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Abstract. We construct a model category (in the sense of Quillen) for set

theory, starting from two arbitrary, but natural, conventions. It is the simplest
category satisfying our conventions and modelling the notions of finiteness,

countability and infinite equi-cardinality. We argue that from the homotopy
theoretic point of view our construction is essentially automatic following basic

existing methods, and so is (almost all) the verification that the construction

works.
We use the posetal model category to introduce homotopy-theoretic intu-

itions to set theory. Our main observation is that the homotopy invariant

version of cardinality is the covering number of Shelah’s PCF theory, and
that other combinatorial objects, such as Shelah’s revised power function -

the cardinal function featuring in Shelah’s revised GCH theorem — can be

obtained using similar tools. We include a small “dictionary” for set theory in
QtNaamen, hoping it will help in finding more meaningful homotopy-theoretic

intuitions in set theory.

Part 1. The construction

The mischief of it is, nature will have to take its course: every production must resemble its author, and my barren

and unpolished understanding can produce nothing but what is very dull, very impertinent, and extravagant beyond

imagination. – Miguel de Cervantes Saavedra, Don Quixote

1. Introduction

Arguably, homology represents one of the major developments of mathematics
in the 20th century. However, model theory and set theory are among the few
fields of mathematics where homotopy theory has, essentially, never been applied.
Indeed, with the exception of o-minimality, where homotopy/homology theories
generalizing those arising in real geometry are used on a regular basis, we do not
know of any applications of homotopy theory in either fields. In recent years, model
theoretic questions arise to which, so it seems, homotopy theoretic tools should be
applied.

The immediate motivation for carrying out the present work is a series of works
by Zilber, Bays and the first author. These works are concerned with Zilber’s
program, launched in [22], to apply model theoretic methods to the study of (non
compact) complex analytic structures. In his D.Phil [7], the first author, showed
that Zilber’s main (technical) result in [22] can be naturally translated into familiar
algebro-geometric terms. This translation also allowed Gavrilovich to generalize
the statement of Zilber’s result, casting them in the form of algebro-geometric
conjectures. To prove some of these conjectures (modulo necessary corrections),
Bays in his thesis ([4], [5]) translated them back into the language of model theory,
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where Shelah’s machinery of excellent classes had to play a significant role. But
in order to get Shelah’s technology into work, non-trivial algebraic and algebraic-
geometric information had to be obtained. To algebraic geometers and algebraists,
information of the sort required in these proofs is usually given in the language
of homology theory. Unfortunately, there is currently no dictionary translating
modern homology theory into the language of model theory. Therefore, in order to
be applied in this context, the algebraic tools first have to be “translated” into a
more classical language. For Bays’ work this translation was readily available, but
it may turn out to be a serious obstacle for developing the theory further.

Motivated by these problems, the first author embarked on an attempt to develop
at least some parts of the missing toolbox. As a baby version he started playing
with the simplest, most naive, construction he could imagine of a homotopy theory
akin to the one he was looking for: an almost degenerate homotopy theory for set
theory. Quite surprisingly, playing around with this new toy, we — very naturally
— reached, from a totally different angle, some set theoretic concepts playing a
central role in Shelah’s PCF theory: we recover the covering number of a cardinal
λ as the “correct” homotopy theoretic version of cardinality, and — by a slight
variation — retrieve Shelah’s revised power function.

The present paper is a concise, publishable, version of a more detailed text avail-
able on-line, [8] for the first part of the paper and [9] for the second part.

Structure of the paper. The first part of the paper is dedicated to the con-
struction of a model category, QtNaamen, for set theory modeling the notions of
finiteness, countability and infinite equi-cardinality. In the second part of the pa-
per we explore the expressive power of our model category (5.1) which naturally
leads us to the study of covering families (5.2) and to the main result of this paper,
Theorem 40, where Shelah’s covering number (see below) is interpreted as a de-
rived functor of cardinality. We conclude (5.3-4) with a brief exploration of several
variants of our construction and the set theoretic concepts they lead to, namely
generalised covering numbers, measurable cardinals and the covering lemmas.

For readers not interested in the details of the construction and the proofs the
following could be a useful guide for a shorthand reading. §1.1 is a quick sketch of
our construction for a reader familiar with homotopy theory.
§2 describes our point of view on the axioms of a model category as those of

a derivation calculus in a labelled category. Definition 3 defines the category
StNaamen; Definition 7 defines fibrations, cofibrations and weak equivalences as
labels; Proposition 12 spells out the set-theoretic meaning of those definitions. Our
main posetal model category QtNaamen is defined in §2.5, Definition 8; Lemma 17
gives several equivalent reformulations. It is worth noting Lemma 29 which seems
to require a set-theory argument and for whose proof we could not find a dia-
gram chasing argument. Definition 13 introduces other posetal model categories,
QtNaamenκ, for a regular cardinals κ.

In Part 2, we interpret several set-theoretic invariants in the homotopy language.
§5.1, Theorem 40 interprets the covering number cov(λ,ℵ1,ℵ1, 2) as a homotopy-
invariant (slightly generalised) derived functor Lccard : QtNaamen −→ On of car-
dinality; §5.2 gives a similar interpretation Lccard ({λ}) = λ[κ] := cov(λ, κ+, κ+, κ)
to Shelah’s “revisited power function”. Theorem 41 lists known results on these
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invariants. In Lemma 44 we show that κ is measurable if and only if the homotopy
category of QtNaamenκ is not dense (as a partial order).

1.1. A homotopy theoretical synopsis. From the homotopy theoretic point
of view the present note is, on the technical level, a triviality; the posetal model
categories we introduce are defined in Proposition 12 and Definition 13. To a reader
with a basic familiarity with category theory and the first few pages of Quillen’s
book [16] this synopsis should provide a fairly good idea of the contents of this note.
Such readers may find it simpler to fill in the details themselves, rather than read
our rendering of them. Readers less familiar with these concepts and ideas may
find it more convenient to first read the background on model categories provided
in the on-line version of this text, before returning to this synopsis.

Imagine a simple minded homotopy theorist, or even better — a homotopy theory
android — trying to understand the introductory, set-theoretic, chapter commonly
preceding undergraduate texts in topology, say. What is the (simplest) category
which could help our homotopy theorist understand at least some of the notions
appearing in such a chapter. Sets are default candidates as objects. But what
should the arrows be? The membership relation (a ∈ A) is not transitive, and
cannot serve as an arrow. Inclusions seem to be the next idea. starting with this
simple category, we try to construct a (closed) model category capturing three basic
notions of set theory: finiteness, countability and equi-cardinality.

Set theoretically, adding a single element to a single set suggests itself as the
least significant operation, and could therefore be declared a weak equivalence. As
compositions of weak equivalences are also weak equivalences any arrow A −→ B
such that B \A is finite will also be declared a weak equivalence. To keep track of
the work done so far those arrows will be labelled (w). Of course, these arrows will
not be the only weak equivalences in our category, but ideologically, these are the
weak equivalences that will allow us to capture the notion of finiteness.

To try and capture the notion of infinite equi-cardinality, we declare that an
arrow A −→ B is a cofibration if A and B have the same cardinality. To keep track

of this we label such arrows A
(c)−−→ B. Axiom (M2) of model categories requires

that — in particular — arrows of the form A
(w)−−→ A ∪ {b} (for {b} a singleton)

decompose as a (weak) cofibration followed by a fibration. For infinite A this means

(using induction) that for any finite set {b̄} we must declare A
(wc)−−−→ A ∪ {b̄}. A

little diagram chasing involving pushouts of (w)-labelled and (c)-labelled arrows
shows that, to avoid constructing a trivial model category, the same must be true
of any set A (not necessarily infinite), concluding that A −→ B should be labelled
(c), if cardA = cardB or both are finite.

Thus if A is finite ∅ (wc)−−−→ A (i.e. it is both a weak equivalence and a cofibration).

We also know that there must be sets A such that ∅ (c)−−→ A but not ∅ (wc)−−−→ A, so
such sets must be infinite. Since we still have to model the notion of countability,

it seems natural to declare ∅ (c)−−→ A if A is countable. It then follows that A −→ B
has to be labelled (c) if either cardA = cardB or B is countable.

Here things become trickier, as we are nearing a contradiction: On the one hand,
Axiom (M2) assures that, up to weak equivalence, every arrow is a fibration, while
— on the other hand — Axiom (M1) requires that any fibration has the left lifting
property with respect to weak cofibrations. But no non-identity arrow A −→ B
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lifts with respect to all arrows of the form A
(wc)−−−→ A ∪ {b}, b ∈ B, and it becomes

obvious that our category simply does not have enough arrows (or, objects, which
— since arrows between any two objects, when they exist, are unique — is an
equivalent statement). To overcome this, we want to formally add as a new arrow

the collection of arrows of the form A
(wc)−−−→ A ∪ {b}, b ∈ B, or, equivalently, the

collection of (M2)-decompositions A
(wc)−−−→ A′ −→ B.

In order to solve this problem while keeping the category as simple as possible
— i.e. arrows between objects are unique when they exist — we have to introduce
as new objects in our category families of sets. In order not to have two kinds of
objects, and in order to keep the work already achieved, we identify a set A with the
singleton {A}. As a first approximation we allow all classes as objects. Viewing a
class A as the formal direct limit of (the unique diagram of) all its members, there
is little choice but to define A −→ B if for all A ∈ A there exists B ∈ B such that
A ⊆ B. This is the simplest and most natural definition we could come up with
which is compatible with everything considered up to this stage.

Now the process of producing a model category is almost automatic: First, take
the structure (on our category) cofibrantly generated by the two classes of arrows
explicitly defined above. The resulting structure is not yet a model category — some
obvious counterexamples prevent our weak equivalences from satisfying the two-out-
of-three axiom of model categories. We remove some objects and morphisms by
taking the full subcategory of morphisms lifting to an explicitly defined class of
counterexample morphisms, and get an actual model category.

The model category obtained in this way gives a homotopy theoretic interpreta-
tion to some basic set theoretic concepts. Most importantly, a set X (viewed as the

class {X}) is countable if and only if ∅ (c)−−→ {X}, and if this arrow is also a weak
equivalence then X is finite; two infinite sets A and B have the same cardinality

precisely when {A} (c)−−→ {B}. Thus, the task we set to accomplish in the begin-
ning is achieved: we obtained a model category modelling the notions of finiteness,
countability and equi-cardinality. But more interesting is the fact that the notion of
a covering family of a set A acquires a homotopical interpretation: X is a covering

family for A if and only if X
(wf)−−−→ {A} is a weak equivalence and a fibration. It is

now not hard to recover Shelah’s covering numbers — a key notion in PCF theory.

1.2. The exposition. There are two important guidelines to the exposition of
this paper. The first is that homotopy theory is best written in homotopy theoretic
language. Therefore the paper is written in the language of category theory. Com-
binatorial properties are, as a rule, transformed into diagrams and proofs are, quite
often, translated into (simple) diagram chasing arguments. This is by no means an
ideological choice. The standard set theoretic intuition is lost at the early stages
of the construction, and we have to stick to Quillen’s homotopy theory as a guide.
Our choice of language allows us to keep track of this intuition.

The second guideline to the exposition is the realisation that potential readers
(plural (!)) of this paper are, probably, set theorists, with little familiarity with
category theory, and no familiarity with model categories. Our proofs are, as a
rule, more detailed than one would expect in standard papers directed at homotopy
theorists. However, space limitations do not allow us to keep the paper fully self-
contained for such readers. Thus, we do not include the standard category theoretic
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and model category theoretic background, but refer interested readers to the online
version, where all necessary definitions and basic constructions are provided.

1.3. A set theoretic disclaimer. Our usage of set theory is naive, and we in-
tentionally ignore set theoretic questions naturally arising in the context of the
“category of sets”. Since in the categories we are dealing with arrows are unique
(when they exist) the only problem that may arise concerns the nature of the objects
in our category. Any standard solution of such problems would address all ques-
tions of this nature which may arise in the construction described in this paper. To
avoid using large cardinals and stay in ZFC, we could work in NBG, a conservative
and equiconsistent extension of ZFC, declare our objects to be classes (definable
with parameters), and formulate our claims as properties (in the metatheory) of
the NBG formulas defining the partial order and the labels.

A simpler approach would be to fix a strongly inaccessible cardinal κ and identify
the objects of our category with P(Vκ). In such a setting the collection of objects
of our category (the collection Ob) can be identified with a subset of P(P(Vκ)).
The arrows in our category (Mor ) can then be identified with a definable subset of
Ob×Ob, and the labelling associated with Quillen’s model categories can be thought
of as (definable) unary predicates on the set Mor .

Having said that, we will from now on ignore all set theoretic questions of this
nature, with the conviction that readers concerned with the possibility of set the-
oretic paradoxes arising as part of the construction can easily fill in all the details
in either of above solutions, or any other standard solution they may find more
attractive.

1.4. Model categories. There are several axiomatizations of model categories. In
the present paper we will be using Quillen’s original version from the first chapter
of [16]. We briefly state the axioms for ease of reference. For further discussion see
[16] and [8].

We remind that a model category is a category C whose arrows can be labelled
by any subset of the labels (c), (f), (w). Arrows labelled (c) are called cofibrations,
arrows labelled (f) are fibrations, weak equivalences are arrows labelled (w), and
(wf), (wc)-arrows are trivial fibrations and cofibrations respectively. The labelling
of arrows should satisfy the following axioms:

(M0): Every (small) diagram has limits and co-limits.
(M1): Trivial fibrations ((wf)-arrows) have the right lifting property with

respect to any cofibration and trivial cofibrations ((wc)-arrows) have the
left lifting property with respect to any fibration. This will be denoted
(c)i (wf) and (wc)i (f) respectively.

(M2): Any arrow A −→ B decomposes into a trivial cofibration followed by

a fibration A
(wc)−−−→ Awc

(f)−−→ B and to a cofibration followed by a trivial

fibration, A
(c)−−→ Awf

(wf−−→)B.
(M3): (1) Fibrations and cofibrations are stable under compositions.

(2) Isomorphisms are fibrations, cofibrations and weak equivalences.
(3) Fibrations and cofibrations are stable under base change (pull-back)

and co-base change (push forward) respectively.
(M4): The pull back of a trivial fibration is a weak equivalence and the push-

forward of a trivial cofibration is a weak equivalence.
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(M5): (2-of-3) in any triangle, if any two edges are weak equivalences so is
the third edge.

(M6): A model category is closed if any two of the classes of arrows (c), (f), (w)
determine the third.

As it will turn out, the model category QtNaamen that we construct in Part I
of the paper will be closed, a useful fact in some of the proofs, but this is not part
of the standard definition of model categories.

We spell out some simple facts concerning closed model categories that we will
usually use without reference:

Claim 1. (1) A model category has initial and terminal objects namely objects
∅ and > such that ∅ −→ C −→ > for every object C.

(2) A non-degenerate model category (i.e. a model category C whose homotopy
skeleton is not a singleton with a unique arrow) has non-trivial cofibrant
objects, namely there exists an object C, not isomorphic to ∅ such that

∅ (c)−−→ C.
(3) Moreover, in a non-degenerate model category there exist non-trivial cofi-

brant objects, namely there exists an object C such that ∅ (c)−−→ C is not a
weak equivalence.

(4) If all diagrams in the model category commute, then if C −→ D, C (c)−−→ E
and D −→ E then D (c)−−→ E.

(5) The composition of two (wc)-arrows is a (wc)-arrow.
(6) If in a labelled category C satisfying (M0), (M1) and (M6) all diagrams

commute then C satisfies (M3) and (M4).

The proof is standard diagram chasing, and we leave it as an exercise. Readers
not familiar with standard homotopy theoretic language may find it more convenient
if we remind that:

Definition 1. Given a model category, C, an object C of C is cofibrant if ∅ (c)−−→ C.

A cofibrant object is trivial if ∅ (wc)−−−→ C.

2. The construction

In this section we describe the construction of a model category for set theory.
The construction is carried out in two stages. First we construct a labelled category,
StNaamen, and show that it satisfies all the axioms of a model category, except
axiom (M5). We describe a counter example showing that, in fact StNaamen fails
to satisfy (M5) and use this counter example to motivate the passage to a full sub-
category QtNaamen which manages to avoid this family of counter examples. We
then proceed to show that QtNaamen is, indeed, a closed model category.

