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POINT-SET TOPOLOGY AS DIAGRAM CHASING COMPUTATIONS
.

TO GRIGORI MINTS Z”L IN MEMORIAM
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2. Hawk/Goose effect. A baby chick does not
have any built-in image of “deadly hawk” in its
head but distinguishes frequent, hence, harmless
shapes, sliding overhead from potentially
dangerous ones that appear rarely. Similarly to
“first”, “frequent” and “rare” are universal
concepts that were not specifically designed by
evolution for distinguishing hawks from geese.
This kind of universality is what, we believe,
turns the hidden wheels of the human thinking
machinery.

Misha Gromov, Math Currents in the Brain.

Abstract

We observe that some natural mathematical definitions are lifting properties relative to simplest
counterexamples, namely the definitions of surjectivity and injectivity of maps, as well as of be-
ing connected, separation axioms T0 and T1 in topology, having dense image, induced (pullback)
topology, and every real-valued function being bounded (on a connected domain); abelian groups,
perfect groups, and finite groups of order prime to p.

We also offer a couple of brief speculations on cognitive and AI aspects of this observation,
particularly that in point-set topology some arguments read as diagram chasing computations
with finite preorders.

1. Introduction. Structure of the Paper

An earlier version of this note was written for The De Morgan Gazette
to demonstrate that some natural definitions are lifting properties rel-
ative to the simplest counterexample, and to suggest a way to “ex-
tract” these lifting properties from the text of the usual definitions
and proofs. The exposition is in the form of a story and aims to be
self-contained and accessible to a first year student who has taken
some first lectures in naive set theory, topology, and who has heard a
definition of a category. A more sophisticated reader may find it more
illuminating to recover our formulations herself from reading either
the abstract, or the abstract and the opening sentence of the next
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two sections. The displayed formulae and Figure 1(a) defining the lift-
ing property provide complete formulations of our theorems to such a
reader.

Let us stress an observation that rules to erase arrows from a dia-
gram chasing computation might also be useful: they let us to more
faithfully transcribe words “without loss of generality assume ...” and
thus avoid unnecessary “doubling” of vertices and arrows. In particu-
lar, sequential compactness can be viewed as a lifting property followed
by a rule to erase arrows.

Our approach naturally leads to a more general observation that
in basic point-set topology, a number of arguments are computations
based on symbolic diagram chasing with finite preorders; because of
lack of space, we discuss it in a separate note [G0].

2. Surjection and injection

We try to find some “algebraic” notation to (re)write the text of
the definitions of surjectivity and injectivity of a function, as found in
any standard textbook. We want something very straightforward and
syntactic—notation for what we (actually) say, for the text we write,
and not for its meaning, for who knows what meaning is anyway?

(*)words “A function f from X to Y is surjective iff for every element
y of Y there is an element x of X such that f(x) = y.”

A function from X to Y is an arrow X −→ Y . Grothendieck taught us
that a point, say “x of X”, is (better viewed as) as {•}-valued point,
that is an arrow

{•} −→ X

from a (the?) set with a unique element; similarly “y of Y ” we denote
by an arrow

{•} −→ Y.

Finally, make dashed the arrows required to “exist”. We get the dia-
gram Fig. 1(b) without the upper left corner; there “{}” denotes the
empty set with no elements listed inside of the brackets.

(**)words “A function f from X to Y is injective iff no pair of different
points of X is sent to the same point of Y .”
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“A function f from X to Y ” is an arrow X −→ Y . “A pair of points”
is a {•, •}-valued point, that is an arrow

{•, •} −→ X

from a two element set; we ignore “different” for now. “the same point
of Y ” is an arrow {•} −→ Y . Represent “sent to” by an arrow

{•, •} −→ {•}.
What about “different”? If the points are not “different”, then they are
“the same” point of X, and thus we need to add an arrow representing
a single point of X, that is an arrow

{•} −→ X.

Now all these arrows combine nicely into diagram Figure 1(c); how-
ever, our analysis does not necessarily makes it clear that the diagonal
arrow needs to be denoted differently. How do we read it? We want
this diagram to have the meaning of the sentence (**)words above, so
we interpret such diagrams as follows:

(i ) “for every commutative square (of solid arrows) as shown there
is a diagonal (dashed) arrow making the total diagram commuta-
tive” (see Fig. 1(a)).

