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Question: define a proof system formalising di-

agram chasing arguments (computations with

commutative diagrams) in category theory, a

common method of “computational” proof us-

ing category theory. (Did not find in litera-

ture).

Observation: some standard easy proofs in point-

set topology are computations with commuta-

tive diagrams of finite preorders (which happen

to be degenerate finite categories) in disguise,

e.g.

implications between separation axioms T0, T1, T2

f(x) = g(x) defines a closed subset of a Haus-

dorff space
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However, there are other examples of (parts

of) category theory arguments disguised in a

similar way, say in the theory of metric spaces.

We explain how an example from (Ganesalingam,

Gowers, A fully automatic problem solver with

human-style output is a sequence of applica-

tions of a single diagram chasing rule, the lift-

ing property.
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Relation to (Ganesalingam, Gowers):

• “our programs really are thinking in a hu-
man way”

• “that in the long term, paying close atten-
tion to human methods will pay dividends”

• “we do not allow our programs to do any-
thing that a good human mathematician
wouldn’t do”, in particular no backtrack-
ing for routine problems

• (difference) BUT no human-readable out-
put (important for [GG]); possibly may be
added later

• Arguably: [GG]’s automatic prover some-
times does diagram chasing, or computa-
tion with commutative diagrams, in dis-
guise.
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A proof as presented in (Ganesalingam, Gow-
ers):

Problem. Let X be a complete metric space
and let A be a closed subset of X. Prove that
A is complete.

The proof discovery process would usually be
something like this.

1. [Clarify what needs to be proved.] We
must show that every Cauchy sequence in
A converges in A.

2. [We must show something about every Cauchy
sequence, so pick an arbitrary one.] Let
(an) be a Cauchy sequence in A.

3. [Clarify what now needs to be proved.] We
are trying to show that (an) converges in
A.
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4. [See what we can say about the sequence

(an).] The sequence (an) is a Cauchy se-

quence in the space X, and X is complete;

therefore (an) converges in X.

5. [Give a name to the object that we have

just implicitly been presented with.] Let x

be the limit of the sequence (an).

6. [See what we can say about x.] But A is

closed under taking limits, so x ∈ A.

7. [Recognise that the problem is solved.] Thus,

(an) converges in A, as we wanted.

Our program is designed to imitate these typ-

ical human moves as closely as possible.



• High level statements “out of nowhere” as

if they come all by themselves

• No explicit “combinatorial” pattern; im-

plicit semantics

• What does“We must”, “Clarify”, “we have

just implicitly been presented with” mean

to a computer?

• Each step (application of a heuristic) hard-

coded into the prover ?
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In our exposition/translation:

• Explicit “combinatorial” patterns; no words

but in the definition of the semantics

• Standard derivation rules from category the-

ory

• Most creative part is the definition of the

underlying category and thereby semantics

• “Reading off” from the text of the defini-

tions used

Our interpretation: the argument above is a

diagram chasing computation consisting only

of application of lifting properties, once the

right notation has been set up.
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Let us translate this argument step-by-step to
the language of category theory of diagram
chasing.

Problem. Let X be a complete metric space
and let A be a closed subset of X. Prove that
A is complete.

(0) Translate the statement to the language of
arrows.

Fix the category of metric spaces with con-
tinuous distance-non-increasing maps.
(Why? Arguably, the most creative step.)

Translate the notions used in the theorem:

a Cauchy sequence, a convergent sequence,
a complete metric space, a closed subspace
of a metric space.
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(0′) A Cauchy sequence (an) in metric space X

is a sequence of points an ∈ X,n ∈ N such

that

distA(an, am) ≤
1

min(m,n)
.

This implicitly defines a (non-complete) met-

ric space (an) whose points are {an : n ∈
N} and distance

dist(an, am) :=
1

min(m,n)
.

Rewrite: A Cauchy sequence (an) in met-

ric space X is a continuous distance-non-

increasing map

(an) −→ A
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(0′′) the Cauchy sequence (an) in A converges

in A iff there is a limit point a∞ in A such

that

distA(a∞, an) ≤
1

n
.

This implicitly defines a (complete) metric

space (an, a∞) whose points are {an : n ∈
N} ∪ {a∞} and distance

dist(an, am) :=
1

min(m,n)
(know already)

dist(a∞, an) :=
1

n

Rewrite: the Cauchy sequence (an) −→ A

converges in A iff the map (an) −→ A fac-

tors as

(an) −→ (an, a∞) −→ A

in the category of metric spaces with distance-

non-increasing maps.
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(0”’) X is complete: each arrow (an) −→ X fac-
tors as

(an) −→ (an, a∞) −→ X

in the category of metric spaces with distance-
non-increasing maps. (an) //

��

X

��

(an, a∞) //

88

{•}

(0””) A is closed under taking limits: for each
sequence (an) in A, if the sequence (an) in
A has a limit a∞ in X, then a∞ ∈ A.

the sequence (an) in A ⊆ X has a limit a∞
in X: the composition

(an) −→ A −→ X

factors as

(an) −→ (an, a∞) −→ X

then a∞ ∈ A: (an) //

��

A

��

(an, a∞) //

99

X
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(1) [Clarify what needs to be proved.] We

must show that every Cauchy sequence in

A converges in A.

(2) [We must show something about every Cauchy

sequence, so pick an arbitrary one.] Let

(an) be a Cauchy sequence in A.

(2’) Draw arrow

(an) −→ A

(3) [Clarify what now needs to be proved.] We

are trying to show that (an) converges in

A.

(3’) Draw arrows

(an) −→ (an, a∞)
(to construct)−−−−−−−−−−→ A
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(4) [See what we can say about the sequence

(an).] The sequence (an) is a Cauchy se-

quence in the space X, and X is complete;

therefore (an) converges in X.

(4’) We have Cauchy sequence

(an) −→ A, A −→ X,

and therefore their composition Cauchy se-

quence (an) −→ X in X.

As X is complete, each arrow (an) −→ X

factors as (an) −→ (an, a∞) −→ X.

Therefore we construct

(an) −→ (an, a∞) −→ X

(an) //

��

X

��

(an, a∞) //

88

{•}
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(5) [Give a name to the object that we have

just implicitly been presented with.] Let x

be the limit of the sequence (an).

(5’) done already: x = a∞
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(6) [See what we can say about x.] But A is

closed under taking limits, so x ∈ A.

(6’) A is closed under taking limits:

(an) //

��

A

��

(an, a∞) //

99

X

(6”) so x ∈ A: apply the lifting property above

to

(an) −→ X and (an, a∞) −→ X

and construct the diagonal arrow

(an, a∞) −→ A

14



(7) [Recognise that the problem is solved.] Thus,

(an) converges in A, as we wanted.

(7’) We have constructed a factorisation

(an) −→ (an, a∞) −→ A

for the arrow

(an) −→ A
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