We could, of course, spell out a combinatorial definition of QtNaamen. This
would boil down to defining StNaamen using the combinatorial characterisation of
Proposition 12 and describing the full sub-category QtNaamen. We feel, however,
that such an exposition will miss an essential part of our argument.

First, in our exposition we will try to show that, in a way (which we believe
could be formalised, but we do not attempt to do so) QtNaamen is the simplest
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model category for set theory, and for that reason – from a homotopy theory point
view on set theory – essentially unavoidable.

The second, more important, reason for giving a detailed description of all
stages leading to the “right” construction is that in our construction we are aim-
ing to model three basic set theoretic concepts: finiteness, countability and equi-
cardinality. As we show in the second part of the paper, there are many possible
variants on the construction, modelling slightly different set theoretic notions, and
giving rise other set theoretic “discoveries”. In our original construction we “dis-
cover” Shelah’s covering number. Other constructions lead to rediscovering Shelah’s
revised power function, measurable cardinals and more. Unravelling the mechanism
underlying our construction will allow further investigation into homotopy theoretic
definition of important set theoretic notions, and maybe even to the discovery of
new such notions.

Finally, in [11] Gromov writes:

“The category/functor modulated structures can not be directly
used by ergosystems, e.g., because the morphisms sets between even
moderate objects are usually unlistable. But the ideas of the cat-
egory theory show that there are certain (often non-obviuos) rules
for generating proper concepts.”

We believe that the present work can shed some light on how “the ideas of cat-
egory theory” are used to “[automatically] generate proper concepts”. We believe
that (significant parts of) our development of the model category theory and our
derivation of the set theoretic concepts from it, could be formalised in an (almost)
algorithmic way, following some simple rules such as: list the tasks to do and try
– greedily – to address them one by one; search for proofs and counter-examples
simultaneously. Since proofs — in the context of posetal model categories such as
the ones we are working with — amount usually to the existence of a certain arrow,
simple “arrow generating rules” such as “use the lifting property”, “take direct and
inverse limits” etc. can be used to generate proofs.

As a more detailed example, consider Axiom (M0) and how it can be applied in
such an algorithmic approach to the construction:

(1) Given a (finite) commutative diagram with vertices {Xi}i∈I add a new
vertex D and arrows {Xi −→ D}, making the whole diagram commute.
Mark the new vertex and arrows by a special symbol ©� .

(2) Given a (finite) commutative diagram with vertices {Xi}i∈I , D and D, such
that the diagram contains the arrows {Xi −→ D}i∈I marked ©� and the
(ordinary) arrows {Xi −→ D}, construct an arrow D −→ D making the
diagram commute.

Applying (2) above in the case that D −→ D is an arrow in the diagram, we obtain
the uniqueness of the direct limit.

Our exposition is not intended to do any of the above formally or in such detail.
Rather, our slow-paced rendering of the work should allow the interested reader to
convince herself (or himself) that this can be done, and as a rule we will not dwell
on this point. We will only dwell on those parts of the construction where either
we were unable to see a simple algorithmic proof, or where a “non-algorithmic”
argument could simplify the proof.
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2.1. The first round. Our first task is to find the right category which we are then
going to label. Our guideline is “try the simplest possible solution first. Correct
later”. The simplest candidate for making a category form set theory is, probably,
the one whose objects are sets and whose morphisms are inclusions (since the mem-
bership relation is not transitive). This category allows to express some basic set
theoretic operations. E.g., Z = X ∪ Y if and only if the following diagram is true:

X ©� // Z Y©�oo

Figure 1

and intersections can be defined by inverting all the arrows in this diagram. Simi-
larly, stating that A = ∅ amounts to the statement that A is the initial object of
this category. The complement of a set (relative to a larger one) can be expressed
in a simple diagram:

∅ ©� //

©�
��

X

©�
��

Y ©� // Z

Figure 2. The set Y is the complement of the set X relative to
the set Z if ∅ is the inverse limit of X and Y and Z is their direct
limit.

Thus A \B is the complement (relative to A) of A ∩B.
Rather arbitrarily we require that the model category to be constructed should

model three basic set theoretic concepts: finiteness, (infinite) countability and (in-
finite) equi-cardinality. So the next step in the construction is to label the arrows
in our category so that (a) the above three concepts are captured by our labelling,
and (b) the resulting labelled category is a model category. Regardless of the choice
of labelling (wcf)-arrows must be isomorphisms. So an arrow should not be labelled
(wcf), unless it is an isomorphism. For simplicity our intention is to try and con-
struct a closed model category. In such a model category once two of the labels
have been specified, the third is fully determined. So, in order to stay away from
contradictions, we focus on two of the labels, letting them generate the third.

To choose which arrows to label we observe that while ∅ is a natural object
in our category and serves as the initial object, the set theoretic universe V , the
(would be) terminal object, is not a set and has to be formally adjoined to the
category in order for even Axiom (M0) to hold. Thus, it seems that though there
is a natural homotopy theoretic duality between fibrant objects (i.e. objects C such

that C (f)−−→ >, where > is the terminal object) and cofibrant objects, in the set
theoretic context the latter should occur more naturally. Thus, our first, somewhat
arbitrary, goal is to define weak equivalences and cofibrations.

Remark 2. Though the construction of a cofibrantly generated model category
seems more natural in the present context, it is plausible that other approaches
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may also work. We do not know whether this is indeed the case, or whether the
different possible approaches lead to important set theoretic concepts in the same
way that the present construction leads naturally to the definition of the covering
number.

In algebraic topology (and in Quillen’s model categories) (w)-labelled arrows cor-
respond to morphisms called weak homotopy equivalences, and indeed are thought
of as some sort of equivalence, as is reflected by Axiom (M5). From the homo-
topy theorist point of view there is no interesting distinction between two weakly
equivalent objects. When are two sets closest? When should we consider two sets
“almost identical”? Two sets differing by one element are good candidates for that
title. Taking Axiom (M5) into account we define:

Definition 2. Let A,B be sets. We denote

(1) A −→0 B if A ⊆ B.

(2) A
(w)0−−−→0 B if A −→ B and B \A is finite.

(3) A
(c)0−−→0 B if A −→ B and either cardA = cardB or B is finite.

Remark 3. The index 0 in the above notation anticipates the failure of the first
round of the construction. Since it will play an important role in the final construc-
tion, it is useful to keep track of these stages of the construction. To see in what
ways our construction so far fails observe:

(1) It follows from Claim 1 that our model category must have (non-trivial)
cofibrant objects (so more (c)-arrows are needed).

(2) If we aim to construct a closed model category, then labelling A
(c)0−−→0 B if

A −→ B and cardA = cardB would imply that also arrows A −→ B with
B finite should be cofibrations. Indeed, there must be an infinite set C such

that ∅ (c)−−→0 C and clause (4) of Claim 1 assures that if ∅ (c)−−→0 C then

∅ (wc)−−−→0 {c} for all c ∈ C. Thus, if {a} is any singleton, then ∅ (c)0−−→0

C
(c)0−−→0 C ∪ {a}, so by (M3) we get ∅ (c)0−−→0 C ∪ {a}, and by the above

observation ∅ (c)0−−→0 {a}. By induction, the same is true for any finite set
ā. It follows that for such a set ā and any set A the arrow A −→0 A∪a{a}
lifts with respect to any fibration, and in a closed model category must be a
trivial cofibration.

(3) It follows that all the weak equivalences we defined, are trivial cofibrations.

The above labelling – deficient as it is – captures the notions of finiteness and
(infinite) equi-cardinality. So our task now is to model the notion of countability,
and turn the resulting labelled category into a model category without losing track
of the above notions. The notion of countability should be a proper weakening of
the notion of finiteness. So we set

Notation 4. ∅ (c)0−−→0 C if C is countable.

But now we run into trouble. In a model category there should be arrows
A −→ B which are not trivial cofibrations. Axiom (M2) requires that there exists

an object AB such that A
(wc)−−−→ AB

(f)−−→ B. But now the arrow AB
(f)−−→ B must

have, by Axiom (M1), the right lifting property with respect to any arrow labelled
(wc). In particular, for our labelled category, any finite b ⊆ B should satisfy:
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A

(wc)0

��

// AB

(f)0

��

A ∪ {b} //

;;

B

implying that if AB were an object in our category (a set) then A∪ b ⊆ AB for all
finite b ⊆ B, so that AB = B, contradicting the assumption that A −→ B is not
a weak cofibration. It follows that our category has to be changed. Our ideology
of keeping things as simple as possible suggests adding new objects while keeping
the posetal structure of the category. So we add a formal object: the collection of
all sets A ∪ {b̄} for b̄ ⊆ B finite, which we view as a family of sets. So now we
should view our objects as families of sets: the old objects each form a family of one
member, The terminal object of the category, V — the universe of set theory, The
family of all finite extensions of a set A within a set B (or within V ), and possibly
more. Again, in order to avoid the problem of choosing which families must be
included and which families can be ignored, we choose to add all families of sets.
Namely, the objects of our category will be from now on (all) classes of sets.

Notation 5. The objects of our category will be denoted by calligraphic letters
(A,B,X ,Y,W etc.) Sets will be denoted by capital letters (e.g. A ∈ A)).

Identifying a set A with the class {A}, we know what the arrows between such
objects should be. But how should arrows between an old object and a new one be
defined, or even worse, between two new objects? Our category has to be stable
under finite limits. In the category of sets we started with, we showed that the
(direct) limit of a diagram containing finitely many sets (possibly, no arrows), is
the union of those sets. So it is natural to identify {A,B} with the limit of the
(arrowless) diagram {A}, {B}. Thus, we define:

Definition 3 (StNaamen). Let StNaamen be the category whose objects are classes
of sets and whose morphisms are given by X −→ Y if

(∀X ∈ X∃Y ∈ Y)(X ⊆ Y ).

Remark 6. Since in StNaamen arrows are unique, any collection of objects of the
category describes a unique (necessarily commutative) diagram. Therefore one can
talk of (direct or inverse) limits of any (small) collection of objects in StNaamen
rather than on the limits of diagrams. We will use this convention freely in what
follows.

2.2. The second round. The labelling of arrows can now proceed almost ax-
iomatically. Keeping the arrows we have already labelled (using the identification
of the category of sets we start with with a sub-category of StNaamen), we take the
minimal labelling satisfying axioms (M1) and (M2). Again, the resulting labelled
category will not be a model category, but it will be quite close to being one.

Definition 4. An arrow in StNaamen is a fibration (i.e., labelled (f)) if it has the

right lifting property with respect to all arrows of the form {A} (wc)0−−−→0 {B}, i.e,
(f) :=i (wc)0. An arrow is a trivial cofibration (i.e., labelled (wc)) if it has the left
lifting property with respect to all fibrations, i.e., (wc) := (f)i. See Figure 3.
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Claim 7. The labelling defined satisfies the first part of Axiom (M1). Labelling
any other arrow (wc) or (f) will violate this axiom. All isomorphisms are labelled
(wcf).

The proof is simple, and left as an exercise.

(a)
{A}

(wc)0∴ �

��

(b)
{A} //

(wc)0

��

� ∴(f)

��

(c)
//

(wc)∴ �

��

(f)

��{B} {B}

??

// //

BB

Figure 3. The three steps of the labelling:
(a) The basic (wc)0 arrows: B \A is finite.
(b) The left hand side arrow is labelled (f) if it has the lifting
property with respect to all arrows labelled (wc)0 in step (a).
(c) the right hand side arrow is labelled (wc) if it has the lifting
property with respect to all arrows labelled (f) in step (b).

We proceed in a similar way to describe trivial fibrations:

Definition 5. An arrow in StNaamen is labelled (wf) if it has the right lifting

property with respect to all arrows of the form {A} (c0)−−→0 {B}, i.e., (wf) :=i (c)0

and (c) := (wf)i. See Figure 4.

(a)
{A}

(c)0∴ �

��

(b)
{A} //

(c)0

��

� ∴(wf)

��

(c)
//

(c)∴ �

��

(wf)

��{B} {B}

??

// //

BB

Figure 4. The three steps of the labelling:
(a) The basic (c)0 arrows, cardB 6 cardA+ ℵ0.
(b) The right hand side arrow is labelled (wf) if it has the lifting
property with respect to all arrows labelled (c)0 in step (a).
(c) the left hand side arrow is labelled (c) if it has the lifting prop-
erty with respect to all arrows labelled (wf) in step (b).

An analogue of Claim 7 is true for the labelling of cofibrations and trivial fibra-
tions, with a similar proof. But we also have to check that the two last steps of the
labelling are compatible:

Remark 8. If an arrow h is labelled (wf) at stage (b) of Figure 4 this means that
(c)0ih, so in particular (wc)0ih. Thus, the arrow h has already been labelled (f)
in Figure 3(b). It follows that if an arrow g was labelled (wc) in Figure 3(c) then
gi (f), so in particular gi (wf) and therefore g is also labelled (c) in Figure 4(c).
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Now we proceeds to take care of Axiom (M2): This axiom requires that every
arrow decomposes into a (c)-arrow followed by an (f)-arrow. Our hope is that
if we label (w) those arrows that must be weak equivalences, the axiom will be
automatically satisfied. By Axiom (M5) every (w)-arrow can be written as the
composition of a (wc)-arrow and a (wf)-arrow, so we define:

Definition 6. An arrow is a weak equivalence if it is the composition of a (wc)-
arrow followed by a (wf)-arrow.

Before we proceed we need a simple observation following immediately from the
construction:

Claim 9. The following ∀∃-diagrams are always true:

(a)

(c)

��

(wc)

��

(b)

(f)

��

(wc)

��
//

(wf)
oo (wf)

oo

__

Figure 5. The dotted arrows exists whenever the solid ones are
labelled as in the figures.

Now, a simple diagram chasing, shows that this step of the construction is con-
sistent:

Claim 10. If X (c)−−→ Y (resp. X (f)−−→ Y) and if X −→ Y = X (wc)−−−→ Z (wf)−−−→ Y then
X −→ Y was labelled (wc) (resp. (wf)) before the last step of the construction.

Proof. We have to show that, under the above assumption, if X (c)−−→ Y then X −→
Y i V (wf)−−−→W for all arrows V (wf)−−−→W.

X

(c)�

��

//

(wc)

  

V

(f)

��

Z

>>

(wf)

��

Y //

??

W

Figure 6. Applying the lifting X (wc)−−−→ ZiV (f)−−→W with respect
to the arrows X −→ V and the composition Z −→ Y −→ W
produces the arrow Z −→ V. The arrow Y −→ Z is given by
Claim 2.2.

Since in our category arrows are unique, the above diagram is commutative.
Thus, the composition Y −→ Z −→ V is the desired lifting. The proof of the

analogous claim for X (f)−−→ Y is dual. �
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We sum up the labelling constructed in the present sub-section in the following
definition:

Definition 7 (The labelling of StNaamen). (−→): There is a unique arrow
X −→ Y iff for every X ∈ X there exists Y ∈ Y such that X ⊆ Y .

(wc)0: The arrow A −→ B is labelled (wc)0 if and only if A = {A} and
B = {B} are sets and B \A is finite.

(f): The arrow X −→ Y is labelled (f) if and only if (wc)0 iX −→ Y .
(wf): An arrow X −→ Y is labelled (wf) if and only if {A} −→ {B}iX −→
Y for all sets A,B such that cardB 6 cardA+ ℵ0.

(wc): An arrow X −→ Y is labelled (wc) if and only if X −→ Y i (f).
(c): An arrow X −→ Y is labelled (c) if and only if X −→ Y i (wf).
(w): An arrow X −→ Y is labelled (w) if and only if it can be written as the

composition X (wc)−−−→ Z (wf)−−−→ Y.

2.3. Almost there. As already mentioned, the above labelling does not make
StNaamen into a model category. We give the simple proof (which is lengthy just
because we have many things to check) that StNaamen is close to being a model
category. There are two key steps to the proof, which will serve us throughout the
continuation of the paper. The first is the description of limits in StNaamen. The
second, Proposition 12, is the technical heart of the first part of the paper. In this
proposition we give a purely combinatorial characterisation of our labelling.

Proposition 11. The labelling of the category StNaamen given in Definition 7
satisfies Axioms (M0)-(M4).