(recall that “commutative” in category theory means that the compo-
sition of the arrows along a directed path depends only on the end-
points of the path)

Property (i ) has a name and is in fact quite well-known [Qui]. It is
called the lifting property, or sometimes orthogonality of morphisms,
and is viewed as the property of the two downward arrows; we denote
it by i .

Now we rewrite (*)words and (**)words as:

(∗)i {} −→ {•} i X −→ Y

(∗∗)i {•, •} −→ {•} i X −→ Y

So we rewrote these definitions without any words at all. Our bene-
fits? The usual little miracles happen:

The notation makes apparent a similarity of (*)words and (**)words:
they are obtained, in the same purely formal way, from the two of
the simplest arrows (maps, morphisms) in the category of Sets. More
is true: it is also apparent that these two arrows are the simplest
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(a) A i //

f
��

X

g
��

B
j
//

j̃
>>

Y

(b) {} //

��

X

∴(surj)
��

{•} //

>>

Y

(c) {•, •} //

��

X

∴(inj)
��

{•} //

<<

Y

(d) X //

∴(inj)
��

{x, y}

��

Y //

;;

{x = y}

Figure 1: Lifting properties. Dots ∴ indicate free variables and what property of these variables is
being defined; in a diagram chasing calculation, “∴ (surj)” reads as: given a (valid) diagram, add
label (surj) to the corresponding arrow.
(a) The definition of a lifting property f i g: for each i : A −→ X and j : B −→ Y making the
square commutative, i.e. f ◦ j = i ◦ g, there is a diagonal arrow j̃ : B −→ X making the total

diagram A
f−→ B

j̃−→ X
g−→ Y,A

i−→ X,B
j−→ Y commutative, i.e. f ◦ j̃ = i and j̃ ◦ g = j. (b) X −→ Y

is surjective
(c) X −→ Y is injective; X −→ Y is an epicmorphism if we forget that {•} denotes a singleton

(rather than an arbitrary object and thus {•, •} −→ {•} denotes an arbitrary morphism ZtZ (id,id)−−−−→
Z)
(d) X −→ Y is injective, in the category of Sets; π0(X) −→ π0(Y ) is injective, when the diagram
is interpreted in the category of topological spaces.

counterexamples to the properties, and this suggests that we think of
the lifting property as a category-theoretic (substitute for) negation.
Note also that a non-trivial (one which is not an non-isomorphism)
morphism never has the lifting property relative to itself, which fits
with this interpretation.

Now that we have a formal notation and the little observation above,
we start to play around looking at simple arrows in various categories,
and also at not-so-simple arrows representing standard counterexam-
ples.

You notice a few words from your first course on topology: (i) con-
nected, (ii) the separation axioms T0 and T1, (iii) dense, (iv) induced
(pullback) topology, and (v) Hausdorff are, respectively,

(i):

X −→ {•} i {•, •} −→ {•}
(ii):

{• ≷ ?} −→ {•} i X −→ {•}
and

{• < ?} −→ {•} i X −→ {•}
(iii):

X −→ Y i {•} −→ {• → ?}
(iv):

X −→ Y i {• < ?} −→ {•}



point-set topology as diagram chasing to grigori mints z”l in memoriam 27

(v):

{•, •′} ↪−→ X i {• > ? < •′} −→ {•}
See the last two pages for illustrations how to read and draw on the
blackboard these lifting properties in topology; here

{• < ?}, {• ≷ ?}, . . .
denote finite preorders, or, equivalently, finite categories with at most
one arrow between any two objects, or finite topological spaces on
their elements or objects, where a subset is closed iff it is downward
closed (that is, together with each element, it contains all the smaller
elements). Thus

{• < ?}, {• ≷ ?} and {• > ? < •′} −→ {•}
denote the connected spaces with only one open point •, with no open
points, and with two open points •, •′ and a closed point ?. Line (v)
is to be interpreted somewhat differently: we consider all the injective
arrows of form

{•, •′} ↪−→ X.

We mentioned that the lifting property can be seen as a kind of
negation. Confusingly, there are two negations, depending on whether
the morphism appears on the left or right side of the square, that
are quite different: for example, both the pullback topology and the
separation axiom T1 are negations of the same morphism, and the
same goes for injectivity and injectivity on π0 (see Figure 1(c,d)).

Now consider the standard example of something non-compact: the
open covering

R =
⋃
n∈N

{x : −n < x < n }

of the real line by infinitely many increasing intervals. A related arrow
in the category of topological spaces is⊔

n∈N

{x : −n < x < n} −→ R.

