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Abstract

We introduce a simple formal syntax and use it to rewrite in a concise,
uniform and intuitive way several standard definitions in topology which
are usually expressed in words. The definitions include compact, discrete,
connected, and totally disconnected spaces, dense image, induced topol-
ogy, closed subsets, and some of the separation axioms. The syntax is of
category-theoretic flavour and is based on the observation that these prop-
erties can all be defined category-theoretically by repeated application of a
standard category theory trick, the Quillen lifting property (orthogonality
of morphisms), starting from a single (counter)example.

We hope our reformulations may be use in formalisation of elementary
topology and in teaching.

1 Introduction.

Generalities. Motivation. We introduce a simple formal syntax and use it
to rewrite in a concise, uniform and intuitive way several standard definitions
in topology which are usually expressed in words. The definitions include com-
pact, discrete, connected, and totally disconnected spaces, dense image, induced
topology, closed subsets, and some of the separation axioms.

The formal expressions are uniform and intuitive in the sense that each is
based on the simplest (counter)example and treats orthogonality of morphisms
as negation, i.e. as a way to avoid counterexamples. Arguably, they are short
enough (several bytes) that a brute force algorithm can produce in practice a
short list containing them all.

We hope this syntax may be of use in automatic theorem proving and in
teaching elementary topology, and, if developed further, may allow to rewrite

�A draft; comments welcome. miishapp@sddf.org. This draft is essentially a part
of a more verbose draft on the expressive power of the lifting property available at
http://mishap.sdf.org/expressive-power-of-the-lifting-property.pdf.
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the traditional definitions in elementary topology into a new presentation based
on diagram chasing that is easier for both humans and machines to under-
stand. In a somewhat similar way the diagram chasing presentation1 based on
the axioms and formalism of a model category allows to rewrite some defini-
tions of elementary homotopy theory. One cannot but wonder whether these
elementary observations may provide a useful point of view on tame topology
of Grothendieck, a foundation of topology “without false problems” and “wild
phenomena” “at the very beginning”. We also note that in a sense, our expres-
sions are implicitly present in [Bourbaki, General Topology] but are described
there in words.

The syntax is a very simple combinatorial formalism of category theoretic
flavour based on finite preorders, or, equivalently, finite categories of certain
kind. The semantics is based on viewing finite topological spaces as preorders
or categories, and the Quillen lifting property (orthogonality of morphisms)
in the category of topological spaces. The intuition (cf. [Gavrilovich, DMG]) is
based on the following: (a) the expressions are based on simple counterexamples,
often a map between a point and two points (a) treating the lifting property as
negation (c) correlations between the diagrams and the text of the definitions.

Illustrative examples. As an illustration, let us list formal expressions for:
compactness; surjective, subset, discrete, split; connected, injective; induced
topology, separation axiom T1; dense image, closed subset

{ {a}-->{a->b} }^r_{<5}^lr compactness

{ {}-->{a} }^r surjective

{ {}-->{a} }^rr subset

{ {}-->{a} }^rl discrete

{ {}-->{a} }^lrl split morphisms

{ {a,b}-->{a=b} }^l connected

{ {a,b}-->{a=b} }^r injective

{ {a->b}-->{a=b} }^r induced topology

{ {a->b}-->{a=b} }^l separation axiom T1

{ {b}-->{a->b} }^l dense image

{ {b}-->{a->b} }^lr closed subset

Moreover, these expressions are straightforward to find once you note that
they are based on the simplest counterexamples and treat orthogonality/lifting
property as negation, e.g. {a}-->{a->b} denotes the simplest non-proper map
sending a point into the open point of the space {a->b} with open point a and

1 Someone interested in implementation may want to a look at a sample Python code
[BaysQuilder, NOTES] and the appendix to [Gavrilovich, A homotopy approach to set theory,
pp.13-16] to get some idea on how to view the axioms of a model category as diagram chasing
rules.
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closed point b; “negated” three times, this counterexample gives the notion of
a proper map.

Now let us explain how to evaluate the expression for compactness in the
category of topological spaces: first take (a class consisting of) the single non-
proper map {a}-->{a->b} , the inclusion of the open point into the Sierpinski
space, then take the subclass of its right orthogonal consisting of the maps
between spaces each with less than 5 points (the subclass happens to be the
class of all proper, equiv. closed, maps between such spaces), and then finally
take its left, then right orthogonal.

