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Abstract

We observe that some elementary general topology arguments can be seen as diagram
chasing computations with finite categories, via a straightforward, naive translation which
often involves the Quillen lifting property playing the role of negation.

This paper is a draft of a research proposal: we argue it is worthwhile to try to see whether
these observations lead to another axiomatisation of topology and a proof system amenable
to automatic theorem proving.

Help in proofreading much appreciated.

1 A synopsis of the results. Structure of the paper

Most of the paper is devoted to the process of translation rather than the result: we quote (Bour-
baki) extensively and give diagrams corresponding to parts of what we quote. Theorem 1 defines
subcategories of the category of topological spaces in terms of a category with an appropriately
embedded full subcategory of finite preorders (i.e. transitive reflexive relations) of size at most
4. In §2.9 we observe that a uniform space gives rise to a simplicial object in the category of
topological spaces.

In §3 we discuss the Quillen lifting property, which we call Quillen negation. We observe
that several elementary definitions are Quillen negations of (a class consisting of) one or more
counterexamples, in particular the definitions of surjective, injective, connected, separation axioms
T0-T6, closed, limit. We conjecture that quasi-compactness, or rather proper maps, can be defined
as the double Quillen negation of a class consisting of four closed morphisms of finite spaces. In
§3.1 we discuss the notion of a limit in view of Quillen negation, and observe that the proof that
a closed subset of a complete metric space is complete amounts to two application of the Quillen
negation.

Last but not least, in §4 we speculate how our diagram chasing calculus should express quasi-
compactness, as a rule to remove a dependency, somewhat similar to dead code optimisation by a
compiler.

In somewhat more detail (perhaps overstating a bit for clarity):

∗miishapp@sddf.org http://mishap.sdf.org/mints-lifting-property-as-negation A draft. Comments and help
in proofreading appreciated.
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• combinatorics of partial orders underlies some basic arguments and definitions in general
topology

• the basics of general topology are, in disguise, diagram chasing with the simplest finite
categories, namely preorders or, equivalently, finite categories such that there is at most
one morphism between any two objects

• the Quillen lifting property is a pattern underlying many of these definitions

Accordingly, we suggest to:

• develop a convenient notation to express the combinatorics of partial orders underlying basic
arguments and definitions in general topology, e.g. the notion of surjectivity, injectivity or
separation axioms as Quillen lifting properties

• develop an axiomatisation of topology in terms of arrows between categories

1.1 Open Questions and Speculations

These observations suggest the following directions for research. See also speculations in [DMG].

• define a calculus (proof system) capturing proof by diagram chasing; use it in an automatic
theorem prover

• define a decidable fragment of topology talking about connected, Hausdorff, normal, and
compact spaces. Perhaps these notions could be expressed as Quillen lifting properties wrt
finite maps not involving endomorphisms (and there is a decidable fragment of category
theory without endomorphisms [GLS]).

• develop notation to conveniently write diagram chasing arguments, in particular those im-
plicitly appearing in elementary topology

• consider the diagram chasing interpretations of topological arguments in the context of (GG)’s
“detailed attention to human thought processes”. Compare a diagram chasing proof in §3.1
and in (GG,§2.2, Problem 2) of the fact that “a closed subspaces of a complete metric is
complete”, cf. slides (GM). Does human reasoning follow diagram chasing? For example, do
errors in diagram chasing calculation correspond to errors of intuition in elementary topology?

2 Axioms of a topological space as a diagram chasing for-
malism of {0} −→ T and T −→ {0 < 1}

What follows is based on the following observation. A finite topological space is the same as a
preorder (i.e. a finite transitive reflexive binary relation) is the same as a finite category such that
there is at most one morphism from one object to another.

We identify a preorder with the topological space where a subset is open iff it is downward
closed; conversely, relation y ∈ cl x, x, y ∈ X, defines the specialisation preorder on the points of a
topological space X. If the space has finitely many points, this preorder determines the topology:
a subset is closed iff it is the (necessarily finite) union of the closures of its points. We write x ≤ y,
x→y iff y ∈ cl x.

Our notation for preorders and monotone maps is best explained on the examples (used below).
Consider the arrow {u→U ↔ Ū} −→ {u = U ↔ Ū} above. The first preorder has three elements
u, U, Ū where both U → Ū and Ū → U , and u→ U and u→ Ū . The second preorder has two
equivalent elements u = U and Ū . The map sends each element to “itself”, i.e. u and U goes
to u = U , and Ū to Ū . {•→ ?}, • < ? denotes the two point space with • the open point and
? the closed point. {U↔Ū} and {• ≷ ?} denote the two point space with antidiscrete topology,
i.e. the only open subsets are ∅ and {U, Ū}. The discrete topological space is denoted by either
{•, ?} or {• 6↔?} if we want to emphasise that there is no relation between • and ?. Elements of
preorders are denoted by U, Ū , u, •, ?, ...; the choice of symbol depends on the intended meaning:
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U usually stands for a subset (thus X −→ {U↔Ū}), u for an element (thus {x} −→ X), •, ? have
no interpretation.

Note there is no convenient notation for endomorphisms.
This is a feature: there is a decidable fragment of diagram chasing without endomorphisms

[GLS] and we hope this notation may help to define a decidable fragment of topology. We shall
see that our examples do not use endomorphisms much.

2.1 Hausdorff axioms of a topological space

Hausdorff formulated axioms of topology as follows. A topology on a set X is a collection of subsets,
called open subsets, satisfying the following properties.

(1) the empty set ∅ and the whole set X is an open subset of X

(2) if U and V are open subsets of X, then so in U ∩ V .

(3) a set U is open iff for every point u ∈ U there is an open subset U ′ such that u ∈ U ′ ⊂ U .

(4) a map is continuous iff the preimage of an open subset is open

A category theorist would denote these notions by:

(1) a point of x ∈ X by an arrow {x} −→ X

(2) a subset U ⊂ X by an arrow X −→ {U↔Ū} representing the characteristic function of U
where {U↔Ū} is the antidiscrete topological space where points U and Ū are neither open
nor closed

(3) an open subset U ⊂ X by its characteristic function X −→ {U→ Ū} where {U→ Ū} denotes
the topological space with one open point U and one closed point Ū

(4) a point u ∈ U of a subset U of X is an arrow {u} −→ X such that the composition {u} −→
X −→ {U↔Ū} coincides with the arrow {u} −→ {U↔Ū} sending u to U .