Proof. We have already seen (Figure 1) that StNaamen has direct limits, which are
given by unions. By duality, inverse limits are given by componentwise intersections.
More precisely, given any finite set of objects A1, . . . ,An in StNaamen their inverse
limit is

A1 ∩ · · · ∩ An :=
⋃
{A1 ∩ · · · ∩An : Ai ∈ Ai}

as can be readily checked. Axiom (M1) holds by construction. By construction,
also Axiom (M6) is satisfied. By Claim 1 Axioms (M3) and (M4) are automatic.

So it only remains to verify Axiom (M2). Let X −→ Y be any arrow. Let L
be the (direct) limit of all objects, V, such that X (wc)−−−→ V −→ Y (it will follow
from Proposition 12 that L is indeed an object in StNaamen). The corresponding
diagram is:

L

��

X (wc) //

??

V //

OO

Y

Figure 7

Then X −→ Y = X −→ L −→ Y. So it remains to verify that X (wc)−−−→ L and

L (f)−−→ Y. In order to prove the first assertion we need the following observstion:
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Claim: Let {Vi}i∈I be a class of objects in StNaamen such that X (wc)−−−→ Vi for all
i ∈ I. Let L be the direct limit of {Vi}i∈I (in particular, we assume – as will be

proved shortly – that L is an object of StNaamen). Then X (wc)−−−→ L.

Proof. By the universal property of direct limits the following diagram is true:

V

(f)

��

Xoo

(wc)

��

(wc)

''

(wc)

))

��

Vi

��

gg

......

ww

......

jj

uu

kk

W Loo

WW

Figure 8. The arrows Vi −→ V exist by X (wc)−−−→ Vi i V
(f)−−→ W.

So the arrow L −→ V exists by virtue of it being the limit of the
Vi.

�Claim

We now have to show that L (f)−−→ Y which, by Axiom (M6), amounts to (wc)iL −→
Y. Consider the diagram:

A

(wc)

��

// L

��

∴(wc)

��

X(wc)oo

∴(wc)

ww©�

��

B //

??

Y

Figure 9. Consider the direct limit of L and B. The dotted ar-
rows exist by the universal property. The arrow connecting L with
the limit is labelled (wc) by Axiom (M3) and Axiom (M4). The
arrow connecting X to the limit is labelled (wc) as the composition
of two (wc)-arrows (see Claim 1).

It follows that X (wc)−−−→ ©� −→ Y. By the definition of L this implies that
©� −→ L. Thus ©� ∼= L and as B −→ ©� we also have B −→ L, showing that

A (wc)−−−→ B i L −→ Y. Since A (wc)−−−→ B was arbitrary we are done. The other part
of Axiom (M2) is proved in a similar way. �
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2.4. A set theoretic interlude. In this sub-section we give a set theoretic char-
acterisation of the labelling of arrows in StNaamen. This set theoretic version of
the labelling will be important for several reasons. First, it is required in order
verify that our labelling does, as we intended, capture the notions of finiteness,
countability and infinite equi-cardinality. It will also allow us to give a set theoretic
interpretation of homotopy theoretic concepts, which is – after all – the main idea
behind the present construction. Finally, since we cannot expect that all proper-
ties of the labelled category StNaamen can be proved from the abstract axioms
(M0)-(M6), it will allow us to ultimately prove that (a certain full sub-category of)
StNaamen is a model category.

Proposition 12. The set theoretic interpretation of the labelling of arrows in
StNaamen is:

(f) an arrow A −→ B is labelled (f) if and only if for every A ∈ A ∪ {∅},
B ∈ B and a finite subset {b1, . . . , bn} ⊆ B there exists A′ ∈ A ∪ {∅} such
that (A ∩B) ∪ {b1, ..., bn} ⊆ A′.

(wf) an arrow A −→ B is labelled (wf) if and only if for every A ∈ A ∪ {∅},
B ∈ B and subset B′ ⊆ B such that cardB′ 6 card (A ∩ B) + ℵ0, there
exists A′ ∈ A ∪ {∅} such that B′ ⊆ A′.

(wc) an arrow A −→ B is labelled (wc) if and only if every B ∈ B is contained,
up to finitely many elements, in some A ∈ A ∪ {∅} (i.e. B \A is finite for
some A ∈ A ∪ {∅}).

(c) an arrow A −→ B is labelled (c) if and only if for every {B} −→ B there

exists A ∈ A ∪ {∅} such that A
B−→ B, where we define A B−→ B if there

exist n ∈ N and {B0, . . . Bn} −→ B such that:
(a) card (A ∩B0) + ℵ0 = cardB0 + ℵ0 ,
(b) card (Bi ∩Bi+1) + ℵ0 = cardBi+1 + ℵ0 for all 0 ≤ i < n, and
(c) B = Bn.

(w) an arrow A −→ B is labelled (w) if and only if for every A ∈ A ∪ {∅},
B ∈ B and subset B′ ⊆ B such that cardB′ 6 card (A ∩ B) + ℵ0, there
exists A′ ∈ A ∪ {∅} such that B′ is contained in A′ up to finitely many
elements.

Proof. (f): By definition (see also Remark 8), an arrow A −→ B is labelled

(f) if it has the right lifting property relative to all arrows {C} (wc)0−−−→ {D},
i.e. all arrows of the form {C} −→ {C, d̄} where d̄ is a finite set. Thus, if
A ∈ A, B ∈ B and {b1, . . . , bn} ∈ B then

{A ∩B} //

(wc)0

��

A

(f)

��

{A ∩B, b1, . . . , bn} //

99

B

and by definition this means that there exists B′ ∈ A such that (A ∩
B) ∪ {b1, . . . , bn} ⊆ A′.

In the other direction:
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{A} //

(wc)0

��

A

∴(f)

��

{A, b1, . . . , bn} //

::

B

Figure 10. The lifting arrow exists by applying the assumption

any A ∈ A and {{b1, . . . , bn}} −→ B. The conclusion A (f)−−→ B
follows by the construction of Figure 3.

(wf): Exactly the same proof works.
(wc): Given C −→ D we let

CD := {(C ∩D) ∪ d̄ : A ∈ A, D ∈ D, d̄ ⊆ D finite}.

Then obviously C −→ CD −→ D, and by what we have just shown, CD
(f)−−→

D. Now assume that C −→ D i A (f)−−→ B for all A
(f)−−→ B. Then, in

particular, C −→ D i CD −→ D. Hence, as StNaamen has unique arrows
D −→ CD −→ D implies that CD ∼= D. Now, let D ∈ D be any element.
Then D ⊆ CD for some CD ∈ CD. But, by definition, CD is contained,

up to finitely many elements, in some C ∈ C. This proves that C (wc)−−−→ D
satisfies the combinatorial condition of the claim.

In the other direction, if C −→ D satisfies the combinatorial condition,
then

C //

��

X

(f)

��

D //

??

Y

Figure 11. Given D ∈ D let D ⊆ Y ∈ Y and C ∈ C such that
C contains D up to the finite set {d1, . . . , dn}. Let C ⊆ X ∈ X ,
and X ′ ∈ X such that (X ∩ Y ) ∪ {d1, . . . , dn} ⊆ X ′, as assures

X (f)−−→ Y. So D ⊆ X ′. Since D was arbitrary, the lifting arrow
exists.

By the construction of Figure 3, C (wc)−−−→ D, as required.
(c): The proof is quite similar to the classification of (wc)-arrows. Given
A −→ B let B̄ := {B′ ⊆ B : B ∈ B}. Observe that B ∼= B̄. Define

AB := {B ∈ B̄ : A
B̄−→ B, some A ∈ A}.

As before, A −→ AB −→ B. We claim that AB (wf)−−−→ B. Indeed, let
AB ∈ AB, B ∈ B and B′ ⊆ B be such that card (AB ∩ B) + ℵ0 ≥ cardB′.

We know that A
B̄−→ AB for some A ∈ A, so there are B0, . . . , Bn ∈ B̄

witnessing this, and Bn = AB . Denote Bn+1 = (B ∩ AB) ∪ B′. Since,
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Bn+1 ∈ B̄ and card (Bn+1 ∩ Bn) + ℵ0 = cardBn+1 + ℵ0, we get that

A,B0, . . . , Bn+1 witness that A
B̄−→ Bn+1, so Bn+1 ∈ AB. Since B′ ⊆ Bn+1

the combinatorial classification of (wf)-arrows yields AB (wf)−−−→ B.

Now assume that A (c)−−→ B. We have to show that for {B} −→ B
there exists A ∈ A such that A

B−→ B. By the previous paragraph, A (c)−−→
B i AB (wf)−−−→ B and B −→ AB −→ B. Namely, for every {B} −→ B
there is AB ∈ AB such that B ⊆ AB , and by definition A

B̄−→ AB for
some A ∈ A witnessed by B0, . . . , Bn ∈ B̄. Note that Bn = AB ⊇ B, so
setting Bn+1 := B we get that card (Bn+1 ∩ Bn) = cardBn+1, implying

that A
B−→ B.

For the other direction, we have to show that if A −→ B satisfies the
combinatorial condition, then the arrow is labelled (c). By (M6) it will

suffice to show that if C (wf)−−−→ D and A −→ C, B −→ D then for every
element B ∈ B there exists C ∈ C such that B ⊆ C. We do this for each
such B separately by induction on the length of the (shortest possible)

chain witnessing that A
B−→ B for some A ∈ A. For chains of length 0 this

is obvious by construction (consider the lifting {A} (c)−−→ {B}iC (wf)−−−→ D for

any A as above). Now assume that A
B−→ B is witnessed by B0, . . . , Bn+1.

Note that {B0, . . . , Bn} witness that A
B−→ Bn. Therefore, by induction,

there is some Cn ∈ C such that Bn ⊆ Cn. By definition, there is some
D ∈ D such that Bn+1 ⊆ D. Applying the combinatorial classification of
(wf)-arrows to D,Cn and Bn+1 ⊆ D, the result follows.

(w): Assume, first, that A (w)−−→ B. By construction, A (wc)−−−→ C (wf)−−−→ B. Now
let A ∈ A, B ∈ B be any elements and B′ ⊆ B such that card (A∩B)+ℵ0 ≥
cardB′. Let C ∈ C such that A ⊆ C. So card (C∩B)+ℵ0 ≥ card (A∩B)+
ℵ0 ≥ cardB′. By the classification of (wf)-arrows there is C ′ ∈ C such that
B′ ⊆ C ′. By the classification of (wc)-arrows there is A′ ∈ A such that C ′

is contained in A′ up to finitely many elements. So B′ is contained in A′,
up to finitely many elements as required.

Now assume that A −→ B satisfies the combinatorial condition of the

claim. We will show that there exists an object C such that A (wc)−−−→ C (wf)−−−→
B. By Axiom (M2) we know that A (wc)−−−→ C (f)−−→ B. So our goal is to show

that C (wf)−−−→ B, i.e. — using Axiom (M6) — that it has the lifting property
with respect to any (c)-arrow. It will suffice to show (see Figure 4) that

(c)0 i C
(f)−−→ B. Consider the following diagram:

{C ′} //

(c)0

||

C

(f)

��

A(wc)oo

{B′} //

?

66

B
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Let B ∈ B be such that B′ ⊆ B, let C ∈ C be such that C ′ ⊆ C,
and let A ∈ A be such that C ⊆ A up to a finite set (as provided by
the combinatorial classification of (wc)-arrows). So card (A ∩ B) + ℵ0 =
card (C ∩B) +ℵ0 ≥ cardC ′+ℵ0 = cardB′+ℵ0. Applying the assumption
we get a set A′ ∈ A such that B′ is contained in A′ up to a finite set b̄. So
Let C ′′ ∈ C be such that A′ ⊆ C ′′. By the classification of (f)-arrows there
exists C ′′′ ∈ C such that C ′′′ ⊇ (C ′′ ∩ B) ∪ b̄. But C ′′ ∩ B ⊇ A′ ∩ B, so
(C ′′ ∩B) ∪ b̄ ⊇ (A′ ∩B) ∪ b̄ ⊇ B′. Thus, C ′′′ ⊇ B′, as required

�

In the proof of Proposition 12 we focused on the simplest and shortest proofs
using set theoretic ideas that may not be easy to formalise in an algorithm. It
may be worth stressing that the same result could have been obtained using more
algorithmic diagram chasing arguments using only some basic properties of infinite
cardinality, finite and countable sets. For example, the characterisation of (f)-
arrows can be described as follows:

{A′} 33C

!!

oo // {A} // A

∴(f)

��

∅ (wc) // {B′}

bb

// {B} // B

So we only have to verify that an arrow has the lifting property with respect
to all (wc)0-arrows if and only if it satisfies the above diagram, which is an easy
argument. Similar arguments could be applied to obtain all other classifications.

We will need later the following:

Corollary 13. In StNaamen the following diagram is true:

©�

∴(wc)

��

// A

(wc)

��

B // C

Proof. Recall that the inverse limit of A,B is A ∩ B. Now, if {B} −→ B −→ C
there exists {C} −→ C such that {B} −→ {C} and {A} −→ A such that C \ A is
finite. Thus, B is contained in A up to finitely many elements. Since {B} −→ B
was arbitrary, by Proposition 12 the corollary follows. �

2.5. The final round: the model category QtNaamen. In the previous sub-
sections we proved that the labelled category StNaamen satisfies axioms (M0)-(M4)
of a closed model category. The reason we have not proved that it also satisfies
(M5) is that this is not true: consider the diagram of Figure 12 without the middle
arrow. By definition of morphisms in StNaamen the middle arrow exists. By
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Proposition 12 it is labelled (c). Considering the left hand side of the diagram, the
left and top arrows are trivial fibrations, by Proposition 12, so if (M5) were true,
the middle arrow would be a weak equivalence. Combining those two observations,
we conclude that if (M5) were true in StNaamen the middle arrow would be labelled
(wc). However, by Proposition 12 this would imply that A \B is finite, which need
not be the case.

[A]<ℵ1 (wf) //

(wf)

%%

[A]<ℵ1 ∪ {B}

(wc)

��

{B}oo

(c)0

zz

{A}

Figure 12. For a set A we let [A]<ℵ1 be the set of all countable
subsets of A.

So we, somehow, must get rid of (at least) those diagrams of the form

A //

(c)

��

B

��

C(wf)oo

(wf)

��

D

Figure 13

where the middle arrow is not a trivial fibration. By considering B = D and noting

that arrows A (c)−−→ D and C (wf)−−−→ D may be arbitrary, the reader can easily convince
herself that a reasonable way of avoiding such diagrams is to get rid of those arrows
which fit as the middle arrow in Figure 13. A homotopy theoretic means of getting
rid of arrows is by using the lifting property. The two key observations for achieving
this goal are that (a) if an arrow h is an isomorphism, we have no need of getting rid
of it and (b) if K is any class of morphisms then Ki∩K contains only isomorphisms.
Thus, we let K be the class of all morphisms in StNaamen fitting as the middle
arrow in Figure 13. We let Ki be the obvious sub-category of StNaamen and H the
(full) sub-category of Ki consisting of those object X such that both ∅ −→ X and
X −→ > are in Ki. This is readily seen to be a full sub-category of StNaamen.
This category can be defined as follows:

Definition 8. An object X ∈ ObStNaamen is cute if the following diagram is true:

((

(c)0

��

//

(wf)

��

X77

Figure 14

We let QtNaamen be the full sub-category of cute objects in StNaamen
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Remark 14. It follows right from the definition that for every set A the singleton
{A} is an object in QtNaamen. In particular, all (c)0-arrows survive the passage
to QtNaamen.

Remark 15. It is now a easy exercise to verify that X −→ > and ∅ −→ X are
both in Ki if and only if X is cute.

From the homotopy theoretic viewpoint, the following is a more satisfying defi-
nition of QtNaamen:

Lemma 16. Let X be an object of StNaamen. Then X is cute if and only if the
following diagram is true for every choice of solid arrows.

