempt to construct
a model category for set theory failed. Our next attempt was called QtNaamen.



THE UA IN POSETAL MC 13

Now we endow QtNaamenc with a model structure. In order to meet the assumptions of
Proposition 10, we must require that all morphisms are labelled (c). So we now proceed to
the (w) and (f) labels. For the definition of weak equivalences it is convenient to denote for
X,Y ∈ ObQtNaamenc, X −→∗ Y if for all y ∈ Y there exists x ∈ X such that |x \ y| < ℵ0.

We now set X
(w)−−→ Y if X −→ Y and Y −→∗ X. This definition obviously satisfies Axiom

(M5) (2 out of 3). Also, if Z
(wc)←−−− X −→ Y then Y

(wc)−−−→ Z ∨ Y . Indeed, if r ∈ Z ∨ Y
then r = rZ ∪ rY where rZ ∈ Z and rY ∈ Y . There is x ∈ X such that |rZ \ x| < ℵ0 but
X −→ Y , so there is y ∈ Y such that x ⊆ y and thus |r \ (y ∪ rZ)| ≤ |r \ (x ∪ rZ)| < ℵ0.
This shows that the (wc)-part of Axiom (M4) is met by this notation.

It remains to define the (f)-labelling: an arrow X −→ Y is labelled (f) if and only if for
every x ∈ X ∪ {∅}, y ∈ Y and a finite subset {b1, . . . , bn} ⊆ y there exists x′ ∈ X ∪ {∅}
such that (x ∩ y) ∪ {b1, ..., bn} ⊆ x′.

First, we observe:

Claim 12. If X
(wcf)−−−→ Y then Y −→ X. If X −→ Y and Y −→ X then X

(wcf)−−−→ Y .

Proof. Let y ∈ Y . We have to show that there exists x ∈ X such that y ⊆ x. Let x0 ∈ X
be such that z := y \ x0 is finite, as provided by the (w)-label. So the (f)-label, applied for
x0, y and z ⊆ y assures the existence of x with the desired property. �

This claim gives us, automatically, one part of (M1) — any arrow right-lifts with respect

to an isomorphism — one part of (M2) — any arrow X
(c)−→ Y decomposes as X

(c)−→
Y

(wf)−−−→ Y and (M3) (it remains only to verify that fibrations are stable under base-
change). Axiom (M4) is also automatic. So we are left with the (wc) i (f) part of (M1),
the (wc)-(f) decomposition of (M2) and the stability of fibrations under base change. All
computations are trivial, so we will be brief.

Let X
(wc)−−−→ Y and W

(f)−−→ Z be such that X −→W and Y −→ Z. We have to show that
Y −→ W . So let y ∈ Y . Let x ∈ X be such that b := y \ x is finite. Let w ∈ W be such
that x ⊆ w. Let z ∈ Z be such that y ⊆ z. Apply the definition of (f)-arrows with respect
to w, z and b. Then there exists w′ ∈W such that (w∩ z)∪ b ⊆ w′. So y ⊆ w′, as required.
An essentially similar argument shows that fibrations are stable under base-change.

To prove (M2), let X −→ Y be any arrow. Let

Xwc := {x ∪ y0 : x ∈ X, (∃y ∈ Y )(y0 ⊆ y), y0 finite}.

Then X
(wc)−−−→ Xwc

(f)−−→ Y , as can be readily checked.
We conclude that QtNaamenc is a posetal model category all of whose arrows are co-

fibrations. The morphism {∅} (wc)−−−→ X is not a fibration unless X = {∅}, so not all
morphisms are fibrations.
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To show that QtNaamenc is locally Cartesian closed, it suffices to show that it is Carte-
sian closed. Define, for C,B ∈ ObQtNaamenc:

CB :=
∨
{Z : Z ×B −→ C} =

⋃
{

⋃
0<i<n

zi : n ∈ N, 0 < i < n, zi ∈ Zi, Zi ×B −→ C}.

This is an object in QtNaamenc, and the verification that it is aHom-object forHom(B,C),
i.e., that CB × B −→ C and that for every object Z, if Z × B −→ C then Z −→ CB, is
obvious.

Remark 13. Note that the above shows that QtNaamenc is, in particular, a logical model
category in the sense of [GK95, Definition 23]. Consequently (cf. Theorem 26) QtNaamenc
admits a sound interpretation of the syntax of type theory (though the lack of non-trivial
sections probably makes this interpretation trivial).