¿(4) a point u ∈ U of a subset U of X is an arrow we denote by either {u} −→ X −→ {u→ ū} or
{U} −→ X −→ {U→ Ū}; it is implicit that the composition sends u to u, resp. U to U .

(5) the preimage f−1(U) of a subset U of Y under a map X
f−→ Y is the composition arrow

X −→ Y −→ {U↔Ū}

This notation reminds us of category theory and lets us view the axioms of topology as rules
for manipulating arrows between finite preorders and formal variables. The description of these
rules below is vague and incomplete. One way to make it precise is given by a theorem below.

(1→) composed arrows X −→ {•} −→ {•→ ?} and X −→ {?} −→ {•→ ?} are well-defined: the
whole of X, resp. the empty (sub)set, is the preimage of the open subset {•} under the first,
resp. the second, map

(2→) the product {• → ?} × {•′→ ?′} is well-defined and behaves as expected: the intersection
of two open subsets corresponds the preimage of the open subset {(•, •′)} of the product
{•→?} × {•′→?′}

(3→) for each arrow X −−→
ξU
{U ↔ Ū} it holds

{U→ Ū}

��

X
ξU

//

;;

{U ↔ Ū}

iff for each {u} −→ X, {u} //

��

{u→U ↔ Ū}

��

X
ξU

//

99

{u = U ↔ Ū}

(4→) the composition arrow X −→ Y −→ {U→ Ū} behaves as expected
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2.2 Axiom (3→) and pointwise equality

Axiom (0→) says we can check equality of maps, equivalently, commutativity of diagrams. point-
wise, i.e. f = g iff for any point x in their domain, f(x) = g(x). We shall see now how (3→) is
related to (0→).

(0→) for each arrows X −→ Y , Y −→ Z, X −→ Z the following are equivalent

(i) the triangle (i) commutes

(ii) in (ii) below, for each {x} −→ X, if the upper triangle commutes, so does the square

(i) Y

��

X //

>>

Z

(ii) {x} //

��

Y

��

X //

>>

Z

Axiom (3→) can be reformulated as follows. Note the similarity of (ii) above and (b) below.

(3′→) for each arrow X −−→
ξU
{U ↔ Ū} the following are equivalent:

(i) {U→ Ū}

��

X
ξU

//

;;

{U ↔ Ū}

(ii) for each {U} −→ X there is X −→ {U→ Ū} (depending on {U} −→ X) such that

(a) in (a) below, if the square commutes, so the upper triangle

(b) in (b) below, if the upper triangle commutes, so does the square commutes

(a) {U} //

��

{U→ Ū}

��

X
ξU

//

(dep. on U)

::

{U ↔ Ū}

(b) {U ′} //

��

{U ′ = U→ Ū}

��

X
ξU

//

(dep. on U)

88

{U ↔ Ū}

Note also that (b) may be informally described as: in diagram (a), to prove the implication that
if the upper triangle commutes, so does the square, we need not use any information about arrow
{U} −→ X except that the upper triangle commutes

2.3 h{x} = Hom({x},−) is a functor to topological spaces.

The observations above lead to the following theorem.

Theorem 1 Let T be a category containing the category of finite preorders as a full subcategory.
Assume that (3→) above holds and that

(1→) the one-point order {•} is a terminal object of T

(2→) the product {•→?} × {•′→?′} of preorders is also the product in the category T

Then the functor h{•} = Hom({•},−) defines a functor from T to the category of topological
spaces. Moreover, this functor is faithful iff {•} co-generates T , i.e. satisfies Axiom (0→).

(0→) For f, g : X −→ Y , it holds f = g provided f ◦ x = g ◦ x for any arrow x : {•} −→ X.
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It is enough to assume that T contains the category of preorders on at most 4 elements.

Proof. The proof is trivial: the set h{•} = Hom({•},−) is equipped with topology in the
following way: open subsets are of the form { g ∈ Hom({•}, X) : u(g(•)) = U } where u : X −→
{U < Ū}; equivalently but in somewhat different notation, the open subsets are Uu := { g ∈
Hom({•}, X) : g ◦ u = u• } where u• : {•} −→ {•→?}, • 7→ • and u varies through all the arrows
X −→ {•→?}.

To check Axiom (1), consider composed arrows X −→ {•} −→ {•→ ?} and X −→ {?} −→
{•→?}. They correspond to Hom({•}, X) and the empty subset.

To check Axiom (2), consider the product the product {•→?}×{•→?}. To check that Uu∩Uv
is open, note it corresponds to the arrow

X
u×v−−−→ {•→?} × {•→?} −→ {(•, •)→(•, ?) = (?, •) = (?, ?)} −→ {•→?}.

To check Axiom (3), note that the preimage of u under the diagonal arrow is an open subset
of (the preimage of) U containing an arbitrary point u in U .

To see that the induced maps f∗ : Hom({•}, X) −→ Hom({•}, Y ) are continuous, i.e. the
preimage of an open subset is open, consider the composition {•} −→ X −→ Y −→ {•→ ?}: an
arrow Y −→ {•→?} give rise to an arrow X −→ {•→?}.

Axioms (1→) − (3→) do not provide ways to construct neither new maps nor new topological
spaces. Accordingly, the functor h{•} is neither necessarily full nor surjective. It would be in-
teresting to formulate diagram chasing axioms which would allow to prove, say, existance of the
Alexandroff one-point compactification.

2.4 Examples: Connected, Hausdorff spaces, and Urysohn separation
lemma

2.5 Bourbaki: connected, Hausdorff, Compact spaces and proper maps

In the next three sections we quote Bourbaki and see how parts of their text describing connected,
Hausdorff, or quasi-compact spaces and proper maps may be rewritten in the language of arrows
and finite preorders as instances of the Quillen lifting property.