An easy argument (cf. the proof of Claim 2) shows you thus obtain a subclass
of the class of proper maps which contains all proper maps between finite spaces
and all proper maps between normal (T4) spaces. We do not know if it is the
class of proper maps (cf. Conjecture 1 below).

Our observations indicate that certain classical definitions and theorems of
topology, such as Tychonoff theorem and implications between separation ax-
ioms, can be understood in a purely finitary way, as combinatorial rules of
diagram chasing flavour.

Key observation The syntax is based on the following observation, which
applies not only to topology:

a number of elementary properties from a first-year course can be
defined category-theoretically by repeated application of a standard
category theory trick, the Quillen lifting property, starting from
a class of explicitly given morphisms, often consisting of a single
(counter)example

In this short note we discuss only examples of such properties in topology;
they include the notions of: compact, discrete, connected, and totally discon-
nected spaces, dense image, induced topology, closed subsets, and separation
axioms.

See [Gavrilovich, Lifting Property] for other examples. They include com-
plete metric spaces, a subset of a metric space being closed. Examples in alge-
bra include: finite groups being nilpotent, solvable, torsion-free, p-groups, and
prime-to-p groups; injective and projective modules; injective, surjective, and
split homomorphisms.

These examples and the observation above are elementary, yet we were un-
able to find them in literature.

Structure of the paper. The goal of this short note is a concise exposition
of the examples in topology and directly related open questions. A reader
interested in a broader context or a more verbose exposition might want to look
at a draft [Gavrilovich, Lifting Property].

Further examples and speculations may be found in drafts [Gavrilovich, Lift-
ing Property], [Gavrilovich, Tame topology]. There we offer detailed specula-
tions on how to rewrite elementary topology in terms of diagram chasing rules
and labelled finite categories.

History. These observations arose in an attempt to understand ideas of
Misha Gromov [Memorandum Ergo] about ergologic/ergostructure/ergosystems.
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Oversimplifying, ergologic is a kind of reasoning which helps to understand how
to generate proper concepts, ask interesting questions, and, more generally, pro-
duce interesting rather than useful or correct behaviour. He conjectures there
is a related class of mathematical, essentially combinatorial, structures, called
ergostructures or ergosystems, and that this concept might eventually help to
understand complex biological behaviour including learning and create mathe-
matically interesting models of these processes.

We hope our observations may eventually help to uncover an essentially
combinatorial reasoning behind elementary topology, and thereby suggest an
example of an ergostructure.

From this point of view, our examples suggest a short algorithm to generate
a number of interesting notions in topology.

Related works. This paper continues work started in [DMG], a rather leisurely
introduction to some of the ideas presented here here which aims to express
the intuition behind our syntax. Draft [Gavrilovich, Elementary Topology]
shows how to view several topology notions and arguments in [Bourbaki, Gen-
eral Topology] as diagram chasing calculations with finite categories. Draft
[Gavrilovich, Tame Topology] is more speculative but less verbose; it has sev-
eral more examples dealing with compactness, in particular it shows that a
number of consequences of compactness can be expressed as a change of order
of quantifiers in a formula. Notably, these drafts show how to “read off” a sim-
plicial topological space from the definition of a uniform space, see also Remark
7 and Conjecture 2 in [Gavrilovich, Lifting property].

2 Expressions for topological properties

2.1 The lifting property: the key observation

For a property C of arrows (morphisms) in a category, define

Cl �� �f � for each g > C f û g�

Cr �� �g � for each f > C f û g�

Clr �� �Cl�r, ...

here f û g reads “ f has the left lifting property wrt g ”, “ f is (left)
orthogonal to g ”, i.e. for f � AÐ� B, g �X Ð� Y , f û g iff for each i � AÐ�X,
j � B Ð� Y such that ig � fj (“the square commutes”), there is j� � B Ð�X such
that fj� � i and j�g � j (“there is a diagonal making the diagram commute”).

The following observation is enough to reconstruct all the examples in this
paper, with a bit of search and computation.