A ''

(c)

��

C //

(wf)

��

X

B

77

Figure 15

Proof. Clearly, if X satisfies the diagram it must be cute. So we proceed to prove
the other direction. We suppose that X is cute, and verify that it satisfies the
above diagram. When given the above diagram we have to find a lifting arrow. It
will suffice to show that for every B ∈ B there exists an arrow {B} −→ X . Fixing

such a B and expanding the set theoretic definition of A (c)−−→ B we chooses A and

{B0, . . . , Bn} (with Bn = B) witnessing that A
B−→ B, getting following diagram:

©�

∴(wf)

tt

��

{B′0}

||

(c0)

��

{B′1}

||

(c0)

��

. . . . . .

(c0)

��

{B′n}

{{

(c0)

��

A

(c)

��

((C

(wf)

��

// X

{A}

##

{B0}

%%

66{B1} 55. . . {Bn−1} 44{Bn} // B

Figure 16. To obtain the labelling of the arrow from the limit of
{B0} and C to {B0} use Axiom (M3) and Axiom (M4). To obtain

the lifting arrow use the assumption with respect to {B′0}
(c)0−−→

{B0} and the previously discussed arrow. Observe that {B′0} −→
X as the composition {B′0} −→ {A} −→ A −→ X .
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Observe that if A (c)−−→ B and {B} −→ B then AB := A ∪ {B} also satisfies

AB
(c)−−→ B. So, using the lifting arrow we found in Figure 16 we can replace A with

AB , and now B has a chain of length at most n − 1 witnessing that B0
B−→ B. So

induction gives the desired result. �

Summing up the above discussion it may be worth pointing out :

Lemma 17. Let X ∈ ObStNaamen. Then the following conditions are equivalent:

(1) X ∈ ObQtNaamen.

(2) If C (wf)−−−→ B then A (c)−−→ B i X −→ T and if A (c)−−→ B then C (wf)−−−→
BiX −→ T for all objects A,B and C of StNaamen such that A, C −→ X .

(3)
⋃
{X ′′ : for some X0, X1, X ′′

(wf)←−−− X0 −→ X ←− X1
(c)−−→ X ′′} 99K X

(4) If {a} −→ X , C −→ X and {a} (c)−−→ {b} and C (wf)−−−→ {b}, then {b} −→ X .
(5) For any set A, if A6ℵ0 −→ X then A6 card (x∩A) −→ X for all x ∈ X

(where A6λ := {L ⊆ A : cardL 6 λ})

We now proceed to show that QtNaamen is, indeed, a model category. First we
observe, that there are many cute objects:

Lemma 18. Assume that C is a cofibrant object of StNaamen. Then C is cute.

Proof. See the following diagrams:

(a)
A ))

(c)

��

B

(wf)

��

// C
(b)

A

(c)

��

B

(wf)

��

// C

D

?

77

∅

(c)

??

(c)

OO
(c)
ii

D

??

∅

(c)

OO
(c)
ii

(c)oo

Figure 17. (a) The new (c)-arrows exists by Claim 1(4). (b) The

arrow ∅ −→ D is labelled (c) as a combination of ∅ (c)−−→ A (c)−−→ D.

The lifting arrow D −→ B exists by ∅ (c)−−→ D i B (wf)−−−→ D.

�

Note that given any object A in StNaamen by Axiom (M2) we know that ∅ −→
A = ∅ (c)−−→ C (wf)−−−→ A for some C. So any object in StNaamen is weakly equivalent
to a cofibrant, hence cute, object. The following will be handy:

Notation 19. Let X be any object in StNaamen. We denote Xc the unique object

such that ∅ (c)−−→ Xc
(wf)−−−→ X .

How far could QtNaamen be from being a model category? Axioms (M3) and
(M4) of model categories are preserved when restricting to an induced subcate-
gory. Since the subcategory is full, the same is also true of Axiom (M1). But the
remaining axioms have to be re-verified (since it is not clear, for example, that if

A −→ B = A (wc)−−−→ C (f)−−→ B and A,B are objects in QtNaamen so is C. Moreover,
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though QtNaamen may have limits (Axiom (M0)) it is clear from the example anal-
ysed in the end of the previous sub-section that those will not, in general, be the
same limits as in StNaamen.

So we start by showing that QtNaamen has limits. As we will see below, the
inverse limit (in StNaamen) of cute objects is readily checked to be cute itself, but
the same is obviously not true for direct limits. In order to show that QtNaamen
has direct limits we will prove a stronger property. We will show that any object
X in StNaamen has a Qt-fication, namely, an object X̃ such that:

(1) X̃ is in QtNaamen.

(2) X −→ X̃ .

(3) If Y is in QtNaamen and X −→ Y (in StNaamen) then X̃ −→ Y.

So X̃ (if it exists) is the object in QtNaamen closest to X . In particular, this would
imply that, given any diagram. D, in QtNaamen if L is the direct limit of D (in

StNaamen) then L̃ must be its limit in QtNaamen.

Remark 20. The third point in the definition of the Qt-fication has a category
theoretic interpretation. It can be described as the solution to a lifting property
problem: X −→ X̃ i Y −→ Z for every arrow Y −→ Z in QtNaamen. To see
that this implies (3), take Z = > the terminal object: if Y is in QtNaamen and

X −→ Y (in StNaamen) then Y −→ > is in QtNaamen, X̃ −→ > and the lifting

property implies X̃ −→ Y. The uniqueness of the Qt-fication implies that, indeed,
the two conditions are equivalent.

From the category theoretic point of view, it is clear how to construct the Qt-
fication of an object X . Such an object, X , is in StNaamen but not in QtNaamen
if and only if there are A,B and C as in the solid arrows of Figure 15, but such
that the lifting arrow B −→ C does not exist. The object in StNaamen “closest”
to X for which such a lifting arrow exists is the direct limit of X and B. Thus, the
first candidate for the Qt-fication of X is the direct limit of all objects B for which
there exist A,B such that Figure 15 holds of A,B, C and X .

Notation 21. Given X , an object of StNaamen, denote

X̃ :=
⋃
{X ′′ : X ←− X0

(c)−−→ X ′′ (wf)←−−− X1 −→ X}.

In other words, given X the object X̃ is the direct limit of all those objects X ′′
for which the following diagram holds:

X0
))

(c)

  

X1
//

(wf)

��

X

X ′′

Figure 18. The object X̃ is the direct limit of all X ′′ satisfying
the diagram.

Remark 22. It is not hard to check that the cute objects in StNaamen have a set
theoretic characterisation in the spirit of Proposition 12. Using such a characterisa-
tion, one can then, naturally, arrive at a set theoretic definition of the Qt-fication.
Not surprisingly, these two definitions will coincide.
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So it remains to prove:

Lemma 23. For every X in StNaamen the object X̃ is the Qt-fication of X .

We have three properties to verify, of which the requirement that X −→ X̃ is
obvious. So we proceed to proving:

Claim 24. Let V be an object in QtNaamen. Then for all X , if X −→ V then
X̃ −→ V.

Proof. Let {B} ∈ X̃ . So the following diagram is true:

A ))

(c)

!!

B //

(wf)

��

X

��

// V

{B} // X ′′

77

// X̃

Figure 19. The objects A,B,X ′′ (with their associated labelled

arrows) exist by the definition of X̃. The arrow X ′′ −→ V exists
because V is in QtNaamen.

�

We will also need the following:

Claim 25. For any cofibrant object A in StNaamen we have ∅ (c)−−→ AiX −→ X̃ .

Proof. Assume first that A is the singleton {A} and ∅ (c)0−−→ {A}. By definition

of X̃ the fact that {A} −→ X̃ implies that there exists X ′′ such that {A} −→ X ′′
and such that X ′′ is as in Figure 18. In particular there exists some X1 such that

X1
(wf)−−−→ X ′′. Therefore, we have ∅ −→ {A}iX1 −→ X ′′. So that {A} −→ X1 −→

X is the required arrow. Finally, observe that by the combinatorial classification

of cofibrant objects, we know that A is cofibrant if and only if ∅ (c)0−−→ {A} for all

A ∈ A. So a cofibrant object is a direct limit of sets ∅ (c)0−−→ A, and since the lifting
arrow exists for every such A it also exists for the limit. �

And we conclude the proof of the lemma with:

Claim 26. For every object X in StNaamen the object X̃ is in QtNaamen.

Proof. It is enough to show that for any choice of solid arrows the following diagram
is true:

{A} ''

(c)0

��

Bc

(wf)

~~

// X̃

{B}

77

∅
(c)

OO

Since {A} is a singleton, {A} −→ X̃ implies that there exists X ′′ −→ X̃ such
that for some C,D
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D ((

(wf)

!!

C

(c)

��

// X

��

{A} //

(c)0

��

X ′′ // X̃

{B} Bc

OO

(wf)
ii

Taking the limit (in StNaamen) of X ′′ and {B}, we obtain:

C

∴(c)

��

(c)

��

// X

��

{A} //

(c)0

��

X ′′ //

∴(c)

��

X̃

{B} // X ′′ ∪ {B}

Figure 20. The arrow X ′′ −→ X ′′ ∪ {B} is labelled (c) by Ax-
iom (M3)(c). The arrow C −→ X ′′ ∪ {B} is labelled (c) as the
composition of two (c)-arrows.

We intend to show that if ∅ (c)−−→ Y (wf)−−−→ X ′′ ∪ {B} then Y −→ X , as —

X ←− C (c)−−→ X ′′ ∪ {B} (wf)←−−− Y −→ X is a diagram as in Figure 18 — implying

that X ′′ ∪ {B} −→ X̃ , and in particular {B} −→ X̃ , which is what we want.

By Claim 25, as Y is cofibrant, it will suffice to show that Y −→ X̃ . To check

this it will suffice that he shows that Y −→ D ∪ Bc. Since D (wf)−−−→ X ′′, if we let

∅ (c)−−→ X ′′c
(wf)−−−→ X ′′ then ∅ (c)−−→ X ′′c iD

(wf)−−−→ X ′′ implies that X ′′c −→ D. Thus, in
fact, it will suffice to show that Y −→ X ′′c ∪Bc, which is immediate from Proposition
12 (from which it follows that (X ′′ ∪ {B})c = X ′′c ∪ Bc). �

As discussed above, Lemma 23 implies, in particular, that QtNaamen is closed
under direct limits. The following lemma shows that the same is true for inverse
limits.

Claim 27. The category QtNaamen satisfies Axiom (M0).

Proof. Assume that X1, . . . ,Xn are objects in QtNaamen then
n⋂
i=1

Xi := {
n⋂
i=1

Xi : Xi ∈ Xi}

is the inverse limit of the Xi in QtNaamen and D̃ is their direct limit in QtNaamen,
where

D :=

n⋃
i=1

Xi.
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Since I :=
⋂n
i=1 Xi is the inverse limit of the Xi in StNaamen it will suffice to show,

in order to prove the first part of the claim, that it is in QtNaamen. But this is
obvious, due to the following diagram:

A

(c)

��

))
B

(wf)

~~

// I

vv ~~
))

""

C //
66 :: ;; 99

44

X1 X2 · · · Xn−1 Xn

Figure 21. The arrows from C to all the Xi exists by the definition
of QtNaamen. The lifting arrow exists by virtue of I being the
inverse limit of the Xi in StNaamen.

The second part of the lemma follows from the properties of the Qt-fication. �

It remains to prove Axioms (M5) and (M2) (and hopefully also (M6)). The first
part of Axiom (M2) is easy:

Claim 28. If X −→ Y in QtNaamen and X (c)−−→ Xc
(wf)−−−→ Y then Xc is an object

in QtNaamen.

Proof. We have to check that

B
''

(c)

��

A //

(wf)

��

Xc (wf) // Y

C

?

77

But by the definition of QtNaamen, and Axiom (M1) we know:

B
''

(c)

��

A //

(wf)

��

Xc (wf) // Y

C

4477

Figure 22. The lifting arrow to Y exists by definition of

QtNaamen. The arrow to Xc is obtained by B (c)−−→ CiXc
(wf)−−−→ Y.

�

The proof of the second part of Axiom (M2) is harder. This is the only proof
in this part of the paper for which we do not have an obvious algorithmic proof.
It will be interesting to know whether a simpler proof exists (at least in the sense
that it does not use in a significant way infinitary concepts). The key lemma is:
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Lemma 29 (A continuity fixed-point argument). The following diagrams are true:

A

(wc)

��

Boo (wf) // {C}

(wc)

��

A

(wc)

��

Boo (wf) // C

(wc)

��

∅
(c)

66

(c)

AA

D Eoo (wf) // {F} D Eoo (wf) // F

Proof. First, we show that the two diagrams are equivalent. Of course, we only
have to show that the diagram on the left implies the one on the right. So assume
the diagram on the left is true, and we are given A, D, E and F as in the figure on
the right. First, observe that we may assume without loss that E ∼= Fc, so without

loss ∅ (c)−−→ E .
We can now apply the diagram on the left as follows: for every F ∈ F observe

that A, D, Fc∩{F} and {F} satisfy the assumptions of the left hand side diagram.
So we can find BF and {CF } as provided there. Taking B :=

⋃
{BF : F ∈ F}

and C :=
⋃
{CF : F ∈ F} we get ∅ (c)−−→ B and by Proposition 12, B (wf)−−−→ C, and

C (wc)−−−→ F so the diagram on the right is satisfied.
To prove the diagram on the left, first observe that using Proposition 12 it is

clear that A (wc)−−−→ D implies that Ac
(wc)−−−→ Dc. Since Ac −→ A it will suffice to

prove the diagram with Ac instead of A and Dc instead of D. So we may assume
that A is a family of countable sets. Thus, combinatorially, the lemma asserts
that given a family A of countable sets and a set F such that for every countable
Fc ⊆ F there exists some A ∈ A such that card (Fc \ A) < ℵ0 then there exists a
sets C ⊆ F such that card (F \C) < ℵ0 and every countable subset of C is a subset
of an element of A.

Assume by way of contradiction that this is not the case. I.e., we assume that for
every finite b̄ ⊆ F there exists a countable set Cb̄ ⊆ F such that Cb is not contained
in any element of A. Let C0 = C∅. Define inductively for i > 0

Ci+1 = Ci ∪ {Cb̄ : b̄ ∈ [Ci]
<ω, Ci \ b̄ ⊆ Ai,b̄, some Ai,b̄ ∈ A}

Let Cω :=
⋃
i∈ω Ci. Then Cω is countable (as the countable union of countable

sets). But Cω \ b̄ 6⊆ A for all finite b̄ ⊆ Cω and A ∈ A, a contradiction. Indeed, note
that for all b̄ as above there exists n ∈ ω such that b̄ ⊆ Cn. So Cb̄ ⊆ Cn+1 ⊆ Cω,
with the desired conclusion. �

For future reference, we point out the following generalization of the fixed point
argument, appearing in the last part of the above proof:

Remark 30. Let κ be a regular cardinal, A a class of sets of cardinality smaller
than κ, and F any set. Assume that for all b̄ ⊆ F with card (b̄) < κ there exists
Cb̄ ⊆ F with card (Cb̄) ≤ κ such that Cb̄ 6⊆ A for all A ∈ A. Then there exists
C ⊆ F with cardC = κ such that card (C \A) = κ for all A ∈ A.

The proof of the above remark goes through precisely as in the above lemma,
with a single exception. In the fixed point argument above we define C0 = C∅ and

Ci+1 = Ci ∪ {Cb̄ : b̄ ∈ [Ci]
<ω, Ci \ b̄ ⊆ Ai,b̄, some Ai,b̄ ∈ A}.
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If we tried to repeat the same line of reasoning replacing systematically ω with κ we
might run into trouble, since cardC0 = κ, but in general, it will no longer be true
that card ([C0]<κ) = κ, and so already C1 could be too large. Observe, however,
that in order to make the argument go through we need not go over all b̄ ∈ [C0]<κ.
Indeed, all we need is to go over a covering family of such subsets. Namely, the
argument would go through unaltered if at stage i+1 we fixed Ci ⊆ [Ci]

<κ such that
for b̄ ∈ [Ci]

<κ there exists c̄ ∈ Ci with b̄ ⊆ c̄. Thus, it suffices to show that we can
choose Ci to be of cardinality at most κ. The minimum cardinality of such a family
Ci is precisely cov(κ, κ, κ, 2) (see [21, §5] for the definition). And the fact that this
cardinality is precisely κ for a regular cardinal κ is an immediate consequence of
[21] Observation 5.2(2), 5.2(5) and Observation 5.3(2).