Then we look at the Uryhson metrisation lemma and observe it is also a Quillen lifting property
and its standard proof is an infinitary diagram chasing argument. Finally, we look at the Bourbaki
definition of a uniform structure, an axiomatic approach to metric space, and see it describes a
simplicial object.

A reader may prefer to skip all the text, look at the diagrams and decipher their meaning.

2.5.1 Connected Spaces

We quote from (Bourbaki, I§11.2) as an example of an argument we cannot quite translate to the
language of arrows.

2. IMAGE OF A CONNECTED SET UNDER A CONTINUOUS MAPPING
PROPOSITION 4. Let A be a connected subset of a topological space X, and let f be a
continuous mapping of X into a topological space X ′ . Then f(A) is connected.

Suppose f(A) is not connected. Then there exist two sets M ′, N ′ which are open in
f(A) and which form a partition of f(A); hence A∩f−1(M ′) and A∩f−1(N ′) are open
in A and form a partition of A; this contradicts the hypothesis that A is connected.

The inverse image of a connected set under a continuous mapping need not be connected;

consider for example a mapping of a discrete space into a space consisting of one point.

From Proposition 4 we derive another characterization of non-connected spaces :

PROPOSITION 5. For a topological space X to be not connected it is necessary and
sufficient that there exists a surjective continuous mapping of X onto a discrete space
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containing more than one point.

The condition is sufficient by Proposition 4. Conversely, if X is not connected, there
exist two non-empty disjoint open subsets A,B whose union is X, and the mapping f of
X onto a discrete space of two elements {a, b}, defined by f(A) = {a} and f(B) = {b},
is continuous.

Proposition 5 becomes a definition in our approach: X is connected iff

X //

��

{a, b}

��

{•} //

;;

{a = b}

here {a, b} −→ {a = b} is the map sending the discrete space on two points to a single point.
We cannot nicely translate Proposition 4 and so we make do with the following weaker statement

that a surjective map from a connected space necessarily goes to a connected space: (i) X −→ X ′

is surjective and (ii) X is connected implies (iii) X ′ is connected.

(i) ∅ //

��

X

��

{•} //

==

X ′

and (ii) X //

��

{a, b}

��

{•} //

;;

{a = b}

imply (iii) X ′ //

��

{a, b}

��

{•} //

;;

{a = b}
The proof of our weaker version of Proposition 4 is a diagram chasing argument: draw the

square of (iii), add arrow X −→ X ′, by (ii) add arrow {•} −→ {a, b} which fits as a diagonal arrow
in (iii). To prove (iii) commutes, use (i) and (0→).

2.5.2 Hausdorff spaces

We translate a definition and a proposition from a section on Hausdorff spaces in (Bourbaki,
General Topology, I§8.1.2).

A space X is Hausdorff iff any of the following equivalent conditions holds:

(H) (Bourbaki) Any two distinct points of X have disjoint neighbourhoods.

Two distinct points of X is an injective arrow {x, y} −→ X, i.e. an arrow such that either of
the following equivalent diagrams holds:

{x, y} //

��

{x, y}

��

{x = y} //

::

X

{x, y} //

��

{x↔y}

��

X //

::

{x = y}
Points x and y of X have disjoint neighbourhoods is the following diagram:

{x, y} //

��

{x < U > y}

X

88

The whole definition may be written as follows: X is Hausdorff iff

{x, y} //

(injective)

��

{x < U > y}

X

88

Here we use that the preimage of the two open points define two non-intersecting open subsets of
X containing x and y, resp.
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Proposition 2 (Bourbaki, I§8.1.2). Let f, g be two continuous mappings of a topo-
logical space X into a Hausdorff space Y ; then the set of all x ∈ X such that f(x) = g(x)
is closed in X.

In the language of arrows, this can be stated as follows:

For Y Hausdorff, there exists an arrow X
∆−→ {x← x̄} such that

{x} x //

x

��

X

f

��

X
g
// Y

iff {x} x //

##

X

∆

��

{x← x̄}
The proof is a diagram chasing calculation. We need a new “extensionality” second-order axiom

which says that each property of arrows {x} −→ X defines a subset X −→ {x↔x̄}.

(5→) For any property A of arrows {x} −→ X, there is an arrow X
A−→ {x↔x̄}

property A({x} −→ X) holds iff {x} x //

##

X

∆

��

{x↔x̄}

commutes

By Extensionality Axiom (5→) there is an arrow X
∆−→ {x↔x̄} satisfying the condition above;

that is, the condition f(x) = g(x) defines a subset. To show it is closed, we need to show that

X
∆−→ {x↔x̄} factors as X −→ {x← x̄} −→ {x↔x̄}. By (3→), it is enough, for each {u} −→ X,

{u} //

��

{u→ x̄↔ x}

��

X
ξU

//

99

{u = x̄↔ x}

An arrow {u} −→ X and arrows X
f−→ Y , X

g−→ Y gives rise to an arrow {f(u), g(u)} −→ Y ,

which is injective by (i). Y is Hausdorff and hence construct an arrow Y
h−→ {f(u) > y < g(u)}.

Now consider arrows X
f−→ Y

h−→ {f(u) > y < g(u)}, and X
g−→ Y

h−→ {f(u) > y < g(u)} and their
product

X
f◦h×g◦h−−−−−−→ {f(u) > y < g(u)} × {f(u) > y < g(u)} −→ {u = (f(u), g(u))→ ū = ( the others )}

Finally, the required arrow is the pushout of this arrow and X
∆−→ {x↔x̄}.

We may use (3′→) instead of (3→). We then need not introduce a new variable u and we skip
the last step as well. By (3′→), we need to construct an arrow depending on {x} −→ X, with
certain properties. It is easy to check that the displayed arrow above does have those properties.

{x̄} //

��

{x→ x̄}

��

X
ξU

//

::

{x̄↔ x}

2.6 Compact spaces and proper maps

We quote (Bourbaki, I§10.2):

DEFINITION I. Let f be a mapping of a topological space X into a topological space Y .
f is said to be proper if f is continuous and if the mapping f × iZ : X × Z −→ Y × Z
is closed, for every topological space Z.