Does the lifting property relative to that arrow define compactness?
Not quite, but almost:

{} −→ X i
⊔
n∈N

{x : −n < x < n } −→ R

reads, for X connected, as “Every continuous real-valued function on
X is bounded, i.e. for each continuous f : X −→ R there is a nat-
ural number n ∈ N such that −n < f(x) < n for each x ∈ X”,
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which is an early characterisation of compactness taught in a first
course on analysis. Notice that this characterisation mentions explic-
itly the arrow X −→ R and the bounded intervals of the real line,

i.e. arrows {x : −n < x < n} ⊆−→ R, n ∈ N constituting the arrow-
counterexample on the right hand side.

In a category of metric spaces with say distance non-increasing maps,
a metric spaceX is complete, i.e. each Cauchy sequence xn ∈ X, n ∈ N,
say dist(xn, xm) ≤ 1/n, converges to some point x∞ ∈ X such that
dist(x∞, xn) ≤ 1/n, iff

{“xn” : n ∈ N} −→ {“xn” : n ∈ N} ∪ {“x∞”} i X −→ {•}
(where dist(“xn”, “xm”) = 1

n for m > n, dist(“x∞”, “xn”) = 1
n , as

defined above.)

In functional analysis, a (partially defined!) linear operator f : X −→
Y between Banach spaces X and Y is closed iff for every convergent
sequence xn ∈ X, if f(xn) −−−−→

n−→∞
y in Y , then there is a x ∈ X such

that f(x) = y and xn −−−−→
n−→∞

x, i.e.

{“xn” : n ∈ N} −→ {“xn” : n ∈ N} ∪ {“x∞”} i Domain(f) −→ Y

A module P over a commutative ring R is projective iff for an arbi-
trary arrow N −→M in the category of R-modules it holds

0 −→ R i N −→M =⇒ 0 −→ P i N −→M.

Dually, a module I over a ring R is injective iff for an arbitrary arrow
N −→M in the category of R-modules it holds

R −→ 0 i N −→M =⇒ N −→M i I −→ 0.

Finite groups. There are examples outside of topology; let us give some
examples in group theory, cf. Figure 2. There is no non-trivial homo-
morphism from a group F to G, write F 6→ G, iff

0 −→ F i 0 −→ G or equivalently F −→ 0 i G −→ 0.

A group A is Abelian iff

〈a, b〉 −→ 〈a, b : ab = ba〉 i A −→ 0

where 〈a, b〉 −→ 〈a, b : ab = ba〉 is the abelianisation morphism send-
ing the free group into the Abelian free group on two generators; a
group G is perfect, G = [G,G], iff G 6→ A for any Abelian group A,
i.e.

〈a, b〉 −→ 〈a, b : ab = ba〉 i A −→ 0 =⇒ G −→ 0 i A −→ 0
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in the category of finite or algebraic groups, a group H is soluble iff
G 6→ H for each perfect group G, i.e.

0 −→ G i 0 −→ H or equivalently C −→ 0 i H −→ 0.

A prime number p does not divide the number elements of a finite
group G iff G has no element of order p, i.e. no element x ∈ G such
that xp = 1G yet x1 6= 1G, ..., x

p−1 6= 1G, equivalently Z/pZ 6→ G, i.e.

0 −→ Z/pZ i 0 −→ G or equivalently Z/pZ −→ 0 i G −→ 0.

A finite group G is a p-group, i.e. the number of its elements is a power
of a prime number p, iff in the category of finite groups

0 −→ Z/pZ i 0 −→ H =⇒ 0 −→ H i 0 −→ G.

Sylow theorem implies in a finite group, each p-group is contained
in a maximal one, and the maximal p-subgroups are isomorphic.

This can reformulated as: (in the category of finite groups) each
arrow 0 −→ G decomposes as 0 −→ Sylp(G) −→ G where

0 −→ Z/pZ i 0 −→ Sylp(G)

0 −→ Z/pZ i 0 −→ H =⇒ H −→ Sylp(G) i G −→ 0,

Sylow theorem says more: the maximal p-subgroups are in fact con-
jugated. We only remark that the notion of an inner automorphism
can be reformulated in a diagram chasing manner. An inner auto-
morphism g 7−→ aga−1 of a group G extends to an automorphism
h 7−→ ι(a)hι(a)−1 of a group H for any embedding ι : G −→ H. [Inn,
Sch] show this is a characterisation: an automorphism σ : G −→ G
is inner iff it extends to an automorphism of H for any embedding
ι : G −→ H. See [Inn] and references therein for several more similar
reformulations.