The study of further relations between Shelah’s covering numbers cov(λ, κ, θ, σ)
and various constructs arising form the analysis of the model category QtNaamen
and its variants is the main theme of the second part of this paper.

We can now return to the proof that QtNaamen is a model category.

Lemma 31. If X −→ Y in QtNaamen and X (wc)−−−→ Xf
(f)−−→ Y then Xf is an object

in QtNaamen.

Proof. Consider the following diagram:

X

(wc)

��

{B}
((

(c)0

��

A //

(wf)

~~

Xf

(f)

��

{C}

?

77

// Y

Figure 23. The arrow {C} −→ Y exists because Y ∈ ObQtNaamen.

Using the arrow {C} −→ Y it will suffice to find an object B′ (in StNaamen)

such that B′ (wc)−−−→ {C} and B′ −→ Xf , as then we will obtain the desired conclusion

from B′ (wc)−−−→ {C}i Xf
(f)−−→ Y. Indeed, it will be enough to show that B′ we find

satisfies B′ −→ X rather than B′ −→ Xf , which is an advantage, since — towards
that end — we can exploit the fact that X is in QtNaamen.

In the notation of Figure 23, the system

X (wc)−−−→ Xf ←− A
(wf)−−−→ {C}

satisfies the assumption of Lemma 29. So we can add some arrows to Figure 23:
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H

(wf)

��

// X

(wc)

��

{B} ))

(c)0

��

A //

(wf)

||

Xf

(f)

��

{C} 66{B′}(wc)oo Y

Now, if we can find some I −→ X such that I (c)−−→ {B′}, we will be done. For
then, since X is in QtNaamen, we obtain the lifting arrow {B′} −→ X that we need.
So it remains to find I. But this is now easy: Let {B′′} be the inverse limit of X and

{B}. Then by Corollary 13 {B′′} (wc)−−−→ {B}. By the same argument, setting I to

be the inverse limit of {B′′} and {B′} we have I (c)−−→ {B′} and I −→ {B′′} −→ X ,
which is what we wanted.

{B′′}

(wc)

��

((H
(wf)

��

// X

(wc)

��

{B′ ∩B′′}
ww

(c)

uu

{B} ))

(c)0

��

A //

(wf)

{{

Xf

(f)��

{C}

66

66{B′}

FF

(wc)oo Y

Figure 24. The arrow {B′} −→ X exists because X is in

QtNaamen. The arrow {C} −→ Xf comes from {B′} (wc)−−−→
{C}i Xf

(f)−−→ Y

�

Now it is easy to verify:

Lemma 32. The labelled category QtNaamen satisfies Axiom (M6).

The proof is a diagram chasing argument using (M2) in QtNaamen and (M1)
and (M6) in StNaamen which we leave as an exercise to the reader. The remaining
task is proving Axiom (M5) for QtNaamen. To explain the ideology of the proof we
remind that, in some sense, weak equivalence should be thought of as an equivalence
relation. So we are looking for an equivalence relation that may capture the notion

of weak equivalence. Recall that by Proposition 12 X (w)−−→ Y if and only if, for
every X ∈ X and every Y ′ ⊆ Y ∈ Y, if cardY ′ ≤ card (X ∩ Y ) + ℵ0 then Y ′ is
contained, up to finitely many elements in some X ′ ∈ X .

As we already know, this is not an equivalence relation in StNaamen. So we
look for another characterisation of weak equivalences which, in QtNaamen, may
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turn out to be an equivalence relation. The following, countable version of weak
equivalence, is a special case:

Definition 9. Let X ,Y be objects in StNaamen. Denote X ∼w Y if for every
countable set L, there exists X ∈ X such that L \ X is finite if and only if there
exists Y ∈ Y such that L \ Y is finite.

In other words, X ∼w Y if any countable set L is almost covered by an element
of X if and only if it is almost covered by an element of Y. The following is now
obvious:

Claim 33. The relation ∼w is an equivalence relation. It can be expressed by the
following diagram:

∅ (c) //

��

//

X
(wc)
��

Y
(wc)
OO

oo

OO

∅(c)oo

Proof. That ∼w is an equivalence relation is obvious from the definition. We will
show that the figure above is equivalent to X ∼w Y. First we show that if X ,Y
satisfy the above figure then they are ∼w equivalent. So assume that L is a count-
able set such that L ⊆ X ∪ ` for some X ∈ X and finite `. Let L′ := L \ `. Then

∅ (c)−−→ {L′} −→ X . Then there exists Z such that Y (wc)−−−→ Z ←− {L′}. So there
exists Z ∈ Z such that L′ ⊆ Z. By the combinatorial classification of (cw)-arrows
there is Y ∈ Y such that Z ⊆ Y ∪ z̄ for some finite z̄. Thus L ⊆ Y ∪ (` ∩ z̄), as
required. Since the diagram is symmetric the same goes for Y. The other direction
is similar. �

So X ∼w Y is an equivalence relation, and if X −→ Y it is a weakening of

X (w)−−→ Y. It turns out that, in fact, the two notions are equivalent:

Lemma 34. Assume that X −→ Y are objects in QtNaamen and that X ∼w Y.

Then X (w)−−→ Y.

Proof. By Axiom (M2), we know that X (wc)−−−→ V (f)−−→ Y. In order to show that

X (w)−−→ Y we have, by the construction of StNaamen, to show that V (wf)−−−→ Y. By
Axiom (M6) the last statement amounts to (c)iV −→ Y. In fact, it will suffice to
show that (c)0 i V −→ Y. So we have to show that

X (wc) // V (f) // Y

{A}

OO

(c)0 // {B}

?

bb OO

To obtain the next diagram we will use two pieces of information: the first is
that V is in QtNaamen, and the second is that X ∼w Y. To use the first fact, we
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will fit V into a diagram of the form characterising cute objects; to use the second
fact we will try to stick to countable sets. First, using X ∼w Y we have:

∅

(c)

��

(c) // V X

(wc)

��

(wc)oo

Ac

(c)

��

(wf) // {A} //

(c)0

��

V

(f)

��

Bc (wf) //

NN

{B} // Y

Figure 25. Decompose ∅ −→ {A} and ∅ −→ {B} by Ax-
iom (M2). Since the composition of two (c)-arrows is a (c)-
arrow, and the decomposition provided by Axiom (M2) is unique

∅ (c)−−→ Bc
(wf)−−−→ {B} decomposes into ∅ (c)−−→ Ac

(c)−−→ Bc
(wf)−−−→ {B}.

The dashed arrows exist by the definition of X ∼w Y .

Next, we observe that the configuration X (wc)−−−→ V ←− Bc
(wf)−−−→ {B} fits into

the assumptions of Lemma 29. So there is a set B′ such that:

∅

(c)

��

(c) // V X

(wc)

��

(wc)oo

B′c

(wf)

��

66

{A} //

(c)0

��

V

(f)

��

{B′} (wc) // {B} // Y

Taking the inverse limit of {A} and {B′} we get, using the fact that V is cute:

©�

(c)

{{

��

X

(wc)

��

B′c
(wf)

��

66

{A} //

(c)0

��

V

(f)

��

{B′} (wc) //

??

{B} //

>>

Y

Figure 26. The arrow {B}′ −→ V exists, because V is in

QtNaamen. The arrow {B} −→ V exists by {B′} (c)−−→ {B}iV (f)−−→
Y.

�
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Reformulating the last lemma we get:

Corollary 35. The labelled category QtNaamen satisfies Axiom (M5).

So we have proved:

Theorem 36. QtNaamen is a closed model category. More precisely, let StNaamen
be the category whose objects are classes of sets, and such that for C,D ∈ ObStNaamen
there is an arrow C −→ D if and only if for all C ∈ C there exists D ∈ D such that
C ⊆ D.

Let C0 be the following colouring of the arrows of StNaamen. Label an arrow

{A} (c0)−−→ {B} if cardA+ℵ0 = cardB+ℵ0 and {A} (wc)−−−→ {B} if B\A is finite. Let
C0 ⊆ C be the minimal (with respect to inclusion) colouring of StNaamen satisfying
Quillen’s axioms of model categories (M0),(M1),(M2) and (M6).

Let QtNaamen be the full subcategory of StNaamen, whose objects are all those
X ∈ ObStNaamen such that

((

(c)

��

//

(wf)

��

X77

Then:

(1) QtNaamen is a closed model category.
(2) Every co-cofibrant object of StNaamen is in QtNaamen.

Part 2. Set-theoretic invariants

Every man is apt to form his notions of things difficult to be apprehended, or less familiar, from their analogy to things

which are more familiar. Thus, if a man bred to the seafaring life, ... should take it into his head to philosophize

concerning the faculties of the mind, it cannot be doubted, but he would draw his notions from the fabric of the ship,

and would find in the mind, sails, masts, rudder, and compass. – Thomas Reid, “An Inquiry into the Human

Mind”, 1764

3. introduction

We concluded the previous section with the proof that QtNaamen is a model cat-
egory for set theory. Our exposition was meant, among others, to convince that it is
not unreasonable to think of QtNaamen as the simplest model category for set the-
ory modelling the notions of finiteness, countability and (infinite) equi-cardinality.
From the purely category theoretic point of view QtNaamen is extremely simple
(arrows are unique whenever they exist, so — e.g. — all diagrams commute), but as
a model category the picture is slightly more complicated. On the one hand, most
basic tools of model categories (such as the loop and suspension functors) degen-
erate in QtNaamen, but — on the other hand — as a model category QtNaamen
does not seem to be such a trivial object (and the homotopy category associated
with it is — at least to us — a new set theoretic object).

From the homotopy theoretic point of view, given the axioms of model categories
and the set theoretic notions to be modelled the construction of QtNaamen is
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almost automatic. Therefore, from that viewpoint QtNaamen should be an almost
unavoidable (though somewhat degenerate) object. But, as far as we were able
to ascertain, QtNaamen (or any close relative thereof) is not known (under the
appropriate translation to set theoretic language, of course) to set theorists. On
the face of it, it could be that the reason QtNaamen was not discovered by neither
homotopy theorists nor set theorists is that it is too degenerate to be of interest.
The aim of this section is to show that this is, maybe, not entirely true. We
show that Shelah’s covering numbers — one of the main objects of interest in PCF
theory — discovered a century or so after Cantor’s introduction of the notions of
countability and cardinality, cannot be missed if one tries to study these notions
from the homotopy theoretic point of view. Technically, we prove:

Theorem 37. Let λ be any cardinal. Then

Lccard ({λ}) = cov(λ,ℵ1,ℵ1, 2).

where Lccard is the cofibrantly replaced left derived functor of the cardinality func-
tion (not functor (!)) card : QtNaamen→ On>.

The proof of Theorem 37 is, essentially, a triviality, but its formulation — at least
for those not fluent in model category jargon — is far from obvious. This part of
the paper is dedicated to a large extent to explaining the formulation of Theorem
37, and explaining — given the model category QtNaamen and the cardinality
function card : QtNaamen→ On> (where On> is the class of ordinal augmented
by a terminal object) — how to obtain the functor Lccard . We then show how
other covering numbers (such as Shelah’s revised power function) can be recovered.
This and similar constructions are discussed in Section 5.2.

It is intriguing that Shelah, in his book on Cardinal arithmetic, [21], and Kojman,
in his survey of Shelah’s PCF theory, [13], use algebraic topology as an analogy
to explain the ideology and the usefulness of this theory, Kojman writes, rather
directly that “This approach to cardinal arithmetic can be thought of as ’algebraic
set theory’ in analogy to algebraic topology” and Shelah, more by way of example,
mentions that: “... for a polyhedron v (number of vertices), e (number of edges) and
f (number of faces) are natural measures, whereas e+v+f is not, but from deeper
point of view [the homotopy-invariant Euler characteristic] v−e+f runs deeper than
all...”. Theorem 37 and its variants can be viewed as consolidating this analogy:
they show that (some constructs of) PCF theory have an actual interpretation in
terms of algebraic topology. But — to us — it is not clear whether this can be
pushed much further, whether this connection with algebraic topology runs any
deeper.

Of course, the covering numbers are not the only set theoretic notions that
one can recover in QtNaamen. In Proposition 12 we saw that QtNaamen models
finiteness, countability and equi-cardinality (at least to some extent). We slightly
enlarge the set theoretic dictionary of QtNaamen, giving some natural examples
and non-examples (of set theoretic notions that QtNaamen cannot capture — e.g.,
the power set of a set). Notions such as a cardinal being measurable (Lemma 44)
and intriguing possible connections with Jensen’s covering lemma are discussed in
Section 5.2.

We conclude the paper with some ideas for further investigation, emanating
mainly form problems we identified in our construction: can we overcome the de-
pendence of the derived functor of, say, cardinality on the choice of the model
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category (among equivalent model categories), can we find analogues for homotopy
theory constructs (homotopy groups, long exact sequences etc.) in QtNaamen de-
spite of it being “degenerate”, can we actually prove set theoretic statements using
QtNaamen (and the family of model structures QtNaamenκ) and not only recover
known concepts and definitions?

4. The expressive power of QtNaamen.

As already mentioned several times before, QtNaamen is a very simple model
category. Intuitively, QtNaamen should be much simpler than set theory. To
formulate this intuition somewhat more precisely, we observe that:

Lemma 38. Let V be the universe of set theory and σ a bijective class func-
tion on V. For a class X ⊆ V let σ̃(X) = {{σ(a) : a ∈ x} : x ∈ X}. Then
σ̃ : QtNaamen −→ QtNaamen is a bijective functor on QtNaamen. Moreover, σ̃
preserves the model structure of QtNaamen.

Proof. Because σ is a class function, if X is a class so is σ̃(X) (hence, σ̃ is indeed
a functor from QtNaamen to itself). The only non-trivial part is that σ̃ preserves
the model structure, which is an immediate corollary of Proposition 12. �

Observe that in ZFC, given a set S, any σ ∈ Sym(S) extends to a class-bijection
of V by setting σ(x) = x for x 6∈ S. Therefore, the last lemma proves that the
model structure on QtNaamen, while it must recognize the subset relation, does
not respect — in a strong sense — the membership relation. For example, for a set
X the set theoretic operation X 7→ {X} is not respected by QtNaamen, as can be
inferred from the existence of an automorphism exchanging {{∅}} with {{a}} (for
any set a).

Even more trivially, since for any set S we have {S} ←→ P(S), we see that
QtNaamen cannot distinguish {S} from the power set of S. Thus, despite of the fact
that QtNaamen was constructed specifically to model the notion of equi-cardinality,
it does so with limited success. Moreover, the notion of a set being a singleton is
also a notion unknown to QtNaamen, as shows the above example.

In order to extract meaningful information from the model category QtNaamen
we can — as is standard in mathematics — beside studying the structure of
QtNaamen itself, study functors (and other “natural” set theoretic functions) from
QtNaamen to other categories, and vice versa. The next, section, for exam-
ple, is dedicated to the study of the cardinality function (not functor) card :
QtNaamen −→ On>. In the present section we perform easier computations, show-
ing that by imposing a little extra “natural” set theoretic structure on QtNaamen,
more information can be obtained.

4.1. Ordinals. The first example we consider is more easily computed in StNaamen.
The computations performed in this sub-section can be readily adapted to QtNaamen
(with minor modifications), however, we were not able to find a natural set theoretic
interpretation of these computations in the setting of QtNaamen.

Consider Sets−, the full sub-category of StNaamen, whose objects are precisely
those objects of StNaamen which happen to be sets. Consider the class function
S 7→ S ∪ {S} defined on Sets− (in fact, restricted to the category Sets− this
is a functor). Indeed, an object of StNaamen is a set precisely if the operation
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S 7→ S ∪ {S} is defined (in which case, of course, S −→ S ∪ {S} is a morphism in
StNaamen, and therefore also in Sets−). Let us label those arrows by (s).

Observe that the function S 7→ S ∪ {S} on Sets− allows us to define transitive
sets, namely: a set S is transitive precisely when S −→ {S}, or equivalently, if

S∪{S} −→ S, i.e., when the arrow S
(s)−−→ S∪{S} is invertible. Indeed, S −→ {S} if

and only if s ⊆ S for all s ∈ S, if and only if S is transitive. Thus, S ∈ ObStNaamen

is an ordinal if and only if S
(s)−−→ S ∪ {S} −→ S −→ On, where On is the class

of ordinals. We do not know whether the class On, as an object of StNaamen
is definable (in some reasonable sense) in StNaamen, even when augmented by
the (s)-labelling. We point out however, that at least on the face of it, since
the membership relation is not recoverable in StNaamen, isolating the object On
in QtNaamen allows us only to identify those objects of QtNaamen all of whose
members are ordinals, but not necessarily ordinals themselves.