THEOREM I. Let f−1 : X −→ Y be a continuous mapping. Then the following four
statements are equivalent:
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a) f is proper.
b) f is closed and f−1(y) is quasi-compact for each y ∈ Y .
c) If F is a filter on X and if y ∈ Y is a cluster point of f(F) then there is a cluster
point x of such that f(x) = y.
d) If U is an ultrafilter on X and if y ∈ Y is a limit point of the ultrafilter base f(U),
then there is a limit point x of U such that f(x) = y.

We quote (Bourbaki, I§6.5, Definition 5, Example):

Example. Let X be a topological space, A a subset of X, x a point of X. In order that
the trace on A of the neighbourhood filter F of x should be a filter on A, it is necessary
and sufficient that every neighbourhood of x meets A, i.e. that x lies in the closure of
A (§1, no. 6, Definition 10). This example of an induced filter is of interest for two
reasons: first because it plays an important role in the theory of limits (§7, no. 5) and
secondly because every filter can be defined in this way. Indeed, let F be a filter on a set
X and let X ′ be the set obtained by adjoining a new element to X, X being identified
with the complement of {w} in X ′ (Set Theory, R, §4, no. 5) ; let F′ be the filter on X ′

consisting of the sets M ∪ {ω} where M runs through F. For each point x 6= ω of X ′,
let B(x) be the set of all subsets of X ′ which contain x, and let B(ω) be F′; then the
B(x) for x ∈ X ′ obviously satisfy axioms (VI), (VII), (VIII) and (VIV ) and therefore
define a topology on X ′ for which they are the neighbourhood filters of points. Finally
ω lies in the closure of X in this topology, and F is induced by F′ = B(ω) on X. The
topology thus defined on X ′ (resp. the set X ′ with this topology) is called the topology
(resp. the topological space) associated with F.

Item d) can be readily rewritten in the language of arrows. Following (Bourbaki, I§6.5, Defini-
tion 5, Example), for an ultrafilter U on X, define the topology on the set X ∪ {∞} by: a subset
Z of X is open iff Z is open in X; Z ∪ {∞} is open iff Z is open X and is big according to the
ultrafilter U . Denote this space X ∪U {∞}. A point x is a limit point of U iff each neighbourhood
of x in X is U -big, i.e. iff sending ∞ to x defines a continuous map from X ∪U {∞}.

These considerations let us rewrite d) as d→) and d′→) below. Note d′→) immediately implies
Tychonoff theorem that a product of quasi-compact spaces is quasi-compact, as a class defined by
a lifting property is closed under taking colimt/limit. This is how it is proved in (Bourbaki, I§9.5).

d→) A map X −→ Y is proper iff for each ultrafilter U on X it holds

X
id //

��

X

��

X ∪U {∞} //

::

Y

d′→) A map X −→ Y is proper iff for each ultrafilter U on a space A it holds

A //

��

X

��

A ∪U {∞} //

::

Y

To see d′→) =⇒ d), take A = X and A −→ X to be identity. To see d) =⇒ d′→), take the
ultrafilter on X such that a subset of X is big iff its preimage in A is big.

(p.129 of file) (Bourbaki, I, Exercises §3, Exercise 11, p.129) I I) Let X be a topological
space, T the topology of X, A a dense subspace of X. Show that the set of topologies
on X which are finer than T, in which A is dense in X, and which induce the same
topology as T on A, has at least one maximal element; such a maximal element is
called an A-maximal topology. Show that a topology T0 on X is A-maximal if and
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only if every subset M of X, such that A ∩M is dense in M (with respect to T0) and
open in A, is open in the topology T0, and that the subspace X \ A is then discrete
in the topology induced by T0, and is closed in X. Show also that if T0 is A-maximal
and if the topology induced by T0 on A is quasi-maximal (9 2, Exercise 6) then T0 is
quasi-maximal.

(p.134 of file) d) F is an ultrafilter on X if and only if the associated topology on X ′ is
X-maximal ( §3, Exercise I I).

topologies on X which are (i) finer than T, in which (ii) A is dense in X, and which (iii) induce
the same topology as T on A is described by

(i) XT0
−→ XT is continuous

(ii) AT
//

��

{x}

��

XT0
//

;;

{x→y}

(iii) AT
//

��

{x→y}

��

XT0
//

::

{x = y}
The ‘ultrafilter’ arrows are the ‘shortest’ arrows in the following sense:

Claim 1 A non-identity injective arrow A ↪→ X has form A −→ A ∪U {∞} iff it is injective,
satisfies the lifting properties (ii-iii) above and there is no non-trivial decomposition A ↪→ X ′ ↪→ X
such that A ↪→ X ′ satisfies (ii-iii).

2.7 Quasi-compactness as a diagram.

K is quasi-compact iff the map A×K −→ A is closed for each A. By definition that means that
the projection of a closed set is closed; by Axiom (3) of topological spaces this can be reformulated
as follows: for an open subset U ⊂ A ×K and a point a ∈ A, if {a} ×K ⊂ U , then there is an
open neighbourhood Ua 3 a such that Ua ×K ⊂ U .

This can be expressed as the following diagram:

{a} ×K //

��

{a}

��

A×K //

��

  

A

��

{a = a′→ ā} {a→ ā = a′}

{a→a′↔ā}

OOgg

A map X −→ Y is closed iff the following diagram holds:

X //

��

&&

{a↔Ua = U→ Ū}

��

{a↔Ua→U→ Ū}

��

55

{a↔Ua→U = Ū}

))

Y

88

// {a↔Ua = U = Ū}
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2.8 Metric spaces. Uryhson separation lemma.

We give two more examples related to the real numbers.

2.8.1 Uryhson separation lemma

[Hausdorff, Set theory, §25,n.3] state items (i) and (ii); [Hausdorff, Set theory, §26] implies (ii)′.

Uryhson Separation Lemma. Assume X is normal, i.e. (i) for each pair of closed
subsets A,B ⊂ X there exist disjoint open neighbourhoods U ⊃ A and V ⊂ B. Then
each pair of closed subsets A,B ⊂ X can be separated by a function to the real line,
i.e. (ii) there is a function f : X −→ [0, 1] such that f(a) = 0 for each a ∈ A and
f(b) = 1 for each b ∈ B. Moreover, if X is first countable, then (ii)′ there is a function
f : X −→ [0, 1] such that f(a) = 0 iff a ∈ A and f(b) = 1 iff b ∈ B.