Feit-Thomson theorem can be expressed as a combination of lifting
properties: the theorem says says that each (finite) group of odd order
is soluble, i.e. for each perfect finite group G and each finite group H,

0 −→ Z/2Z i 0 −→ H =⇒ 0 −→ G i 0 −→ H.

Note that all these examples but the last one have a flavour of
negation—a notion being defined by the lifting property with respect
to the simplest counterexample.

Monomorphism and epimorphism. A category theorist would rewrite (**)i
as
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(a) 0 //

��

H

∴(surjective)
��

Z //

??

G

(b) Z //

��

H

∴(injective)
��

0 //

??

G

(c) 〈a, b〉 //

.

��

A

∴(abelian)

��

〈a, b : ab = ba〉 //

88

0

(d) G //

∴(perfect)
��

A

(abelian)
��

0 //

??

0

(e) G //

(perfect)
��

H

∴(soluble)
��

0 //

>>

0

(f) Z/pZ //

.

��

H

∴( p - cardH)

��

0 //

<<

0

(g) H //

∴( p - cardH)
��

G

∴(cardH=pn for some n)
��

0 //

>>

0

(h) Z/2Z //

.

��

H

∴(odd)
��

0 //

<<

0

(e) Z/2Z //

.

��

H

∴(soluble)
��

0 //

<<

0

Figure 2: Lifting properties. Dots ∴ indicate free variables. Recall these diagrams represent rules in
a diagram chasing calculation and “∴ (label)” reads as: given a (valid) diagram, add label (label)
to the corresponding arrow. A diagram is valid iff for every commutative square of solid arrows
with properties indicated by labels, there is a diagonal (dashed) arrow making the total diagram
commutative. A single dot indicates that the morphism is a constant.
(a) a homomorphism H −→ G is surjective, i.e. for each g ∈ G there is h ∈ H sent to g
(b) a homomorphism H −→ G is injective, i.e. the kernel of H −→ G is the trivial group
(c) a group is abelian iff each morphism from the free group of two generators factors through its
abelianisation Z× Z.
(d) a group G is perfect, G = [G,G], iff it admits no non-trivial homomorphism to an abelian group
(e) a finite group is soluble iff it admits no non-trivial homomorphism from a perfect group; more
generally, this is true in any category of groups with a good enough dimension theory.
(f) by Cauchy theorem, a prime p divides the number of elements of a finite group G iff the group
contains an element e, ep = 1, e 6= 1 of order p
(f) a group has order pn for some n iff iff the group contains no element e, el = 1, e 6= 1 of order l
prime to p
(h) by Cauchy theorem, a finite group has an odd number of elements iff it contains no involution
e, e2 = 1, e 6= 1
(e) Feit-Thompson theorem says that each group of odd order is soluble, i.e. it says that this diagram
chasing rule is valid in the category of finite groups. Note that it is not a definition of the label
unlike the other lifting properties.
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(**)mono •∨ • −→ • i X −→ Y

denoting by ∨ and •∨• −→ • the coproduct and the codiagonal mor-
phism, respectively, and then read it as follows: given two morphisms

• left−→ X and • right−−→ X,

if the compositions

• left−→ X −→ Y = • right−−→ X −→ Y

are equal (both to • down−−−→ Y ), then

• left−→ X = • right−−→ X

are equal (both to • down−−−→ X). Naturally her first assumption would
be that • denotes an arbitrary object, as that spares the extra effort
needed to invent the axioms particular to the category of sets (or topo-
logical spaces) that capture that • denotes a single element, i.e. allow
one to treat • as a single element. (A logician understands “arbitrary”
as “we do not know”, “make no assumptions”, and that is how formal
derivation systems treat “arbitrary” objects.) Thus she would read
(**)i as the usual category theoretic definition of a monomorphism.
Note this reading doesn’t need that the underlying category has co-
products: a category theorist would think of working inside a larger
category with formally added coproducts • ∨ •, and a logician would
think of working inside a formal derivation system where “ • ” is ei-
ther a built-in or “a new variable” symbol, and “ • ∨ • −→ • ” (or
“ {•, •} −→ {•} ”) is (part of) a well-formed term or formula.