Observation.
A number of elementary properties can be obtained by repeatedly
passing to the left or right orthogonal Cl,Cr,Clr,Cll,Crl,Crr, ...
starting from a simple class of morphisms, often a single (counter)example
to the property you define.
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�a� A
i //

f
��

X

g

��

B
j
//

j̃
>>

Y

�b� �� //

��

X


�surj�

��

�Y� //

>>

Y

�c� �Y, Y� //

��

X


�inj�

��

�Y� //

==

Y

Figure 1: Lifting properties. (a) The definition of a lifting property f û g. (b)
X Ð� Y is surjective (c) X Ð� Y is injective

A useful intuition is to think that the property of left-lifting against a class
C is a kind of negation of the property of being in C, and that right-lifting is
another kind of negation. Hence the classes obtained from C by taking orthog-
onals an odd number of times, such as Cl,Cr,Clrl,Clll etc., represent various
kinds of negation of C, so Cl,Cr,Clrl,Clll each consists of morphisms which
are far from having property C.

Taking the orthogonal of a class C is a simple way to define a class of
morphisms excluding non-isomorphisms from C, in a way which is useful in a
diagram chasing computation.

The class Cl is always closed under retracts, pullbacks, (small) products
(whenever they exist in the category) and composition of morphisms, and con-
tains all isomorphisms of C. Meanwhile, Cr is closed under retracts, pushouts,
(small) coproducts and transfinite composition (filtered colimits) of morphisms
(whenever they exist in the category), and also contains all isomorphisms.

For example, the notion of isomorphism can be obtained starting from the
class of all morphisms, or any single example of an isomorphism:

�Isomorphisms� � �all morphisms�l � �all morphisms�r � �h�lr � �h�rl

where h is an arbitrary isomorphism.
Example. Take C � �gÐ� ���� in Sets and Top. Let us show that Cl is the

class of surjections, Crr is the class of subsets, Cl consists of maps f � A Ð� B
such that either A � B � g or A x g, B arbitrary. Further, in Sets, Crl is the
class of injections, and in Top, Crl is the class of maps of form AÐ� A 8D, D
is discrete; both in Sets and Top, Clr is the class of maps A Ð� B such that
either A � g or the map is an isomorphism.

In both Sets and Top, �g Ð� ����rr is the class of subsets, i.e. injective
maps A0 B where the topology on A is induced from B.

2.2 Notation for maps of finite topological spaces

Now we introduce notation for maps of finite topological spaces we use. A
topological space comes with a specialisation preorder on its points: for points
x, y > X, x B y iff y > clx , or equivalently, a category whose objects are points
of X and there is a unique morphism x�y iff y > clx.
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For a finite topological space X, the specialisation preorder or equivalently
the category uniquely determines the space: a subset of X is closed iff it is
downward closed, or equivalently, there are no morphisms going outside the

The monotone maps (i.e. functors) are the continuous maps for this topology.
We denote a finite topological space by a list of the arrows (morphisms) in the

corresponding category; ’�’ denotes an isomorphism and ’�’ denotes the identity
morphism; the empty list is denoted by either g or ��. An arrow between
two such lists denotes a continuous map (a functor) which sends each point to
the correspondingly labelled point, but possibly turning some morphisms into
identity morphisms, thus gluing together some points.

Thus, each point goes to “itself” and

�a, b�Ð� �a�b�Ð� �a� b�Ð� �a � b�

denotes

�discrete space on two points�Ð� �Sierpinski space�Ð� �antidiscrete space�Ð� �single point�

In A Ð� B, each object and each morphism in A necessarily appears in B
as well; we avoid listing the same object or morphism twice. Thus both

�a�Ð� �a, b� and �a�Ð� �b�

denote the same map from a single point to the discrete space with two points.
Both

�a�U�x�V�b�Ð� �a�U � x � V�b� and �a�U�x�V�b�Ð� �U � x � V �

denote the morphism gluing together points U,x, V .
In �a�b�, the point a is open and point b is closed.
Finally, for a class C of morphisms in Top, let

C@n �� �f � f > C, both the domain and range of f are finite of size less than n�.

Cfini �� �f � f > C, both the domain and range of f are finite �.

2.3 Expressions for elementary properties of topological
spaces

Toying with the observation leads to the examples in the claim below which
is trivial to verify, an exercise in deciphering the notation in all cases but (i)
compactness.