Let us translate this to the language of arrows.

Uryhson Separation Lemma. For X first countable, it holds

(i)→ {A > U < x > V < B}

��

X //

f
77

{A > U = x = V < B}

implies (ii)′→ [0, 1]

��

X //

f
::

{0 > x < 1}

To see the equivalence of (i) and (i)→, take the neighbourhoods U ⊂ A and V ⊃ B to be the
preimages of the open two-point subsets {A,U} and {B, V }.

The reformulation of (ii) is somewhat more cumbersome:

(ii)→ there is an arrow X −→ [0, 1] such that the following implication holds: if the

square commutes, then the upper triangle commutes. {0, 1} //

��

[0, 1]

��

X //

f
88

{0 > x < 1}

The standard proof of Uryhson Separation Lemma is then viewed as follows. Points 0 = t0..0 >
t0..1 > .... > t1..1 = 1 split the interval [0, 1] into open sets Ii = (ti, ti+1) and closed sets {ti},
1 ≤ i ≤ n, and hence give rise to the arrow

[0, 1] −→ {t0..0 > I0..0 < ... < ti > Ii < ti+1 > ... > I1..1 < t1..1}.

Taking strings i longer and points ti more and more densely, we see that

[0, 1] = lim
n−→∞

{t0..0 > I0..0 < ... < ti > Ii < ti+1 > ... > I1..1 < t1..1}.

Then use item (i) and the pullback square below to construct arrows to these partial orders

{t1 > I1 < ... < ti = ti0 > Ii0 < ti1 > Ii1 < ti+1 > ... > In−1 < tn} //

��

{t1 > I1 < ... < ti > Ii < ti+1 > ... > In−1 < tn}

��

{ti = ti0 > Ii0 < ti1 > Ii1 < ti+1} // {t1 = I1 = ... = ti > Ii < ti+1 = ... = In−1 = tn}

Finally, pass to the inverse limit to construct an arrow X −→ [0, 1]; then prove (ii)→.

2.9 Uniform spaces

(Bourbaki, II§1.1.1) treats metric spaces as uniform spaces; we observe that the uniform space is
a simplicial object.

We quote (Bourbaki, I§6.1.1) and (Bourbaki, II§1.1.1):
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DEFINITION I. A filter on a set X is a set F of subsets of X which has the following
properties:
(F I) Every subset of X which contains a set of F belongs to F.
(FII) Every finite intersection of sets of F belongs to F.
(FuI) The empty set is not in F.

1. DEFINITION OF A UNIFORM STRUCTURE DEFINITION I. A uniform struc-
ture (or uniformity) on a set X is a structure given by a set U of subsets of X×X which
satisfies axioms (FI) and (FII) of Chapter I, 6, no. I and also satisfies the following
axioms:
(VI) Every set belonging to U contains the diagonal d.
(VII) If V ∈ U then V −1 ∈ U .
(VIII) For each V ∈ U there exists W ∈ U such that W ◦W ⊂ V .

The sets of U are called entourages of the uniformity defined on X by U . A set endowed
with a uniformity is called a uniform space. If V is an entourage of a uniformity on X,
we may express the relation (x, x′) ∈ V by saying that “x and x′ are V -close”.

A metric space X is a uniform space: V ∈ U iff {(x, x′) : dist(x, x′) < ε} ⊂ V for some ε > 0.
Let us translate the above to the language of arrows: we shall see that a uniform space may be

viewed as a simplical object in the subcategory of topological spaces associated with filters.
First notice that a filter F on a set X may be viewed as a topology on X where a subset is

open iff it is either F-big or empty. Indeed, Axioms (FI) and (FII) of a filter imply that the family
of subsets U∪{∅} is a topology on a set X. Let fTop be the full subcategory of topological spaces
associated with filters.

A uniform structure defines a filter topology on X ×X, i.e. an object of fTop.
Axiom (VII) says that permuting the coordinates X × X −→ X × X, (x1, x2) 7→ (x2, x1) is

continuous in this topology.
Define topology on the set X ×X ×X via the pullback square in the subcategory fTop:

X ×X ×X
(p1×p2)

//

(p2×p3)

��

X ×X

p2

��

X ×X
p2

// X

Axiom (VIII) says that the map X×X×X (p1,p3)−−−−→ X×X, (x1, x2, x3) 7→ (x1, x3) is continuous
in this topology. Indeed, by definition W1 ◦W2 = {(x1, x3) : (x1, x2) ∈ W1, (x2, x3) ∈ W2} and
the sets

{(x1, x2, x3) : (x1, x2) ∈W1, (x2, x3) ∈W2} = W1 ×X ∩X ×W2,

W1,W2 ∈ U, form a base of the pullback topology on X × X × X. Hence, (VIII) says that the
preimage of an open subset of X ×X under (p1, p3) contains an open subset of X ×X ×X, i.e. is
open (as pullback is taken among filter topologies).

Axiom (VI) implies that the diagonal map X
(x,x)−−−→ X ×X is continuous as a map from the set

X equipped with antidiscrete topology to the set X ×X equipped with the topology above.

Note that W ◦W intersects the diagonal and the continuity of the diagonal map X
(x,x)−−−→ X×X

implies W ◦W contains the diagonal. Thus, in presence of (VIII), (VI) is equivalent to the continuity

of the diagonal map X
(x,x)−−−→ X ×X in the topologies indicated.

Let X1 denote the set X equipped with the antidiscrete topology. Let X2 and X3 denote the
sets X×X and X×X×X equipped with the topologies above. For n > 3, let Xn be the pullback
in fTop

Xn

(p2×...×pn)
//

(p1×p2)

��

Xn−1

p2

��

X2 p2
// X

11



The axioms above ensure that the “set-theoretic” face and degeneration maps

(pi1 , ..., pik) : X × ...×X −→ X × ...×X

are continuous. Thus we see that a uniform structure on a set X defines a simplicial complex Xn

in fTop,
(pi1 , ..., pik) : Xn −→ Xm

Claim 2 A uniform structure on a set X is a simplical object X· in the subcategory fTop of filter
topological spaces equipped with an involution i : X· −→ X· such that

• X1 is the set X equipped with antidiscrete topology

• the underlying set of X2 is X ×X

• i : X· −→ X· is the involution permuting the coordinates on X ×X

• for n > 2, Xn is the pullback as described above

Question 1 Find a categorical description of the simplicial objects obtained from uniform spaces.