And of course, nothing prevents a category theorist to make a dual
diagram

(∗∗)epi X −→ Y i • −→ • × •, • runs through all the objects

and read it as:

X −→ Y
left−→ • = X −→ Y

right−−→ • implies Y
left−→ • = Y

right−−→ •
which is the definition of an epimorphism.

3. Sequential compactness. Erasing arrows as a diagram chasing
rule.

Here we argue that rules to erase arrows may be useful in diagram
chasing on the example of sequential compactness, and that “an arrow
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X −→ Y factors as X 99K X ′ 99K Y via an arrow X 99K X ′ with a
certain property” can be expressed as a lifting property combined with
a rule to erase arrows from the diagram chasing computation. We end
with a syntactic analysis of a definition of sequential compactness.

Sequential compactness. Now let us translate to diagram chasing rules
the definition of sequential compactness.

One-point compactification N −→ N ∪ {∞} of the natural numbers
is a standard example of a map from a non-compact space to a compact
space; it is therefore tempting to check whether the lifting property

(***)i N −→ N ∪ {∞} i X −→ {•}
defines something like (sequential) compactness. It does not and is in
fact trivial — it says that in X each sequence xn ∈ X, n a natural
number, converges. Figure 3(a) shows a related diagram which does
define sequential compactness. However, in Figure 3(a) the morphism
N −→ N ∪ {∞} appears twice in the diagram and this duplication is
often unnecessary: often we have little reason to talk about the se-
quence xn’s once we have chosen a subsequence of it. That is, having
applied the diagram chasing rule Figure 3(a), it is often desirable to
remove unnecessary arrows, perhaps after some immediate simplifica-
tions. This is represented by Figure 3(b). To derive Figure 3(a) from
Figure 3(b), first apply Figure 3(b) to the inner arrow in the diagram
Figure 3(c). This shows that rules represented by Figure 3(a) and
Figure 3(b) are equivalent.

Finally, Figure 3(e-f) suggests a notation for the diagram chasing
rule represented by Figure 3(b). This notation makes connection to
the lifting property more apparent and empahasises deleting arrows
as a diagram chasing rule.

Further reducing to diagram chasing with finite spaces We may reduce the
definition of sequential compactness to diagram chasing with finite
topological spaces. It is based on the following lifting properties:

N −→ N ∪ {∞} is injective:

{0, 1} −→ {0 = 1} i N −→ N ∪ {∞}
N is dense in N ∪ {∞}:

{1} −→ {0 < 1} i N −→ N ∪ {∞}
each point of N ∪ {∞} is closed:

{0 < 1} −→ {0 = 1} i N ∪ {∞} −→ {•}
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(a) N

(N∪{∞})

��

//
``

(inj)

X

∴(seq.compact)

��

N

AA

(N∪{∞})

��

N ∪ {∞}

HH

(inj)

�� ��

N ∪ {∞} // {•}

(b) N

(N∪{∞}) erase

��

erase //
``

erase

(inj)

X

∴(seq.compact)

��

N

AA

(N∪{∞})

��

N ∪ {∞}

HH

(inj)

erase

�� ��

N ∪ {∞}
erase

// {•}

(c) N

(N∪{∞})

��

//
``

(id)

X

��

N

BB

(N∪{∞})

��

N ∪ {∞}

(id)

�� ��
N ∪ {∞} // Y

(d) L

(∞,6=)

��

//
ZZ

(inj)

X

∴(seq.compact)

��

L′′

DD

(∞, 6=)

��

L′′′

II

(inj)

�� ��

L′ // {•}

(e) 6−→ N //

��

X

∴(seq.compact)

��

6−→ N ∪ {∞} //

::

{•}

(f)
erase−−−−→ N //

��

X

∴(seq.compact)

��
erase−−−−→ N ∪ {∞} //

::

Y

(g)
erase−−−−→ . //

(∞, 6=)

��

.

∴(seq.compact)

��erase−−−−→ . //

AA

.

Figure 3: Sequential compactness as a lifting property. Label (N ∪ {∞}) says that the arrow N −→
N ∪ {∞} denote the one-point topological compactification of the set of natural numbers with discrete topol-
ogy. That is, each subset of N is both closed and open, and a subset of N ∪ {∞} is closed iff it is either finite

or contains ∞. In (c) and (d), L
(∞,6=)−−−−→ L′ denotes that L is dense in L′, the map is injective and each

point of L′ and L is closed, and the map is not an isomorphism. See Figure 3 below for the corresponding
lifting properties. Note commutativity of the left rectangle implies the map N −→ N ∪ {∞} has infinite
image.
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(a) {0, 1} //

.