Claim 1. (i) In the category of topological spaces, the following holds:

a Hausdorff space K is compact iff K Ð� ��� is in ���a�Ð� �a�b��r
@5�

lr

a Hausdorff space K is compact iff K Ð� ��� is in

��a� b�Ð� �a � b�, �a�b�Ð� �a � b�, �b�Ð� �a�b�, �a�o�b�Ð� �a � o � b� �lr
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a space D is discrete iff gÐ�D is in �gÐ� ����rl

a space D is antidiscrete iff D Ð� ��� is in ��a, b�Ð� �a � b��rr � ��a�
b�Ð� �a � b��lr

a space K is connected or empty iff K Ð� ��� is in ��a, b�Ð� �a � b��l

a space K is totally disconnected and non-empty iff K Ð� ��� is in
��a, b�Ð� �a � b��lr

a space K is connected and non-empty iff for some arrow ���Ð�K
���Ð�K is in �gÐ� ����rll � ��a�Ð� �a, b��l

a space K is non-empty iff K Ð� ��� is in �gÐ� ����l

a space K is empty iff K Ð� ��� is in �gÐ� ����ll

a space K is T0 iff K Ð� ��� is in ��a� b�Ð� �a � b��r

a space K is T1 iff K Ð� ��� is in ��a�b�Ð� �a � b��r

a space X is Hausdorff iff for each injective map �x, y� 0 X it holds
�x, y�0X û �x�o�y�Ð� �x � o � y�

a non-empty space X is regular (T3) iff for each arrow �x�Ð�X it holds
�x�Ð�X û �x�X�U�F�Ð� �x �X � U�F�

a space X is normal (T4) iff g Ð� X û �a�U�x�V�b� Ð� �a�U �

x � V�b�

a space X is completely normal iff g Ð� X û �0,1� Ð� �0�x�1� where
the map �0,1�Ð� �0�x�1� sends 0 to 0, 1 to 1, and the rest �0,1� to x

a space X is path-connected iff �0,1�Ð� �0,1� û X Ð� ���

a space X is path-connected iff for each Hausdorff compact space K and
each injective map �x, y�0K it holds �x, y�0K û X Ð� ���

�gÐ� ����r is the class of surjections

�gÐ� ����rr is the class of subsets, i.e. injective maps A0 B where the
topology on A is induced from B

�gÐ� ����lrl is the class of maps AÐ� B which split

��b�Ð� �a�b��l is the class of maps with dense image

��b� Ð� �a�b��lr is the class of closed subsets A ` X, A a closed subset
of X

(ii) in the category of topological spaces,
for a connected topological space X, each function on X is bounded iff

gÐ�X û 8n��n,n�Ð� R
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(iii) in the category of metric spaces and uniformly continuous maps,
a metric space X is complete iff �1~n�n Ð� �1~n�n 8 �0� û X Ð� �0�
where the metric on �1~n�n and �1~n�n 8�0� is induced from the real line
a subset A `X is closed iff �1~n�n Ð� �1~n�n 8 �0� û AÐ�X

Proof. We defer the proof of the first two items to the next claim. The
rest is straightforward to verify using the definitions.

Many of the separation axioms can be expressed as lifting properties with
respect to maps involving up to 4 points and the real line, see [Appendix A].

The following is a list of properties which are defined using the lifting prop-
erty starting from a single morphism between spaces of at most two points and
whose meaning is easy to describe in words.

Claim 2. In the category of topological spaces, it holds:

���a� Ð� �a�b��r
@5�

lr is almost the class of proper maps, namely a map
of T4 spaces is in the class iff it is proper

��b�Ð� �a�b��l is the class of maps with dense image

��b� Ð� �a�b��lr is the class of maps of closed inclusions A ` X, A is
closed

�gÐ� ����r � ��0�Ð� �0� 1��l is the class of surjections

�gÐ� ����rl is the class of maps of form AÐ� A 8D, D is discrete

�g Ð� ����rll � ��a� Ð� �a, b��l is the class of maps A Ð� B such that
each open closed non-empty subset of B intersects ImA.

�g Ð� ����l is the class of maps A Ð� B such that A � B � g or A x g,
B arbitrary

�g Ð� ����lr is the class of maps A Ð� B such that either A � g or the
map is an isomorphism

�gÐ� ����lrl is the class of maps AÐ� B which split

�gÐ� ����rr is the class of subsets, i.e. injective maps A0 B where the
topology on A is induced from B.