Note also that our (s)-labelling allows us only to identify arrows S −→ S ∪ {S}.
Given such an arrow, the object {S} can be recovered as the complement of S in
S ∪ {S}, i.e. it is the unique object whose direct limit (in StNaamen) with {S} is
S ∪{S} and whose inverse limit with S is ∅. Of course, the arrow {S} −→ S never
exists, as it would imply that S ⊆ s for some s ∈ S, so that s ∈ s contradicting the
regularity axiom of ZFC.

In addition, by Proposition 12, if S is an ordinal then ∅ (wc)−−−→ S if and only if

S ≤ ℵ0 and ∅ (c)−−→ S if and only if S ≤ ℵ1. So these two cardinals can also be
recovered in StNaamen (with the function S 7→ S ∪{S}), as the direct limits of the
classes of (wc) and (c)-arrows respectively. This is, of course, not surprising, since
StNaamen was constructed to model the notions of finiteness and countability.

Of course, an ordinal α is limit precisely when β∪{β} −→ β∪{β∪{β}}iα −→ >
for all β ∈ On. It is a cardinal, precisely when for any ordinal β, if {β} (c)−−→ {α}
then {α} (c)−−→ {β}, which can be written as ∅ −→ {α} i {β} (c)−−→ {α}. Finally,

α is a regular cardinal precisely when (it is a cardinal and) α
(wf)−−−→ {α}. To see

this last claim, recall that, by construction, α
(wf)−−−→ {α} if and only if {A} (c)−−→

{B} i α −→ {α} for all {A} (c)−−→ {B}. But for sets, {A} (c)−−→ {B} if and only if
cardA+ℵ0 = cardB+ℵ0. So the lifting property defining the (wf)-arrows assures
that for any B ⊆ α, if some A ⊆ B of the same (infinite) cardinality satisfies
{A} −→ α then {B} −→ α. But {B} −→ α implies that there exists β < α such
that B ⊆ β, so B is bounded in α. The other direction works in a similar way.

As explained above, the operation S 7→ S ∪ {S} is “external” to QtNaamen (or
StNaamen). As a side remark to this subsection we point out that some traces
of it can be recovered in a more “geometric” way within these labelled categories.
Consider, for example, the property A = {{a}} for some set a. It is easy to see
that if A is of this form then ∅ −→ Z −→ A implies that either ∅ ∼= Z or A ∼= Z.
Conversely, if any decomposition ∅ −→ Z −→ A is such that ∅ −→ Z is an
isomorphism or Z −→ A is an isomorphism then A = {{a}} for some set A. So we
define,

Definition 10. An arrow X −→ Y is indecomposable if whenever X −→ Z −→ Y
either X −→ Z is an isomorphism or Y −→ Z is an isomorphism.
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With this definition the above observation can be stated as: A is of the form
{{a}} for some set a if and only if ∅ −→ A is indecomposable. Note also that while
we do not know whether indecomposability can be expressed as a lifting property
it is obviously invariant under graph automorphisms of QtNaamen (or StNaamen),
and can therefore be thought of as an intrinsic property of these (labelled) cate-
gories.

It follows, for example, that with this in hand the property of A being isomorphic
to a singleton (i.e., A ∼= {a} for some set a) can be stated as: for all X,Y if for
all {{a}}, ∅ −→ {{a}} i X −→ Y then X −→ Y i A −→ >. It will suffice,
of course, to show that this statement is equivalent to A ∼= {

⋃
A}. By definition,

∅ −→ {{a}}iX −→ Y for all {{a}} is equivalent to the statement that
⋃
Y ⊆

⋃
X,

in particular — for any set A — ∅ −→ {{a}}i A −→ {
⋃
A} for all a. Therefore,

if for all X,Y the assumption that ∅ −→ {{a}} i X −→ Y for all a implies
that X −→ Y i A −→ > we can apply this with A = X and Y = {

⋃
A} to get

A −→ {
⋃
A} −→ A, as required. The other direction is obvious, since the definition

is invariant under changing A with an isomorphic object, and therefore, we may
assume that A is a singleton.

4.2. Cofinal and covering families. A class A is ⊆-cofinal in B if A is a sub-class
of B and for all b ∈ B there exists a ∈ A such that b ⊆ a. In that case we also say
that A covers B. By definition, this happens precisely when B −→ A. Since A is
a sub-class of B we automatically get A −→ B, so that A is cofinal in B precisely

when A is isomorphic to B, which happens if and only if A
(cwf)−−−−→ B. If B is a set,

the cofinality of B is the minimal cardinality of a ⊆-cofinal subset. In our notation,
this can be expressed as:

cof (B,⊆) = min{cardB′ : B′
(cwf)−−−−→ B}.

For a class B we have ∅ (c)−−→ B if and only if every element of B is at most

countable, and ∅ (wc)−−−→ B if and only if every element of B is finite. If S is a

set then ∅ (c)−−→ B
(wf)−−−→ {S} if and only if B covers [S]≤ℵ0 , i.e., if the set of

countable subsets of S is covered by B. In addition ∅ (c)−−→ [S]≤ℵ0
(f)−−→ {S} and

∅ (wc)−−−→ [S]<ℵ0
(wf)−−−→ {S}. Combining all of the above, we get that for a cardinal κ:

cov(κ,ℵ1,ℵ1, 2) = min{cardB′ : ∅ (c)−−→ B′
(wf)−−−→ {κ} } =

= inf{cardB′ : ∅ (c)−−→ B′ ← B′′
(wf)−−−→ {κ} }

where cov(κ,ℵ1,ℵ1, 2) is the minimal cardinality of a family of countable subsets
of κ covering [κ]≤ℵ0 (see Subsection 5.1 for more details). This shows that the
covering number cov(κ,ℵ1,ℵ1, 2) has a simple model categorical interpretation.
The main goal of this paper is to show that, in fact, the right-most formula in the
above equation is not only a simple translation of this set theoretic notion, but
arises naturally from a model categorical study of QtNaamen. It is the cofibrantly
replaced left-derived functor of the cardinality function from QtNaamen to On>.
This will be explained in detail in the next section.

4.3. Some non-set theoretic concepts. We conclude with a few simple non-set
theoretic statements that can be expressed in QtNaamen. Consider, for example,
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N a monster model of some first order theory T . For a cardinal β let Nβ be the set

of all elementary sub-models of N of cardinality at most β. Then Nβ
(wf)−−−→ {N}

is the statement that the Lowehnheim-Skolem number of T is at most β. Namely,
it states that every subset of N of cardinality at most β is contained in a model of

size at most β. In particular, if T is countable then ∅ (c)−−→ Nℵ0
(wf)−−−→ {N} is the

statement that every countable set is contained in a countable model. Of course,
the objects Nβ do not seem to be endemic to the model categorical setup.

Recall that if X is a topological space, then a set A ⊆ X is closed if and only if
acc (A) ⊆ A, namely, if A contains all its accumulation points. Thus, a topological
space can be given (instead of giving a collection of closed sets) by giving, to any
subset S of X the collection acc (S). Therefore, a topological space X gives rise
to a functor acc : QtNaamen −→ Sets− by S 7→ {acc (S ∩ X) : S ∈ S}, and the
topology on X can be recovered from the functor acc only — namely, this gives a
purely category theoretic definition of the topology.

5. Functors and derived functors.

The idea of “forgetting structure” is, of course, a central theme in mathemat-
ics. In homotopy theory, it is common to forget information that is not homotopy
invariant. In model categories, Quillen’s axiomatization of homotopy theory, ho-
motopy invariance is defined with the help of the homotopy category HoC obtained
from the model category C by formally inverting all weak equivalence so that weak
equivalences, and only weak equivalences, become isomorphisms in HoC. It turns
out that constructions performed in the setting of model categories can sometimes
be well controlled only by a process of forgetting structure known as the cofibrant
replacement : first we restrict to the sub-category of cofibrations (i.e., by forgetting
all arrows that are not (c)-labelled). Then — if we want the resulting category to
have an initial object — we have to restrict further to the category of cofibrant

objects (namely those objects X such that ∅ (c)−−→ X), and whose only morphisms
are cofibrations.

Observe that by axiom (M2), given a model category C any object X is iso-
morphic in the homotopy category HoC to a cofibrant object, X(wf) such that

∅ (c)−−→ X(wf)
(wf)−−−→ X. Thus, from the homotopy category point of view, every

object can be replaced with a cofibrant object, a process known as the cofibrant
replacement.

Another important means of forgetting structure in model categories is that of
deriving functors. Given a functor F the (left) derived functor LF is the homotopy
invariant functor “closest” to F (from the left). Here “closest to F” is interpreted
as being universal among the homotopy invariant functors such that there exists a
natural transformation (also known as morphism of functors) G ⇒ F , i.e., if LF
is the derived functor of F there exists a natural transformation LF ⇒ F and
any natural transformation G ⇒ F from a homotopy invariant functor G, factors
uniquely via LF ⇒ F .

A functor F from a model category C is homotopy invariant if it factors trough
HoC. In a posetal model category, i.e., in any category C where arrows between
any two objects are unique, whenever they exist, the definition of the left derived
functor is extremely simple:
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Definition 11. Let C be a posetal model category, and C′ any posetal category,
γ : C −→ HoC the localisation map. Given a functor F : C → C′ the left derived
functor of F is given by

LγF (X ′) = inf{F (X) : X ′ 6HoC γ(X), X ∈ ObC}.

In particular, the left derived functor exists if and only if the right hand side is
well-defined.

Observe that the definition of a derived functor F : C −→ C′ depends on C
being a model category only in as much as the homotopy category HoC is the
category through which we want to factor (an approximation) of F . In general,
given a category D and a functor γ : C −→ D, we can still (left) derive any functor
F : C −→ C′ with respect to the functor γ. If all categories involved are posetal,
the formula in the above definition still gives the left-derived functor with respect
to γ. Thus, for example. if C′ is well ordered or if C′ is Dedekind complete then
any function F : C −→ C′ can be derived from the left.

Let On> be the posetal category of ordinals (i.e., given ordinals α, β there is
an arrow α −→ β if and only if α ≤ β) augmented by a terminal object >. The
following definition sums up the discussion of the previous paragraphs, with an
extra edge:

Definition 12. Let C be a posetal model category. For a function F : C −→ On>

we let the cofibrantly replaced left derived functor of F be:

LcF (X) = min

F (Y ) :

X1 X3 Xn
// Y

X

>>

X2

(w)aa ==

· · ·

(w)aa ==

⊥
(c)

OO


where the minimum is taken over all finite sequences of the same form.

Observe that given X,Y ∈ ObC a sequence of the form

(�) X −→ X1
(w)←−− X2 −→ X3

(w)←−− . . . −→ Xn −→ Y

exists for some n ∈ N if an only if there exists g ∈ MorHoC such that X
g−→ Y .

Thus, we can write:

(♣) LcF (X) = min{F (Y ) : X −→h Y,⊥
(c)−−→ Y },

where X −→h Y means that that there is an arrow from X to Y in the homotopy
category. Using this notation we immediately see that LcF is a homotopy invariant
(because it factors through the homotopy category) functor (because X −→ Y
implies that LcF (X) ≥ LcF (Y )) depending only on the values F takes on cofibrant
objects.

Note that if F : C −→ On> is a functor then for any X ∈ ObC, letting

⊥ (c)−−→ X(wf)
(wf)−−−→ X we see that F (X(wf)) ≤ F (X), but LcF is functorial so

LcF (X(wf)) ≤ LcF (X). By what we have just said X(wf) −→ X implies that
LcF (X(wf)) ≥ LcF (X), so — in the case F is a functor:

LcF (X) = min{F (Y ) : X −→h Y } = Lγ ◦ γ(X).

Thus, the cofibrantly replaced left-derived functor generalises the definition of (left)
derived functors (but the two definitions need not agree if F is not a functor).
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Remark 39. Let C, C′ be equivalent model categories, witnessed by the functors
F : C→ C′ and G : C′ → C. Assume that f : C→ On> is any function, then there
is no reason to expect that Lcf(G(Y ))) = Lc(f ◦ G)(Y ). This is, of course, not
the case if f is a functor. In other words, the price for deriving arbitrary functions
is that the process is not invariant under equivalence of model categories. This is
discussed further in Section 6.

5.1. The covering number of ℵω as a value of a derived functor. In this
sub-section we prove the main result of this paper, we show that the covering
number of ℵω is the value of the cofibrantly replaced left-derived functor of the
cardinality function card : QtNaamen −→ On>. Cardinality is certainly one of the
most natural functions anyone studying set theory is bound to run into. Possibly,
it is the simplest set theoretic function not arising directly from purely logical
operations (in the way the union and intersection operations do). To adapt the
notion of cardinality to our setting we define a function card : QtNaamen −→ On>

such that X 7−→ card (X) if X is a set and X 7−→ > otherwise. Observe that
cardinality is not a functor on QtNaamen. Indeed {X} −→ P(X) −→ {X} but
card ({X}) = 1 < card (P(X)) > 1 for all non-empty X. Similarly,

{{•1}, {•1, •2}}
(wcf)−−−−→ {{•1, •2}}

is an isomorphism but 2 = card {{•1}, {•1, •2}} > card {{•1, •2}} = 1 are non-
isomorphic.

However, cardinality is a natural function and the homotopy ideology discussed
above suggests (despite of the fact it is not a functor) that we try and find a
homotopy invariant approximation to cardinality. As discussed above, any function
from a model category to On> can be derived. Unfortunately, as we will see later,
deriving the cardinality function (according to the formula in Definition 11) gives
us an uninteresting result. So we take the cofibrantly replaced left derived functor
of cardinality, as in Definition 12. The resulting function, Lccard , can be viewed,
as homotopy theory yoga suggests, as the homotopy invariant version of cardinality.

Interestingly, the homotopy invariant version of cardinality has a purely set the-
oretic interpretation (Lccard ({ℵα}) = cov(ℵα,ℵ1,ℵ1, 2) — where cov(ℵα,ℵ1,ℵ1, 2)
is the covering number to be discussed in detail below). The construction of this
function uses fairly little set theory: the only notions needed in an essential way to
construct it are A ⊆ B, finiteness, countability and infinite equi-cardinality. Thus,
Lccard will remain meaningful in any set theory where those notions keep their
meaning. More importantly, Lccard is considerably tamer, say, than the power
function, and can be effectively bounded in ZFC (but these are deep results in PCF
theory, and we do not claim that they can be identified, let alone proved, using
homotopy theoretic tools). For example, Shelah’s famous inequality

(ℵα)ℵ0 6 cov(ℵα,ℵ1,ℵ1, 2) + 2ℵ0

can be interpreted (paraphrasing Shelah) as a decomposition of (ℵα)ℵ0 into a
“noise” component (wild and highly independent on ZFC) and a “homotopy in-
variant” part, which can be well understood within ZFC.

Another curious feature of the function Lccard is that it is non-trivial only on
singular cardinals. Thus, from a homotopy theoretic view point singular cardinals
present themselves almost immediately as a natural object of interest in set theory
(compare with, [14], describing the early and spectacular appearance of singular
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cardinals on the mathematical stage, and their immediate disappearance for several
decades). We now proceed with a detailed exposition of the discussion of the last
paragraphs.

By definition, the covering number

cov(λ, κ, θ, σ)

is the least size of a family X ⊆ [λ]<κ of subsets of λ of cardinality less than κ,
such that every subset of λ of cardinality less than θ, lies in a union of less than σ
subsets in X.

Theorem 40. (the covering number as a derived functor). For any cardinal λ

Lccard ({λ}) = cov(λ,ℵ1,ℵ1, 2)

Proof. First, assume that Y is a covering family for λ witnessing cov(λ,ℵ1,ℵ1, 2) =

κ. Then, by definition of the covering number ∅ (c)−−→ Y. We claim that Y (w)−−→ {λ},
which will prove Lccard (λ) ≤ κ. By Proposition 12 we only have to show that any
countable subset of λ is contained in an element of Y, which is merely the definition
of Y being a covering family. To prove the other inequality, observe that:

Claim I: If X −→h Y in QtNaamen, with X := X0,X1, . . . ,Xn =: Y witnessing
it (as in (�)) then for every i ≤ n, every countable subset L with {L} −→ X is
contained, up to finitely many elements, in some {X} −→ Xi.