All of the above shows that QtNaamenc is a posetal locally Cartesian closed model
category. So in order to apply Proposition 10 it remains to show that it is locally (w/f)-
Cartesian closed. We prove:

Claim 14. Z ×B (wc)−−−→ Z × C if and only if for all {z} −→ Z, {z} ×B (wc)−−−→ {z} × C

Proof. The right to left direction is immediate from the definition of (wc)-arrows, so we

prove the other direction. Without loss of generality, assume z ∈ Z. The arrow Z×B (wc)−−−→
Z × C means that:

• for any z ∈ Z, b ∈ B exists z′ ∈ Z and c′ ∈ C such that {z ∩ b} −→ {z′ ∩ c′}; and
• for any z′′ ∈ Z, c′′ ∈ C exists z ∈ Z, b ∈ B such that {z′′ ∩ c′′} −→∗ {z ∩ b}.

Observe that the first bullet (for fixed z ∈ Z, b ∈ B) gives z ∩ b ⊆ z′ ∩ c′, implying that
z ∩ b ⊆ z ∩ z′ ∩ c′ ⊆ z ∩ c′, therefore {z} ×B −→ {z} × C.

Analogously, for fixed z′′ ∈ Z, c′′ ∈ C the assumption {z′′ ∩ c′′} −→∗ {z ∩ b} implies
{z′′ ∩ c′′} −→∗ {z′′ ∩ z ∩ b} −→ {z′′ ∩ b}. Combining these two observations we get

{z} ×B (wc)−−−→ {z} × C. �

Now, given A ∈ ObQtNaamenc and B −→ A, C −→ A, we define

(CBw )/A =
∨
{Z : Z ×B (w)−−→ Z × C} ×A

and show that this is an object representing Hom
(w)
A (− × B,C) (QtNaamenc is trivially

right proper, and so are its quotients, hence this is indeed a functor). More precisely:

Claim 15. For all Z −→ A, we have Z −→ (CBw )/A if and only if Z ×B (w)−−→ Z × C.

Proof. The right to left direction is immediate from the definition. So suppose Z −→
(CBw )/A. We need to show that Z × B (w)−−→ Z × C. By Claim 14, this happens if for all

{z} −→ Z, {z} × B (w)−−→ {z} × C. But our assumption that Z −→ (CBw )/A implies that

{z} −→ ∪0<i<nzi, zi ∈ Zi for some n ∈ N and Zi such that Zi × B
(w)−−→ Zi × C. So by
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Claim 14, {zi} −→ Zi for 0 < i < n, and, using that (CBw )/A is closed under direct union,
we are done. �

Note Hom (−xB,C) is representable even if B and C are not fibrant.
Combining everything together we get:

Theorem 16. There exists a non-trivial posetal model category satisfying the Univalence
Axiom.

Recall from the introduction to the present section that QtNaamenc, is a full sub-
category of the category of co-fibrant objects in the model category QtNaamen defined
in [GH10]. The proof of the above theorem would work unaltered for the full category of
all co-fibrant objects in QtNaamen. Of course this category captures the full homotopy
structure of QtNaamen, and may – therefore – be a more interesting example. We remark
also that there does not seem to be anything special about N or about ℵ0 in the above
construction (or in the more general construction of QtNaamen). Apparently, the exact
same construction could be achieved for any regular cardinal λ (in place of ℵ0) replac-
ing, throughout “finite” by “less than λ”. This gives an analogy with Voevodsky’s notion
of small fibrations: it is not unreasonable (see the following paragraph) to think of the
morphisms in the resulting model category as a class of injections (satisfying certain com-
patibility conditions), our definition of smallness implies that a fibration is small precisely
when every member of the class of these injections has a domain smaller than λ.

To conclude, let us consider the category C, whose objects are ObQtNaamenc and such

thatMor(X,Y ) consists of the arrows X
σ−→ Y for X,Y ∈ ObC such that σ :

⋃
X −→

⋃
Y

and σ(X) −→ Y is an arrow in MorQtNaamenc (where σ(X) := { {σ(a) : a ∈ x} :
x ∈ X}). The category C is, on the one hand, obviously richer than QtNaamenc (it is
not posetal). But, on the other hand, it is readily seen that any slice of C is (naturally)
equivalent to the corresponding slice of QtNaamenc. This local model structure induces
naturally a (c)-(f)-(w) labeling onMor(C) (see [GH10] for the details) satisfying Quillen’s
axioms (M1)-(M5). But the category C does not have products and co-products. So we ask:

Question: Is there a model category C′ such that the labeled category C described above
embeds in C′? Does C′ satisfy the Univalence Axiom?
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