��a� b�Ð� �a � b��l is the class of injections

��a�b� Ð� �a � b��l is the class of maps f � X Ð� Y such that the
topology on X is induced from Y

��a, b� Ð� �a � b��l describes being connected, and is the class of maps
f � X Ð� Y such that f�U� 9 f�V � � g for each two open closed subsets
U x V of X; if both X and Y are unions of open closed connected subsets,
this means that the map π0�X�0 π0�Y � is injective

��a� b�Ð� �a � b��r fibres are T0 spaces
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��a�b�Ð� �a � b��r fibres are T1 spaces

��a, b�Ð� �a � b��r is the class of injections

��a�Ð� �a� b��l is the class of surjections

��a�Ð� �a� b��r is the class of surjections

��b�Ð� �a�b��l something T1-related but not particularly nice

��a�Ð� �a�b��l something T0-related

��a� Ð� �a, b��l is the class of maps f � X Ð� Y such that either X is
empty or f is surjective

Proof. All items are trivial to verify, with the possible exception of the
first item. [Bourbaki, General Topology, I10.2, Thm.1(d), p.101], quoted in
Appendix B, gives a characterisation of proper maps by a lifting property with
respect to maps associated to ultrafilters. Using this it is easy to check that each
map in ��a� Ð� �a�b��r

@5 being closed, hence proper, implies that each map
in ���a� Ð� �a�b��r

@5�
lr is proper. A theorem of [Taimanov], cf. [Engelking,

3.2.1,p.136], quoted in Appendix B, states that for a compact Hausdorff space
K, a Hausdorff space K is compact iff the map K Ð� ��� is in ClrT where

CT �� ��a� b�Ð� �a � b�, �a�b�Ð� �a � b�,

�b�Ð� �a�b�, �a�o�b�Ð� �a � o � b� �

It is easy to check that all the maps listed in the formula above are closed, hence
proper, and therefore

ClrT b ���a�Ð� �a�b��r
@5�

lr

Finally, note that the proof of Taimanov theorem generalises to give that a
proper map between normal Hausdorff (T4) spaces is in the larger class.

Remark 1. Note that the proof of the Tychonoff theorem via ultrafilters is
viewed as a formal property of class of morphisms defined by Quillen lifting
properties. The standard proof of Urysohn lemma is viewed as an infinite ap-
plication of the lifting property characterising axiom T4 and passing to the
limit.

Conjecture 1. In the category of topological spaces,

���a�Ð� �a�b��r
@5�

lr

is the class of proper maps.
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Remark 2. It is easy to see that ���a�Ð� �a�b��r
@m�lr ` ���a�Ð� �a�b��r

@n�
lr

for any m @ n. However, I do not know whether there is n A m A 3 such
that the inclusion is strict. An example using cofinite topology (suggested
by Sergei Kryzhevich) shows that ClrT does not define the class of compact
spaces: indeed, consider infinite sets A ` B, ω B cardA @ cardB, equipped
with cofinite topology (i.e. a subset is closed iff it is finite). Then A b B > ClT
yet A b B û A Ð� ��� fails: for a map f � B Ð� A the preimage of some
(necessarily closed) point is infinite as cardB A cardA, hence not closed, and
the map is not continious. Hence, A Ð� ��� ¶ CT yet A is compact (non-
Hausdorff). This example could probably be generalised to show that that
���a�Ð� �a�b��r

@4�
lr ø ���a�Ð� �a�b��r

@5�
lr.

Question 1. (a) Calculate

���b�Ð� �a�b��r
@5�

lr, ���b�Ð� �a�b��lrr, and

��a�U�x�V�b�Ð� �a�U � x � V�b��lr

Could either be viewed as a “definition” of the real line?

(b) Characterise the interval �0,1�, a circle S1 and, more generally, spheres
Sn using their topological characterisations provided by the Kline sphere
charterisation theorem and its analogues. An example of such a char-
acterisation is that a topological space X is homomorphic to the circle
S1 iff X is a connected Hausdorff metrizable space such that X � �x, y�
is not connected for any two points x x y > X ([Hocking,Young, Topol-
ogy, Thm.2-28,p.55]); another example is that a topological space X is
homomorphic to the closed interval �0,1� iff X is a connected Hausdorff
metrizable space such that X ��x� is not connected for exactly two points
x x y >X ([Hocking,Young, Topology, Thm.2-27,p.54]).