Proof. For X0 there is nothing to prove, and for X1 this follows from the definition

of X −→ X1. For X2
(w)−−→ X1 this is a special case of Proposition 12, and as the

condition is transitive, induction gives this observation. �Claim I

The proof of the theorem now follows from the following:

Claim II: Let ∅ (c)−−→ Y be such that {L} −→∗ Y for every countable set, L ⊆ λ.
Then there exists a covering family Z of λ whose cardinality is at most that of Y.

Proof. Let Y0 be the inverse limit of Y and {λ}. Then cardY0 ≤ cardY (by

definition of the inverse limit in QtNaamen), and ∅ (c)−−→ Y0. By assumption,

∅ (c)−−→ Y0
(wc)−−−→ λ(wf), where ∅ (c)−−→ λ(wf)

(wf)−−−→ {λ}. By Lemma 29 there is a set
Λ and some Y ′ such that the following diagram is true in StNaamen:

Y0

(wc)

��

Y ′oo (wf) // {Λ}

(wc)

}}

∅
(c)

66

(c)

==

λ(wf) (wf) // {λ}

Since QtNaamen is a full sub-category, to show that this diagram is also true
in QtNaamen it suffices to verify that all objects in the diagram are objects in
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QtNaamen. This amounts to checking that {λ} and Y ′ are in QtNaamen, which is
obvious since all singleton sets and all cofibrant objects are.

Let Y ′′ be the inverse limit of Y0 and {Λ}, by definition this is simply {y ∩ Λ :

y ∈ Y0}. By definition of the inverse limit we get Y ′ −→ Y ′′. Since Y ′ (wf)−−−→ {Λ}
it follows (e.g., by Proposition 12) that Y ′′ (wf)−−−→ {Λ}. Since all elements in Y ′ are
countable so are all the elements in Y ′′. By Proposition 12 these two facts together
mean precisely that Y ′′ is a covering family for Λ.

Finally, since {Λ} (wc)−−−→ {λ} we get (again, using Proposition 12), that λ \ Λ is
a finite set, say, C. Let Z := {y ∪ C : y ∈ Y ′′}. Then Z is a cofibrant object, and
is therefore an object of QtNaamen. All elements in Z are countable, and every
countable subset of λ is contained in an element of Z. So Z is a covering family
for λ. Observe that cardZ ≤ cardY ′′ ≤ cardY0 = cardY. Thus, Z witnesses that
Lccard ≥ cov(λ,ℵ1,ℵ1, 2). �Claim II

This completes the proof of the theorem. �

We conclude with a summary, in our notation, of some of Shelah’s results con-
cerning PCF bounds:

Theorem 41 (Shelah). The following inequalities are true in ZFC:

(i) if ℵα is regular cardinal, then

Lc({ℵα}) = Lc(2ℵα) = cov(ℵα,ℵ1,ℵ1, 2) = ℵα

(ii) Lc({ℵω}) = Lc(2ℵω ) = cov(ℵω,ℵ1,ℵ1, 2) < ℵω4

(iii) If ℵδ is a singular cardinal such that δ < ℵδ, then Lc({ℵδ}) = Lc(2ℵδ) =
cov(ℵδ, card δ+, card δ+, 2) < ℵcard δ+4

(iv) (Shelah’s Revised GCH). If θ is a strong limit uncountable cardinal, λ > θ,
κ0 6 κ < θ then λ[κ] = λ, where λ[κ] is Shelah’s revised power function (see
(†) below).

Proof. (i) is immediate by induction; (ii) is a particular case of (iii); (iii) is [1,
Theorem 7.2]; (iv) is [1, Theorem 8.1]

Note that we do not say anything about the fixed points α = ℵα of ℵ•-function.

5.2. Other model categories and covering numbers. Simple variations on
the theme leading us to “rediscover” the covering number cov(λ,ℵ1,ℵ1, 2) result
in other covering numbers. Since most of the details are quite similar, we will be
brief.

For an object A of QtNaamen, let QtNaamenA be the full sub-category of ar-
rows A −→ X with the induced model structure, i.e., the full subcategory of
QtNaamen consisting of those objects X such that A −→ X with the labelling
induced from QtNaamen. This is, trivially, a model category. Applying Definition
11 for QtNaamenA and the function card : QtNaamenA −→ OnT to obtain the
functor

LQt
A

c card : QtNaamenA −→ On>,

the cofibrantly replaced left-derived functor of cardinality (on the model category

QtNaamenA). We obtain:
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Theorem 42. Let β ≤ α be ordinals. Let ℵ∗β := [ℵβ ]<ℵβ . Then, with the above
notation, if ℵβ is regular then

LQt
ℵ∗β

c card ({ℵα}) = cov(ℵα,ℵβ ,ℵβ , 2).

In particular, if ℵα < ℵℵα and ℵβ = (cof ℵα)+ then

LQt
ℵ∗β

c card ({ℵα}) = ppcof ℵα(ℵα) = pp(ℵα)

is the pseudopower of ℵα.

Proof. We remark, first, that the pseudopower pp(ℵα) is defined in [20, Def. 5.1]
and Theorem 5.7[ibid.] states that, in our notation, pp(ℵα) = cov(ℵα,ℵα, cof ℵ+

α , 2).
It follows immediately from the definition of QtNaamen that for every set S and
every cardinal λ the set [S]<λ is an object of QtNaamen. So ℵ∗β ∈ ObQtNaamen

and the formulation of the theorem makes sense. Now, let ⊥β :=⊥Qt
ℵ∗β

be the ini-

tial object of Qtℵ
∗
β , namely ⊥β= ℵ∗β . Now, assume that Y is a covering family

witnessing that cov(ℵα,ℵβ ,ℵβ , 2) = κ. Then by definition of the covering number

⊥β−→ Y. Moreover, by Proposition 12, Y is a cofibrant object, i.e., ⊥β
(c)−−→ Y

(in the notation of Proposition 12, given any Y ∈ Y take n = 2, B0 ∈⊥β any
element such that cardB0 = cardY , B1 = B0 ∪ Y and B2 = Y ). By Axiom
M4, the product of two weak equivalences is a weak equivalence, and we have that

{y ∩ ℵα : y ∈ Y} = Y × {ℵα}
(w)−−→ ℵα. So, in the notation of (�), taking n = 2,

X = X1 = {ℵα} and X2 = Y × {ℵα} we get

{ℵα} −→ {ℵα}
(w)←−− Y × {ℵα} −→ Y

(c)←−−⊥β .

Thus, LQt
ℵ∗β

c card ({ℵα}) ≤ κ. So we now turn to the proof of the other inequality.
Let {ℵα} −→h Y for some cofibrant object Y of minimal cardinality. We first prove:

Claim I Let L ⊆ ℵα be any set with cardL < ℵβ . Then there exists some L′ ⊆ L
such that L \ L′ is finite and such that {L′} −→ Y. We denote this property
[ℵα]<ℵβ −→∗ Y.

Proof. By Claim I of the previous theorem we know that every countable subset of
L is contained, up to a finite set, in some element of Y. That is, if L0 −→ Lc (where

∅ (c)−−→ Lc
(wf)−−−→ {L}) then L0 −→∗ Y. Letting Y0 be the inverse limit of Y and L

this means that Y0
(wc)−−−→ Lc. By Lemma 29 (or, rather, its proof) L′ satisfying the

requirements can be found. �Claim I

To conclude the proof of the theorem we need one additional combinatorial fact,
which is, essentially, Lemma 29 (or a degenerate version of the remark following it):

Claim II Assume that [ℵα]<ℵβ −→∗ Y. Then there is a finite set B such that

ℵ<ℵβα −→ YB , where YB is the set {Y ∪B : Y ∈ Y}.
So let B be a finite set as in Claim II, then YB covers ℵℵβα , and cardYB = cardY.

Because B is finite and Y ∈ ObQtNaamen it follows immediately from the definition
that YB ∈ ObQtNaamen, with the desired conclusion. �
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The construction of the co-slice category, QtNaamenA, for an object A is stan-
dard in category theory. We proceed now to a slightly different construction, to our
taste quite natural from the set theoretic point of view, but not entirely obvious
from on the category theoretic side:

Let X be a class of sets, fix a (regular) cardinal κ and denote
⋃
<κX := {

⋃
S :

S ⊆ X, cardS < κ}. Call a class X of sets κ-directed if
⋃
<κX −→ X, namely

if any collection of less than κ members of X has a common upper bound (with
respect to ⊆) in X. Let StNaamenκ be the full subcategory of StNaamen consisting
of κ-directed classes.

Let StNaamen+
κ be a category that has the same objects as QtNaamen andX −→

Y in StNaamen+
κ if and only if

⋃
<κX −→

⋃
<κ Y . Given X ∈ ObStNaamen+

κ

denote F (X) :=
⋃
<κX. It is clear that F : StNaamen+

κ → StNaamenκ is a

functor. Moreover the inclusion mapping G : StNaamenκ → StNaamen+
κ given

by G(X) = X is a functor (as for any X,Y ∈ ObStNaamenκ if X −→ Y then⋃
<κX −→

⋃
<κ Y ). By definition, for X ∈ ObStNaamen, X ←→

⋃
<κX, so the

functors F and G show that StNaamenκ is equivalent to StNaamen+
κ .

It is easy to check that for regular κ the category StNaamenκ equipped with the
following labelling satisfies Quillen’s axioms (M1)-(M4) and (M6):

Definition 13. (1) X −→ Y iff ∀x ∈ X∃y ∈ Y x ⊆ y
(2) X

(wc)−−−→ Y iff ∀y ∈ Y ∃x ∈ X (card (y \ x) < κ) (and X −→ Y )

(3) X
(c)−−→ Y iff ∀x ∈ X∃y ∈ Y (card y 6 cardx+ κ) (and X −→ Y )

(4) X
(f)−−→ Y iff ∀x ∈ X∀y′ ⊆ y ∈ Y ∃x′ ∈ X(card y′ < κ =⇒ x ∪ y′ ⊆ x′)

(and X −→ Y )

(5) X
(wf)−−−→ Y iff ∀x ∈ X∀y′ ⊆ y ∈ Y ∃x′ ∈ X(card y′ 6 cardx + κ =⇒ y′ ⊆

x′) (and X −→ Y )

(6) X
(w)−−→ Y iff ∀x ∈ X∀y′ ⊆ y ∈ Y ∃x′ ∈ Xcard (y′ \ x′) < κ) (and X −→ Y )

Remark 43. Observe that X
(wc)−−−→ Y (X

(wf)−−−→ Y ) if and only if X
(c)−−→ Y (X

(f)−−→
Y ) and X

(w)−−→ Y . Moreover, X
(w)−−→ Y if and only if there exists Z such that

X
(wc)−−−→ Z

(wf)−−−→ Y .

To turn StNaamenκ into a model category, as with StNaamen, let QtNaamenκ be
the full sub-category of cute objects of StNaamenκ, namely, those objects satisfying
the diagram of Figure 15 (with respect to the labelling in the above definition).

Now one defines, for X ∈ ObStNaamenκ, X̃ to be the product of all cute Y ∈
ObStNaamenκ such that X −→ Y (we leave it as an exercise to verify that this is

indeed an object in StNaamenκ). It is then easy to verify that X̃ is cute and that if

∅ (c)−−→ X then X = X̃ and that {̃S} = {S} for any set S. So QtNaamenκ satisfies
Axiom (M0) (inverse limits are simply products, and the direct limit {X1, . . . , Xk}
is simply Σ̃ki=1Xi, where ΣXi is the limit of the Xi in StNaamenκ). That the
remaining axioms are satisfied in QtNaamenκ can be proved precisely as in the first
part of this paper, with the obvious adaptations (replacing “countable” there with
“of cardinality at most κ” and “finite” there with “of cardinality smaller than κ”,
and see also Remark 30 for the fixed point argument).
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Recall that, as pointed out above, StNaamen+
κ is equivalent to StNaamenκ. This

equivalence can be used to label StNaamen+
κ uniquely to make the two categories

equivalent as labelled categories. Since the definition of QtNaamenκ is given strictly
in terms of the labelling of StNaamenκ, we obtain a full sub-category, QtNaamen+

κ ,
of StNaamen+

κ , equivalent as a labelled category to QtNaamenκ (QtNaamen+
κ

is both the image of QtNaamenκ under the functor mapping StNaamenκ into
StNaamen+

κ and the full sub-category of cute objects of StNaamen+
κ as a labelled

category). Thus, QtNaamen+
κ is a model category equivalent to QtNaamenκ.

As QtNaamenκ is equivalent (as a model categories) to QtNaamen+
κ so are their

associated homotopy categories. Computing the homotopy category of QtNaamenκ
is rather simple: objects are <κ-directed classes with arrows X −→ Y if and only if
for all x ∈ X there exists y ∈ Y such that card (x\y) < κ (this follows immediately
Definition 13 and the fact that HoQtNaamen+

κ is obtained by inverting all (w)-
arrows in QtNaamen+

κ ).
It is now straightforward to verify that the left derived functor of card : QtNaamen+

κ −→
On> is Shelah’s revisited power function:

(†) Lccard ({λ}) = λ[κ] := cov(λ, κ+, κ+, κ).

Indeed, cov(λ,∆, θ, σ) is the least size of a family X ⊆ [λ]<∆, such that every subset
of λ of cardinality smaller than θ, lies in a union of less than σ subsets in X. In our
notation, taking ∆ = κ+ = θ and σ = κ, the condition on the familyX can be stated
as: X −→ [λ]≤κ and [λ]≤κ −→

⋃
<κX. Now, the first of these conditions is precisely

∅ (c)−−→ X −→ {λ}, whereas the second condition is
⋃
≤κX ←− Y

(wf)−−−→ {λ}
for some Y . But in StNaamen+

κ (and therefore in QtNaamen+
κ ),

⋃
<κX ←→ X.

Therefore, this last condition is equivalent to X ←− Y
(wf)−−−→ {λ}. Combining

everything together we get that cov(λ, κ+, κ+, κ) ≥ Lccard ({λ}). The proof of
the other direction is similar (modulo the obvious adaptations) to the proof of the
analogous fact in Theorem 40.

The model category QtNaamen+
κ allows us to formulate quite easily the notion

of the cardinal κ being (non) measurable. Recall that a cardinal κ is measurable if
it is uncountable and admits a k-complete non-principal ultrafilter, or, equivalently,
a 0-1 valued probability countably additive measure such that every subset is mea-
surable. Such an ultrafilter exists on the cardinal κ = ω, as any filter is ω-complete.
We prove that:

Lemma 44. The following are equivalent for a regular cardinal κ > ω:

(1) κ is not measurable.

(2) For all X ∈ ObQtNaamen+
κ if X

(i)−→ {κ} then X
(w)−−→ {κ}.

(3) X
(i)−→ Y

(c)←−−⊥ implies X
(wc)−−−→ Y .

(4) In HoQtNaamen+
κ if X

(i)−→ Y then Y −→ X for all X,Y .

where X
(i)−→ Y means that X −→ Y is an indecomposable arrow.

Proof. First, we observe that ifX ∈ ObStNaamen+
κ and X̄ =

⋃
<κX then X̄ ←→ X

(in StNaamen+
κ ). In particular, X ∈ ObQtNaamen+

κ if and only if X̄ is. Note that
if X ∈ ObStNaamen+

κ and X is a non-empty set then X̄ is a κ-complete ideal on⋃
X. Indeed, it is closed under unions of size less than κ, and by definition X̄ is

downward closed.
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Thus, if X ∈ ObStNaamen+
κ then the statement X −→ {κ} is equivalent to

X̄ −→ {κ} and since {
⋃
X} ∈ QtNaamen+

κ we get X −→ {
⋃
X} −→ {κ}. If,

in addition, X
(i)−→ {κ} then either {

⋃
X} ↔ X or

⋃
X = κ. But if

⋃
X 6= κ

then X −→ {κ} is not indecomposable (take X ∪ {y} for any y ∈ {κ} \
⋃
X}). So

X
(i)−→ {κ} is equivalent to X̄ being a maximal ideal on κ which is also κ-complete.
It remains, therefore, to ascertain when is such an ideal principal. On the one

hand, it is obvious that if X is a maximal principal (κ-complete) ideal on λ then

X
(wc)−−−→ {κ}. Now assume that X is a maximal ideal on {κ} which is κ-complete.