3 Lifting property wrt counterexample as a common pat-
tern

Given a morphism f , perhaps the simplest way to define a property of morphisms that f not satisfy,
short of g 6= f , is by left or right Quillen lifting property: we say f : A −→ B lifts wrt g : X −→ Y ,
write fig, iff for each i : A −→ X and j : B −→ Y making the square commutative, i.e. f ◦j = i◦g,

there is a diagonal arrow j̃ : B −→ X making the total diagram A
f−→ B

j̃−→ X
g−→ Y,A

i−→ X,B
j−→ Y

commutative, i.e. f ◦ j̃ = i and j̃ ◦ g = j (see Figure 1(a)).
Perhaps the simplest way to define a property a given morphism, short of being equal, satisfies

is to apply Quillen lifting property twice: we say that g′ is (left) exemplified by g iff for each f it
holds that f i g implies f i g′. More generally, we say that g′ is (left) exemplified by a class P of
morphisms or that g′ is P -like iff it holds that a morphism lifts wrt g′ if it lifts wrt each p ∈ P .

Left (right) Quillen negation of a property (class) P of morphisms is

Pil := { pl : pl i p for each p ∈ P }

Pir := { pr : p i pr for each p ∈ P }.

Double Quillen negation we call right (left) Quillen generalisation

Pilr := { pr : for each pl it holds pl i p for each p ∈ P implies pl i pr }

Pirl := { pl : for each pr it holds p i pr for each p ∈ P implies pl i pr }

Thus g′ is left exemplified by P iff g′ ∈ Pirl and g′ is right exemplified by P iff g′ ∈ Pilr.
The goal of this section is to convince the reader that Quillen lifting property is a surprisingly

useful “trick” which often defines a notion given a (counter)example, and that this is worthy of
further investigation. We do so by listing examples.

Surjective is both left Quillen negation of ∅ −→ {x} and right Quillen negation of {a} −→ {a↔
b}. Injective is both left Quillen negation of {x, y} −→ {x = y} and right Quillen negation of
{x↔y} −→ {x = y}. Right Quillen negation of {1} −→ {0 < 1} is dense image. X is connected iff
X −→ {•} i {x, y} −→ {x = y}. X is linearly connected iff {0, 1} −→ [0, 1] i X −→ {•}. Every
real-valued function on X is bounded is, for X connected, ∅ −→ X i

∐
n∈N

[−n, n] −→ R. A subset

A of X is sequentially closed iff {1, 1
2 ,

1
3 , . . .} −→ {1,

1
2 ,

1
3 , . . . , 0} i A −→ X where, as expected,

topology on {1, 1
2 ,

1
3 , . . .} and {1, 1

2 ,
1
3 , . . . , 0} is induced from the real numbers.

All the separation axioms T0 − T4 and T6 are Quillen negations:

12



(a) A
i //

f
��

X

g
��

B
j
//

j̃
>>

Y

(b) {} //

��

X

∴(surj)
��

{•} //

>>

Y

(c) {•, •} //

��

X

∴(inj)
��

{•} //

<<

Y

(d) X //

∴(inj)
��

{x, y}

��

Y //

;;

{x = y}

Figure 1: Lifting properties. Dots ∴ indicate free variables and what property of these variables is
being defined; in a diagram chasing calculation, “∴ (surj)” reads as: given a (valid) diagram, add
label (surj) to the corresponding arrow.
(a) The definition of a lifting property f i g: for each i : A −→ X and j : B −→ Y making the
square commutative, i.e. f ◦ j = i ◦ g, there is a diagonal arrow j̃ : B −→ X making the total

diagram A
f−→ B

j̃−→ X
g−→ Y,A

i−→ X,B
j−→ Y commutative, i.e. f ◦ j̃ = i and j̃ ◦ g = j.

(b) X −→ Y is surjective.
(c) X −→ Y is injective; X −→ Y is an epicmorphism if we forget that {•} denotes a singleton
(rather than an arbitrary object and thus {•, •} −→ {•} denotes an arbitrary morphism Z t
Z

(id,id)−−−−→ Z)
(d) X −→ Y is injective, in the category of Sets; π0(X) −→ π0(Y ) is injective, when the diagram
is interpreted in the category of topological spaces.

(T0) {• ≷ ?} −→ {•}iX −→ {•}

(T1) {• < ?} −→ {•}iX −→ {•}

(T2) {•, •′} ↪−→ X i {• > ? < •′} −→ {•} for each injection {•, •′} ↪−→ X

(T3) {a} −→ X i {a ≈ V < x > UA < A} −→ {a = V = x = UA → A} for each arrow {a} −→ X

(T4) {} −→ X i {A > U < x > V < B} −→ {A > U = x = V < B}

(T6) {} −→ X i [0, 1] −→ {0 > x < 1}

Question 2 Is compactness (rather, being a proper map) the right Quillen generalisation of the
class of maps between finite spaces, or perhaps the right Quillen generalisation of the class consisting
of the following four morphisms:

( {U→x←V } −→ {U = x = V }, {1} −→ {0→1}, {0→1} −→ {0 = 1}, {0↔1} −→ {0 = 1} )ilr

It is easy to check that the maps obtained from ultrafilters do lift wrt closed morphisms of finite
spaces, and thus the right Quillen generalisation is a subclass of proper maps. If a map f : A −→ X
lifts wrt the latter three morphism, then it has dense image, is injective and the topology on A ⊂ X
is induced.