Remark 3. Is there a model category or a factorisation system of interest asso-
ciated with any of these lifting properties, for example compactness/properness?

Many of the separation axioms can be expressed as lifting properties with
respect to maps involving up to 4 points and the real line, see [Appendix A].

2.4 Hausdorff axioms of topology as diagram chasing com-
putations with finite categories

Above we reformulated a number of elementary notions in topology in terms of
preorders. Now we observe that the original axioms of topology as formulated
by Hausdorff can also be viewed as rules for manipulating finite preorders.

Early works talk of topology in terms of neighbourhood systems Ux where Ux
varies though open neighbourhoods of points of a topological space; this is how
the notion of topology was defined by Hausdorff. In the notation of arrows, a
neighbourhood system Ux, x >X would correspond to a system of arrows

�x�Ð�X
U
ÐÐ� �x�x��
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and Hausdorff’s axioms (A),(B),(C) (see Appendix B) would correspond to di-
agram chasing rules.

Here we show the axioms of topology stated in the more modern language
of open subsets can be seen as diagram chasing rules for manipulating diagrams
involving notation such as

�x�Ð�X, X Ð� �x�y�, X Ð� �x� y�

in the following straightforward way; cf. [Gavrilovich, Elementary Topology,.2.1]
for more details.

As is standard in category theory, identify a point x of a topological space X
with the arrow �x�Ð�X, a subset Z of X with the arrow X Ð� �z � z��, and
an open subset U of X with the arrow X Ð� �u�u��. With these identifications,
the Hausdorff axioms of a topological space become rules for manipulating such
arrows, as follows.

Both the empty set and the whole of X are open says that the compositions

X Ð� �c�Ð� �o�c� and X Ð� �o�Ð� �o�c�

behave as expected (the preimage of {o} is empty under the first map, and is
the whole of X under the second map).

The intersection of two open subsets is open means the arrow

X Ð� �o�c� � �o��c��

behaves as expected (the “two open subsets” are the preimages of points o >

�o�c� and o� > �o��c��; “the intersection” is the preimage of �o, o�� in �o�c��
�o��c�� ).

Finally, a subset U of X is open iff each point u of U has an open neigh-
bourhood inside of U corresponds to the following diagram chasing rule:

for each arrow X Ð�
ξU

�U �� Ū� it holds

�U � Ū�

��

X
ξU

//

::

�U �� Ū�

iff for each �u�Ð�X, �u� //

��

�u� U �� Ū�

��

X
ξU

//

88

�u � U �� Ū�

The preimage of an open set is open corresponds to the composition

X Ð� Y Ð� �u�u��Ð� �u� u��.

This observation suggests that some arguments in elementary topology may
be understood entirely in terms of diagram chasing, see [Gavrilovich, Elemen-
tary Topology] for some examples. We hope that this reinterpretation may
help clarify the nature of the axioms of a topological space, in particular it of-
fers a constructive approach, may clarify to what extent set-theoretic language
is necessary, and perhaps help to suggest an approach to ”tame topology” of
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Grothendieck, i.e. a foundation of topology “without false problems” and ”wild
phenomena” ”at the very beginning”.
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3 Appendix A. Separation axioms as lifting prop-
erties (from Wikipedia)

The separation axioms are lifting properties with respect to maps involving up to
4 points and the real line. What follows below is the text of the Wikipedia page
on the separation axioms where we added lifting properties formulae expressing
what is said there in words.

Let X be a topological space. Then two points x and y in X are topologically
distinguishable iff the map �x� y�Ð�X is not continuous, i.e. iff at least one
of them has an open neighbourhood which is not a neighbourhood of the other.