Then X −→ {κ}, which is, by Definition 13, equivalent to X
(c)−−→ {κ}, and assume

that X
(w)−−→ {κ}. Then X

(wc)−−−→ {κ}, which — by definition — means some x ∈ X
satisfies card (κ \ x) < κ, and since X is k-complete this means that

⋃
X 6= {κ} (if

it were, then already a small union would cover everything). Maximality implies
that in that case X is principal.

The above shows the equivalence of (1) and (2) above, as well as (3)⇒ (1). So
it remains to prove (2) ⇒ (3). Indeed, assume that X,Y are as in (3). We may
assume that X = X̄. We may also assume that there exists some y ∈ Y such

that card (y) = κ (otherwise X
(wc)−−−→ Y is automatic from Definition 13). So fix

any y ∈ Y . It will suffice to show that Xy := {x ∈ X : x ⊆ y} is a maximal
k-complete ideal on y. This will be enough since then, by (2) this ideal is principal,
and as y ∈ Y was arbitrary of cardinality κ, we will be done, by Definition 13. So
it remains to show that Xy is a maximal ideal on y. That is it is a k-complete
ideal is proved exactly as above. So we only have to verify its maximality, which is
immediate from the indecomposability of the arrow X −→ Y .

To see the equivalence with (4) we may assume that X and Y are cofibrant.

Further, note that X
(i)−→h Y if there exists a sequence as in (�) in which all but

one of the arrows is a (w)-arrow, and this arrow is indecomposable. But, if

⊥ (c)−−→ X
(w)−−→ X1

(w)←−− X2
(w)−−→ X3

(w)←−− . . . Xi
(i)−→ Xi+1

(w)−−→ Xn −→ Y
(c)←−−⊥

then in HoQtNaamenκ the object X is isomorphic to Xi and Y is isomorphic to
Xi+1 and Xi+1 is cofibrant. Thus, (3) ⇐⇒ (4). �

We point out that, since QtNaamen+
κ is a closed model category (i.e., it satisfies

axiom (M6)), condition (3) above can be expressed as a lifting property:

⊥ (c)−−→ Y ⇒ X
(i)−→ Y iX ′

(f)−−→ Y ′.

Thus, the notion of κ being a (non)-measurable cardinal has an essentially model
category-theoretic interpretation.

Remark 45. (1) It is well known (and easy to prove) that if there is no mea-
surable cardinal below κ then κ is measurable if and only if it admits a
σ-complete ultrafilter, in other words, a countably additive measure such
that every subset has measure either 0 or 1. Thus, the statement “there is
no measurable cardinal” is equivalent to the statement “the only indecom-
posable arrows in StNaamenℵ1 are (wc)-arrows”.

(2) The previous lemma also gives a definition of strongly compact cardinals.
Recall that an uncountable cardinal, κ, is strongly compact if every κ-
complete filter can be extended to a κ-complete ultra-filter (so κ-compact
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cardinals are certainly measurable). The proof of (4) of the previous lemma
shows that κ is strongly compact if and only if every morphism X −→ Y

in HoQtNaamen+
κ decomposes into X −→ Y ′

(i)−→ Y with Y ′ −→ Y not an
isomorphism (provided X −→ Y is not an isomorphism).

The following gives another intriguing set theoretic angle to the model category
QtNaamen+

κ . Let L denote, as usual, Gödel’s constructible model of set theory.
Recall, e.g., Theorem [12, Theorem 13.9], that L is the least transitive class (i.e.,
L −→ {L}) closed under all Gödel operations, and universal in the sense that

X ⊆ L implies X ⊆ Y ∈ L. Let StNaamenL be the full sub-category of StNaamen
whose objects are sub-classes of L definable within L. In other words, viewing L
as a model of ZFC and ignoring the ambient universe V , we let ObStNaamenL be
all sub-classes of L. Note that as L itself is a class element in ObStNaamenL is, in
fact an object of StNaamen.

Obviously, by the remark concluding the previous paragraph, since L |= ZFC, we

can perform the construction of the first part of the paper in StNaamenL. However,
since notions of countability and (infinite) equicardinality are not absolute, the
labelling obtained in this way will, in general, not coincide with the labelling induced
on StNaamenL from StNaamen. Indeed, the labelling induced on StNaamenL from
StNaamen will not (in general) satisfy axiom (M2) (whereas, the the labelling
following the construction does).

In the above, it seems clear that the labelling induced on StNaamenL from
StNaamen is not the “right” one. The situation is less clear when trying to give
sub-categories of StNaamenL a model structure. As mentioned above, carrying out
the construction we can obtain QtNaamenL and the associated model categories
QtNaamen+

κ (L) (where κ is a cardinal in L). But it seems that under certain
set-theoretic assumptions other model structures can also be constructed.

Let κ be a (regular) cardinal in V . Let QtNaamen+
κ (L) be the full labelled

sub-category of QtNaamen+
κ whose objects are also in ObStNaamenL. It is not

hard to check that QtNaamen+
κ (L) is closed under (small) limits, and that, being

a full sub-category of QtNaamen+
κ it also satisfies (M1) and (M3)-(M6) (though

(M6) requires a small calculation). Recall that the (M2)-decomposition of each
arrow in QtNaamen+

κ is unique (up to QtNaamen+
κ -isomorphism), so in order

to check whether QtNaamen+
κ (L) satisfies (M2) we have to show that if either

X
(c)−−→ Z

(wf)−−−→ Y or X
(wc)−−−→ Z

(f)−−→ Y with X,Y ∈ ObQtNaamen+
κ (L) then Z is

isomorphic to an element in ObQtNaamen+
κ (L). Now, recall that, by definition Z

is the class of all z ⊆ y ∈ Y such that card z ≤ cardx+ κ for some x ∈ X, or Z is
the class of all z ⊆ y ∈ Y such that card (z \ x) < κ for some x ∈ X. Observe that,
since X and Y are definable within L so is the class ZL := Z∩L of all constructible
members of Z. Thus, it will suffice to show that ZL ←→ Z. Of course, in general,
there is no reason for this to be true. But if κ > ℵ1 then this statement is equivalent
to the conclusion of Jensen’s covering lemma (for κ).

Thus, e.g., if 0# does not exist and κ > ℵ1 then QtNaamen+
κ (L) is a model

category. It is an easy exercise to check that there is no cardinal λ ∈ L such that
QtNaamen+

κ (L) is precisely the model category QtNaamen+
λ constructed within L.

We do not know whether QtNaamen+
κ (L) could be equivalent to QtNaamen+

λ for
some λ (with the latter constructed within L).
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6. Suggestions for future research

Among the possible objections to the work presented in the present paper there
are two which we view as most intriguing. These are the coherence and usefulness
of work.

The problem which we call coherence is that, as we already hinted above, if
f : C −→ On> is any function on the posetal model category C, then the value of
the (cofibrantly replaced) left-derived functor of f is not necessarily invariant under
the equivalence of model categories. Namely, if C′ ≡ C (as model categories) and
F : C′ → C is a witness (of one direction of) this equivalence then Lc(F ◦ f)(x) is
not necessarily the same as Lcf(F (x)).

This is most obvious in our calculation of Shelah’s revised power function. In
deriving the cardinality function on QtNaamen+

κ we obtain the desired result, but
if we tried doing the same on the equivalent model category QtNaamenκ, we would
have obtained a different answer. The same situation would have occurred if trying
to derive cardinality in QtNaamen we worked with the (equivalent) full subcategory
of “downward closed” objects.

Because the derivation of a function f : C −→ On> on a posetal model category
can be viewed as a minimization operation (of f(x) over all x′ ∈ ObC homotopy
equivalent to x) our (informal) approach to this problem was that the “correct”
derivation is the one giving the minimal results, i.e., if C′ ≡ C witnessed by the
functor F : C −→ C′ which is injective on ObC then the “correct” function to derive
is (f ◦ F ), rather than F . The first problem for future research is, therefore

Problem 46. Let C be a posetal model category, f : C→ OnT any function. Find
a functor L̃ff : C −→ On> such that

(1) L̃f (x) ≤ Lf (x) for all x.
(2) Lf is not trivial (unless, say, L(f◦F ) is trivial for every functor F : C′ → C

with C′ ≡ C).

(3) L̃f is invariant under the equivalence of model categories (in the sense
explained above).

In other words, extend the notion of the left derived functor of a functor f : C −→
On> to a larger class of function with the result as invariant as possible under
equivalence of model categories.

The second objection to the present work relates to its usefulness. Here is a list
of problems, a positive answer to some of which could indicate of the usefulness of
the new tools developed in the present work:

Problem 47. Are there more combinatorial concepts that can be captured by our
suggested formalism, e.g., closed unbounded sets, stationary sets, Fodor’s lemma,
diamond, square etc..

As a somewhat speculative special case of the previous problem consider the fact
that there are no measurable cardinals in L. As we have seen in Remark 45 the
statement “there are no measurable cardinals” can be restated in our geometric
language. Thus it is natural to ask:

Problem 48. Can it be proved using (mainly) the language of model categories
that there are no measurable cardinals in L. In other words, can an analogue of
Scott’s theorem [18] stating that if there are measurable cardinals then V 6= L be
proved using our geometric language?
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As we do not have any “geometric” characterisation of L (unlike, e.g., the set
theoretic characterisation of L being the smallest inner model, i.e., the smallest
submodel of V containing all ordinals, or the smallest transitive universal class
closed under Gödel operations), the above question is somewhat speculative. As in
our treatment of ordinals in Section 4.1, it seems reasonable to use some auxiliary
notions such as naming On ∈ ObStNaamen to address this problem.

Problem 49. Apparently, given a model structure on a category C, the computa-
tion of homotopy limits (i.e. the computation of limits in the associated homotopy
category) gives in many cases important information on the category C. In the
case of QtNaamen, one can easily give an explicit combinatorial interpretation of
the limit (at least for set-sized diagrams). Are these objects of set theoretic signif-
icance? More generally, is there a set theoretic significance to the class of cute
objects? To the homotopy category itself? Are there other derived functors defining
invariants of models of ZFC that, say, can be bounded in ZFC?

In classical homotopy theory, homotopy groups (by themselves) and the asso-
ciated structures (such as long exact sequences) are powerful tools allowing many
calculations. In (pointed) model categories analogues of such constructions exist,
such as the groupoid of homotopy classes between any two objects A,B (where A is
a cofibrant object and B is a fibrant object) as well as other constructs, analogous of
other classical homotopical tools such as the suspension and loop functors, fibration
sequences and more. In posetal model categories these constructions degenerate,
and much of the computational power of the associated homotopy structure is lost.
This may be one of the reasons that while we were able to recover homotopical
interpretations of important and non-trivial set theoretic objects we were unable
to prove any of their properties using the model category structure on QtNaamen.

In view of the above it is interesting to look for other constructions in QtNaamen
(or HoQtNaamen), which may serve as analogues of the above mentioned model
categorical constructions. One possible such construction is the sequence of model
categories QtNaamenκ when κ ranges over all cardinals.

First, recall that we were able to give the category QtNaamenκ a model structure
only under the assumption that κ is a regular cardinal. A first problem is, therefore,
to construct a similar model category for singular κ. It seems that such a model
category can be constructed inductively (assuming QtNaamenλ was constructed
for all λ < κ) by taking an appropriate “limiting” process. For example, one could
define

ObStNaamenκ :=

{⋃
λ<κ

Xλ : Xλ ∈ ObStNaamenκ, Xλ ⊆ Xλ′ if λ < λ′

}
with the additional requirement that if X =

⋃
λ<κXλ as above then the Xλ are

uniformly definable (this is required in order to assure that X is, indeed, a class).
And the labelling

X
(∗)−−→κ Y ⇐⇒ (∀∗λ)(y ∈ Y ⇒ X × {y} (∗)−−→λ Y

where ∀∗λ means “for all large enough µ < κ”. Passing to the full sub-class of
cute objects (with respect to this labelling) we apparently get a model category
QtNaamenκ. It is unclear to us, however, whether this construction is the “correct”
one.
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There is also an obvious functor Fκ : StNaamenκ −→ StNaamenκ+ given by
X 7→

⋃
<κ+ X for X ∈ ObStNaamenκ. Indeed, this is a functor of model cate-

gories: this is obvious for (c) and (f) arrows, and not much harder for (w)-arrows,
with the conclusion following from Remark 43. On the level of the associated
homotopy categories, it is clear that, γ(Fκ(X)) =⊥QtNaamen+

κ
for any cofibrant

X ∈ ObQtNaamenκ (where, as above, γ : QtNaamenκ −→ HoQtNaamenκ is the
localization functor). Since the cofibrant objects of any model category suffice to
determine the associated homotopy category, it follows that the homotopy cate-
gory associated with the image of QtNaamenκ under Fκ is trivial. This gives the
sequence of categories QtNaamenκ a certain flavour of “exactness”, which seem to
require some further research.

6.1. Looking back. We conclude these notes looking back to the original motiva-
tion leading to the development of the model category QtNaamen, i.e., the goal of
developing a homotopy structure for the class of models of an uncountably categor-
ical theory and, more generally, to (quasi-minimal) excellent abstract elementary
classes (see, e.g., [3] for the details). The need for homotopy theoretic tools in this
contexts arose through the study, by Zilber and his school, of categoricity prob-
lems of model theoretic structures such as pseudo-exponentiation [22] and covers
of semi-Abelian varieties [4], [5]. The model theoretic analysis needed to show the
(uncountable) categoricity of the natural examples studied in the above mentioned
references uses known number theoretic and algebro-geometric results and conjec-
tures nowadays understood as being of essentially cohomological character, and
formulated in functorial language. Such statements are, e.g., particular cases of
André’s generalized Grothendieck conjectures on periods of motives ([6], [2, 7.5.2.1
Conjecture],[15, §4.2 Conjecture,§1.2 Conjecture]), the Mumford-Tate conjecture
on the image of Galois action on the first étale cohomology ([19]), Kummer theory
([17]), and more. This does not seem to be entirely coincidental, as the definition
of Shelah’s, so called, Excellent classes — the model theoretic machinery employed
in this study — and in particular the requirement that there exists a unique prime
model over maximally independent tuples of countable (sub) models (and that this
requirement makes sense) reminds, at least superficially, some of the axioms of a
model category.

However, the common model theoretic language does not seem to have the means
to incorporate this functorial language in its full power and generality. Thus, in
order to be applied in addressing the above mentioned categoricity problems “old-
fashioned” reformulations of these conjectures, deprived of their functorial language
and homological character had to be used — Schanuel’s conjecture and its cognates
explicated by Bertolin [6] derived from the generalized Grothendieck conjecture on
periods, Bashmakov’s original formulations of Kummer theory for elliptic curves
([4], [10]), and Serre’s explicit description of the image of the Galois action on the

Tate module as a subgroup of the profinite group GL2(Ẑ).
It is the first author’s belief that the inability of common model theoretic lan-

guage to digest these statements in their full power and generality is a major ob-
stacle in further exploring these intriguing connections between Shelah’s excellent
classes and deep algebro-geometric conjectures. The homotopy theoretic approach
to set theory discussed in the present paper is a toy example exploring the ways
in which homotopy theoretic language could be introduced into the realm of model
theory.
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Unfortunately, we were unable to use the model category QtNaamen to associate
such a homotopy structure to those classes of models. In fact, it is not even clear
to us when this could be done:

Problem 50. Let K be a (quasiminimal) excellent abstract elementary class (e.g.
algebraically closed fields of characteristic p, models of pseudo-exponentiation). Let
QtNaamen(K) be the sub-category of QtNaamen whose objects are elements of K
and such that for M,N ∈ ObK there is an arrow M−→ N if M≺ N . Are there
natural model theoretic conditions under which QtNaamen(K) is a model category?
What about QtNaamenκ(K)? Is there a similar construction associating a model
category to the class K?
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