3.1 Limit as a lifting property

Limit is not a lifting property but is related to the same diagram. Recall that a sequence {an}n∈N
in X converges to a∞ in X iff each open neighbourhood of a∞ in X contains all but finitely
many points in the sequence. The latter is a condition on subsets of the sequence which we take
as the definition of topology on the set {an}n∈N ∪ {a∞}. This leads to the following diagrams:

(an) //

��

X

��

(an, a∞) //

::

{•}

(an) //

��

A

��

(an, a∞) //

;;

X

The latter defines the notion of a sequentially closed subset A of X.
In the category of metric spaces with Lipschitz or uniformly continuous maps, a space X is com-

plete iff {1, 1
2 ,

1
3 , . . .} −→ {1,

1
2 ,

1
3 , . . . , 0} i ∅ −→ X. A subset A of X is closed iff {1, 1

2 ,
1
3 , . . .} −→

{1, 1
2 ,

1
3 , . . . , 0} i A −→ X; as expected, the metric on {1, 1

2 ,
1
3 , . . .} and {1, 1

2 ,
1
3 , . . . , 0} is induced

13



from the real numbers. Note that in this notation the proof that a closed subspace of a complete
metric space is complete reduces to two applications of the Quillen negation (lifting property), cf.
a formal proof of this in Ganesalingam and Gowers (GG, §2.2, Problem 2).

4 Calculus: Compact and Finite

We want to define a calculus (derivation calculus, a proof system) based on the following observa-
tions:

• a metric space is compact iff the modulus of continuity of a continuous function does not
depend on the point: in physics notation,

δ(x, ε) = δ(ε)

where δ(x, ε) is the modulus of continuity of a continuous function on X

• in the topology generated by a family of closed sets, a set is contained in a proper closed
subset iff it is contained in a finite union of sets in the family.

• there is a decidable fragment of category theory diagram chasing without endomorphisms

Accordingly, we want a calculus which

• quasi-compactness is expressed as a rule to remove dependency of a term on a free variable
in certain situations, not dissimilar to what does a compiler optimizing away dead code

• ”finite” is expressed as being closed in topology generated by a family of sets

• there is no (convenient) notation to talk about endomorphisms

Moreover,

• properties of arrows are represented as labels on arrows; hence inference rules may add or
remove labels from arrows

• it is specified explicitly what an arrow may depend on, and there are rules to add or remove
dependencies. In first-order language, an analogue would be a rule to replace term t(x, y, z)
by t(x, y) (that is, removing dependency on z) (in certain situations)

• a proof/derivation is a collection of labelled arrows, commutativity relations

Let us now give several examples of how we want our calculus to function.

4.1 K is quasi-compact iff X ×K −→ X is closed for any X.

(Bourbaki, Introduction)

We are thus led at last to the general concept of a topological space, which does not
depend on any preliminary theory of the real numbers. We shall say that a set E
carries a topological structure whenever we have associated with each element of E,
by some means or other, a family of subsets of E which are called neighbourhoods of
this element - provided of course that these neighbourhoods satisfy certain conditions
(the axioms of topological structures). Evidently the choice of axioms to be imposed
is to some extent arbitrary, and historically has been the subject of a great deal of
experiment (see the Historical Note to Chapter I). The system of axioms finally arrived
at is broad enough for the present needs of mathematics, without falling into excessive
and pointless generality. A set carrying a topological structure is called a topological
space and its elements are called points. The branch of mathematics which studies
topological structures bears the name of Topology (etymologically, “science of place”,
not a particularly expressive name), which is preferred nowadays to the earlier (and
synonymous) name of Analysis situs.

14



To formulate the idea of neighbourhood we started from the vague concept of an element
“sufficiently near” another element. Conversely, a topological structure now enables us
to give precise meaning to the phrase “such and such a property holds for all points
sufficiently near a”: by definition this means that the set of points which have this
property is a neighbourhood of a for the topological structure in question. From the
notion of neighbourhood there flows a series of other notions whose study is proper to
topology: the interior of a set, the closure of a set, the frontier of a set, open sets, closed
sets, and so on (see Chapter I, g I). For example, a subset A is an open set if, whenever
a point a belongs to A, all the points sufficiently near a belong to A; in other words, if
A is a neighbourhood of each of its points.

A vague, if old-fashioned, way to express compactness may be: a parameter¿variable? k varies
over a compact domain if the following holds: if a property holds for all points sufficiently near a
in some sense (continuously) depending on parameter k, then then the property holds for all points
sufficiently near a in some sense independent of k.

Let us translate this vague expression first in the set theoretic language of Bourbaki, and then
speculate what that might mean for the calculus we want to construct.

(Bourbaki, Introduction) writes: “[A] topological structure now enables us to give precise mean-
ing to the phrase “such and such a property holds for all points sufficiently near a”: by definition
this means that the set of points which have this property is a neighbourhood of a for the topo-
logical structure in question.” Recall that for Bourbaki a neighbourhood of a is a superset of an
open subset containing a.

It is implicit that a is a point of a space A and variable k varies over a space K. A “property”
is a subset of A, call it P . “the property holds for all points sufficiently near a” iff P is a (not
necessarily open) neighbourhood of a. “points sufficiently near a in some sense (continuously)
depending on parameter k” defines a family of neighbourhoods Pk 3 a, k ∈ K of the point a.
“Continuously” may be taken to mean the subset P̃ := ∪kPk × {k} ⊂ A ×K is open, or at least
it is a neighbourhood of {a} ×K in A×K.

Hence the sentence above says: if P̃ ⊂ A × K is open, {a} × K ⊂ P̃ , then there is an open
subset a ∈ Aa ⊂ A such that Aa×K ⊂ P̃ . As this holds for each a ∈ A, it is equivalent to say the

set {a : {a} ×K ⊂ P̃} is open, i.e. the projection of ¯̃P := A \ P̃ is closed.
In our calculus we would like to express this principle as a derivation rule of the following kind:

k varies a compact domain iff in certain situations¿contexts? the following derivation rule is valid:

{a} −→ A −−−−−−−−−→
(depends on k)

{a→ ā}

{a} −→ A −−→ {a→ ā}

or something like
{a} ×K −→ A×K −→ {a→ ā}
{a} −→ A −−→ {a→ ā}

It is implicit in our notation that the composition {a} −→ {a → ā} sends a to a, hence
the conclusion, resp. the hypothesis, define an open neighbourhood of a, resp. a family of such
depending on k.