Two points x and y are separated iff neither �x�y�Ð�X nor �x�y�Ð�X
is continuous, i.e each of them has a neighbourhood that is not a neighbourhood
of the other; in other words, neither belongs to the other’s closure, x ¶ cl x and
y ¶ cl x. More generally, two subsets A and B of X are separated iff each is
disjoint from the other’s closure, i.e. A 9 clB � B 9 clA � g. (The closures
themselves do not have to be disjoint.) In other words, the map iAB � X Ð�
�A� x� B� sending the subset A to the point A, the subset B to the point
B, and the rest to the point x, factors both as

X Ð� �A� UA�x� B�Ð� �A � UA � x� B�

and
X Ð� �A� x�UB � B�Ð� �A� x� UB � B�

here the preimage of x,B, resp. x,A is a closed subset containing B, resp. A,
and disjoint from A, resp. B. All of the remaining conditions for separation
of sets may also be applied to points (or to a point and a set) by using sin-
gleton sets. Points x and y will be considered separated, by neighbourhoods,
by closed neighbourhoods, by a continuous function, precisely by a function, iff
their singleton sets �x� and �y� are separated according to the corresponding
criterion.

Subsets A and B are separated by neighbourhoods iff A and B have disjoint
neighbourhoods, i.e. iff iAB �X Ð� �A� x� B� factors as

X Ð� �A� UA�x�UB � B�Ð� �A � UA � x� UB � B�

here the disjoint neighbourhoods of A and B are the preimages of open subsets
A,UA and UB ,B of �A� UA�x�UB � B�, resp. They are separated by closed
neighbourhoods iff they have disjoint closed neighbourhoods, i.e. iAB factors as

X Ð� �A� UA�U
�

A�x�U
�

B�UB � B�Ð� �A� UA � U �

A � x � U �

B � UB � B�.

They are separated by a continuous function iff there exists a continuous function
f from the space X to the real line R such that f�A� � 0 and f�B� � 1, i.e. the
map iAB factors as

X Ð� �0�� 8 �0,1� 8 �1��Ð� �A� x� B�
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where points 0�,0 and 1,1� are topologically indistinguishable, and 0� maps to
A, and 1� maps to B, and �0,1� maps to x. Finally, they are precisely separated
by a continuous function iff there exists a continuous function f from X to R
such that the preimage f�1��0�� � A and f�1��1�� � B. i.e. iff iAB factors as

X Ð� �0,1�Ð� �A� x� B�

where 0 goes to point A and 1 goes to point B.
These conditions are given in order of increasing strength: Any two topo-

logically distinguishable points must be distinct, and any two separated points
must be topologically distinguishable. Any two separated sets must be disjoint,
any two sets separated by neighbourhoods must be separated, and so on.

The definitions below all use essentially the preliminary definitions above.
In all of the following definitions, X is again a topological space.

X is T0, or Kolmogorov, if any two distinct points in X are topologically
distinguishable. (It will be a common theme among the separation axioms
to have one version of an axiom that requires T0 and one version that
doesn’t.) As a formula, this is expressed as

�x� y�Ð� �x � y� û X Ð� ���

X is R0, or symmetric, if any two topologically distinguishable points in
X are separated, i.e.

�x�y�Ð� �x� y� û X Ð� ���

X is T1, or accessible or Frechet, if any two distinct points in X are
separated, i.e.

�x�y�Ð� �x � y� û X Ð� ���

Thus, X is T1 if and only if it is both T0 and R0. (Although you may
say such things as ”T1 space”, ”Frechet topology”, and ”Suppose that
the topological space X is Frechet”, avoid saying ”Frechet space” in this
context, since there is another entirely different notion of Frechet space in
functional analysis.)

X is R1, or preregular, if any two topologically distinguishable points in
X are separated by neighbourhoods. Every R1 space is also R0.

X is weak Hausdorff, if the image of every continuous map from a compact
Hausdorff space into X is closed. All weak Hausdorff spaces are T1, and
all Hausdorff spaces are weak Hausdorff.

X is Hausdorff, or T2 or separated, if any two distinct points in X are
separated by neighbourhoods, i.e.

�x, y�0X û �x�X�y�Ð� �x �X � y�

Thus, X is Hausdorff if and only if it is both T0 and R1. Every Hausdorff
space is also T1.
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X is T2 1
2
, or Urysohn, if any two distinct points in X are separated by

closed neighbourhoods, i.e.

�x, y�0X û �x�x��X�y��y�Ð� �x � x� �X � y� � y�

Every T21
2

space is also Hausdorff.

X is completely Hausdorff, or completely T2, if any two distinct points in
X are separated by a continuous function, i.e.