��

N

∴(inj)

��

{0 = 1} //

99

N ∪ {∞}

(b) N //

∴(dense)

��

{1}

.

��

N ∪ {∞} //

99

{0 < 1}

(c) {0 < 1} //

.

��

N ∪ {∞}

∴(T1)

��

{0 = 1} //

99

{•}

Figure 4: Lifting Properties defining the label (∞) above: injecivity, dense image, the target is
T1-separated, i.e. each point of the target is closed.

Write X
(∞)−−→ Y to mean these lifting properties hold with respect

to X −→ Y , and write X
(∞, 6=)−−−→ Y to mean X

(∞)−−→ Y and the arrow

is not an isomorphism. It is easy to see that X
(∞,6=)−−−→ Y implies both

spaces X and Y are infinite. Figure 4(d) replacing N −→ N ∪ {∞} by

X
(∞, 6=)−−−→ Y in Figure 4(b) gives a definition of compactness.

Syntactical analysis of a definition of sequential compactness. Now let us trans-
late to diagram chasing rules the definition of sequential compactness.

(***)words “A space X is sequentially compact iff each sequence xn ∈
X, n a natural number, has an accumulation point, i.e. a point x∞
such that each open neighbourhood of x∞ in X contains infinitely
many points from the sequence.

“A sequence xn ∈ X, n a natural number” is an arrow N x∗−→ X;
words “each open neighbourhood of x∞ [..] contains infinitely many
points from the sequence” define a property of topology (on anything
containing) {“xn” : n ∈ N}∪{“x∞”} or in another notation N∪{∞}.
Thus the definition above translates to:

(***)N −→ N ∪ {∞} each arrow N x·−→ X factors as

N −→ N ∪ {∞} x·,x∞−−−→ X

via a topological space such that its set of points is N ∪ {∞}
and such that the topology on N ∪ {∞} is such that each open
neighbourhood of x∞ contains infinitely many points of N.

Note there is no fixed topology on N ∪ {∞}; rather, we only know
(care) that each open neighbourhood of∞ is infinite and what restric-
tion it places on continuous maps N∪{∞} −→ X from N∪{∞}; this
condition says little if anything about arrows to N ∪ {∞}.

Note N (∞)−−→ N ∪ {∞} carries label (∞) implies the topology on
N ∪ {∞} has the properties described above.

Above we argued that the lifting property is a meaningful negation;

does this apply to this example as well? Arguably yes: L
(∞,6=)−−−→ L′ is
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arguably the simplest lifting properties defining a class consisting only
of infinite spaces. Arguably, this supports the well-know intuition that
being compact is an analogue of being finite for topological spaces.

4. Speculations.

Does your brain (or your kitten’s) have the lifting property built-
in? Note [G0] suggests a broader and more flexible context making
contemplating an experiment possible. Namely, some standard argu-
ments in point-set topology are computations with category-theoretic
(not always) commutative diagrams of preorders, in the same way that
lifting properties define injection and surjection. In that approach, the
lifting property is viewed as a rule to add a new arrow, a computational
recipe to modify diagrams.

Can one find an experiment to check whether humans subconsciously
use diagram chasing to reason about topology?

Does it appear implicitly in old original papers and books on point-
set topology?

Is diagram chasing with preorders too complex to have evolved? Per-
haps; but note the self-similarity: preorders are categories as well, with
the property that there is at most one arrow between any two objects;
in fact sometimes these categories are thought of as 0-categories. So
essentially your computations are in the category of (finite 0-) cate-
gories.

Is it universal enough? Diagram chasing and point-set topology, ar-
guably a formalisation of “nearness”, is used as a matter of course in
many arguments in mathematics.

Finally, isn’t it all a bit too obvious? Curiously, in my experience it’s
a party topic people often get stuck on. If asked, few if any can define
a surjective or an injective map without words, by a diagram, or as
a lifting property, even if given the opening sentence of the previous
section as a hint. No textbooks seem to bother to mention these refor-
mulations (why?). An early version of [GH-I] states (*)i and (**)i
as the simplest examples of lifting properties we were able to think
up; these examples were removed while preparing for publication.

No effort has been made to provide a complete bibliography; the
author shall happily include any references suggested by readers in
the next version [G].
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