The context should imply two things: (i) that the arrow A −−−−−−−−−→
(depends on k)

{a→ ā} corresponds

a neighbourhood {a} ×K, and, more interestingly, (ii) we only know (care) about A −→ {a→ ā}
that it is a property of points which holds sufficiently near a.

Let us stress: as (iii) indicates, in our calculus we want that an inference rule may tell us to
forget some information, such as details of the construction of the family A −−−−−−−−−→

(depends on k)
{a→ ā}.

Probably, (i) is related to the arrow being definable.

4.2 Axioms T2 − T4

Let us give a proof of a Hausdorff quasi-compact space is necessary normal using terminology of
“sufficiently near”. It is this proof that we want to rewrite in the calculus we want to construct.
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Recall that we want to prove that for two closed non-intersecting subsets A,B ⊂ X there are
neighbourhoods V ⊃ A and W ⊂ B such that V ∩W = ∅. Assume we know that A and B are
quasi-compact.

A space is Hausdorff iff any pair of points sufficiently near to a given pair of distinct points are
also distinct. That is, if a 6= b ∈ X and a′, b′ are sufficiently near to a, b, then a′ 6= b′; the meaning
of “sufficiently near” depends on both a and b. b varies over a compact domain B. Hence for any
a′ “sufficiently near” to a in a sense independent of b in B, a′ 6= b′ for b′ sufficiently near b varying
over B. Variable a ranges over a compact domain as well, hence for a′ sufficiently near a ranging
over domain A, in a sense independent of both a and b, a′ 6= b′ for b′ sufficiently near b varying
over B. Now, “a′ sufficiently near a ranging over domain A, in a sense independent of both a and
b” means a′ varying over a neighbourhood of A, and similarly b′ varies over a neighbourhood of B.
Hence, the statement is proven.

In terms of our calculus this argument should look as follows. We have the following diagrams:

(i) {A→A′←x→B′←B}

��

X //

f
66

{A→A′ = x = B′←B}

(ii) {A,A′, x,B′, B}

��

// {A→A′←x→B′←B}

��

X //

f
44

{A→A′ = x = B′←B}
We have an arrow X −→ {A→ A′ = x = B′← B}, that is, two closed subsets A and B of

X. We want to construct an arrow X −→ {A← A′→ x← B′→ B} such that the diagram (i)
commutes. That is, A ∪A′ and B ∪B′, are non-intersecting neighbourhoods of A and B.

To check commutativity, it is enough to check it pointwise.
This means that for arbitrary arrow {A,A′, x,B′, B} −→ X, if the square of (ii) commutes

(where the upper horizontal arrow {A,A′, x,B′, B} −→ {A← A′→ x←B′→B} is the obvious
one), so does the upper triangle.

X is Hausdorff and that means you can construct an arrow X −→ {A→A′← x→B′←B}
making the upper triangle commute given an arrow {A,B} −→ {A→A′←x→B′←B} such that
the square commutes.

(iii) {A,B}

��

// {A→A′←x→B′←B}

��

X //

f

dep.(A,B)

66

{A→A′ = x = B′←B}

Now, use quasi-compactness of X to remove the dependency of the diagonal arrow X. Hence
you get the diagonal arrow such that for each an arrow {A,B} −→ {A→A′←x→B′←B} making
the square commute, the upper triangle commute. Now check this implies (i), which is what we
want to prove.

4.3 K is quasi-compact iff each open covering has a finite subcovering.

An open covering U of X is a collection of open subsets such that for each u ∈ X there is U =
U(u) ∈ U such that u ∈ U(u). In our calculus this should be denoted by

{u} −→ X
(U(u))−−−−→ {u→w} (∗)

Here it is implicit that the composition sends u into u. The label U(u) says that the arrow
X −→ {u→v} may depend on u.

To express the notion of a finite subcovering, we use the following observation. Adjoin a point
w to X and consider topology on X ∪ {w} generated by sets in U as basic closed subsets. Then X
is closed in this topology iff X is a finite union of basic closed sets, i.e. there is a finite subcovering
of U .

A finite subcovering is to be expressed as follows.
Replace {u→w} by {u←w} and consider the following as a definition of a topological space

XU :

{u} −→ XU
(U(u))−−−−→ {u←w}
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{w} −→ XU −→ {u←w} –or– {w} −→ XU
(U(u))−−−−→ {u←w}

..The commutativity identities are inherited from (*) above. ..Arrow {w} −→ X did not appear in
(*) and hence w is a new point adjoined to X..

To say that “there is a finite subcovering” is the same as saying we may remove the dependency
of U(u) on u. ...

There is an arrow XU −→ {u←w} such that

{u} −→ XU −→ {u←w}

{w} −→ XU −→ {u←w}

Same as above, the commutativity identities are inherited from (*) above.

4.4 ¿Proper maps and quasi-compact fibres?

Consider X ×XU and an open covering {u} −→ XU
U(u)−−−→ {u→w}. The open subset U(u)× Ū(u)

of X ×XU can be written as the arrow

W := X ×XU
(U(u)×U(u)−−−−−−−−→ {u→w} × {u←w} −→ {uw→uu = wu = ww} (+)

Consider the open subset
⋃
u
U(u)× Ū(u) of X ×XU , which does not depend on u. In terms of our

calculus, this should correspond to removing the dependency on u in the arrow (+). Now consider
closed set W̄ := X \W and its projection W̄ −→ XU . By construction w 6∈ ImW̄ and the diagonal
is a subset of W̄ . Hence, pr W̄ contains X (as a subset of XU ) and does not contain w.

By assumption(?) pr W̄ is closed; by the definition of XU this implies that X is a finite union
of basic closed subsets in XU , i.e. is a finite union of the subsets in the covering family U .

5 Speculations and Remarks

5.1 Algebraic topology

Finite preorders may be thought as homotopy types.
There is a diagram chasing characterisation of spheres by Kline theorem, as follows.
The circle S1 is the unique 2nd countable space that splits into two connected spaces after

removing any two points. Kline theorem provides an analogous characterisation exists for spheres
of any dimension. An interval I with endpoints a, b ∈ I is the unique 2nd countable space that splits
into two connected components after removing any point except a and b, and remains connected
after removing either a, b or both.
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