�x, y�0X û �0,1�Ð� ���

where �x, y� 0 X runs through all injective maps from the discrete two
point space �x, y�.

Every completely Hausdorff space is also T2 1
2
.

X is regular if, given any point x and closed subset F in X such that x
does not belong to F , they are separated by neighbourhoods, i.e.

�x�Ð�X û �x�X�U�F�Ð� �x �X � U�F�

(In fact, in a regular space, any such x andF will also be separated by
closed neighbourhoods.) Every regular space is also R1.

X is regular Hausdorff, or T3, if it is both T0 and regular.[1] Every regular
Hausdorff space is also T2 1

2
.

X is completely regular if, given any point x and closed set F in X such
that x does not belong to F , they are separated by a continuous function,
i.e.

�x�Ð�X û �0,1� 8 �F�Ð� �x�F�

where points F and 1 are topologically indistinguishable, �0,1� goes to x,
and F goes to F .

Every completely regular space is also regular.

X is Tychonoff, or T31
2
, completely T3, or completely regular Hausdorff,

if it is both T0 and completely regular.[2] Every Tychonoff space is both
regular Hausdorff and completely Hausdorff.

X is normal if any two disjoint closed subsets of X are separated by
neighbourhoods, i.e.

gÐ�X û �x�x��X�y��y�Ð� �x�x� �X � y��y�

In fact, by Urysohn lemma a space is normal if and only if any two disjoint
closed sets can be separated by a continuous function, i.e.

gÐ�X û �0�� 8 �0,1� 8 �1��Ð� �0 � 0��x�1 � 1��

where points 0�,0 and 1,1� are topologically indistinguishable, �0,1� goes
to x, and both 0,0� map to point 0 � 0�, and both 1,1� map to point 1 � 1�.
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X is normal Hausdorff, or T4, if it is both T1 and normal. Every normal
Hausdorff space is both Tychonoff and normal regular.

X is completely normal if any two separated sets A and B are separated
by neighbourhoods U a A and V a B such that U and V do not intersect,
i.e.????

gÐ�X û �X�A� U�U �
�W�V �

�V � B�X�Ð� �U � U �, V � � V �

Every completely normal space is also normal.

X is perfectly normal if any two disjoint closed sets are precisely separated
by a continuous function, i.e.

gÐ�X û �0,1�Ð� �0�X�1�

where �0,1� goes to the open point X, and 0 goes to 0, and 1 goes to 1.

Every perfectly normal space is also completely normal.

X is extremally disconnected if the closure of every open subset of X is
open, i.e.

gÐ�X û �U�Z �, Z�V �Ð� �U�Z � � Z�V �

or equivalently

gÐ�X û �U�Z �, Z�V �Ð� �Z � � Z�
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4 Appendix B. Quotations from sources.

For reader’s convenience we quote here from the several sources we use.
[Bourbaki, General Topology, I10.2, Thm.1(d), p.101]:

THEOREM I. Let f � X Ð� Y be a continuous mapping. Then the
following four statements are equivalent:

a) f is proper.

b) f is closed and f�1�y� is quasi-compact for each y > Y .

c) If F is a filter on X and if y > Y is a cluster point of f�F� then
there is a cluster point x of such that f�x� � y.

d) If U is an ultrafilter on X and if y > Y is a limit point of the
ultrafilter base f�U�, then there is a limit point x of U such
that f�x� � y.

[Engelking, 3.2.1,p.136] (“compact” below stands for “compact Hausdorff”):

3.2.1. THEOREM. Let A be a dense subspace of a topological space
X and f a continuous mapping of A to a compact space Y . The
mapping f has a continuous extension over X if and only if for every
pair B1,B2 of disjoint closed subsets of Y the inverse images f�1�B1�
and f�1�B2� have disjoint closures in the space X.

[Hausdorff, Set theory, 40, p.259] (“ε” stands for “>”, and “UxVx” stands for
“Ux 9 Vx”) :

From the theorems about open sets we derive the following properties
of the neighborhoods:

(A) Every point x has at least one neighborhood Ux; and Ux always
contains x.

(B) For any two neighborhoods Ux and Vx of the same point, there
exists a third, Wx B UxVx.

(C) Every point yεUz has a neighborhood Uy B Ux.

It is now again possible to treat neighborhoods as unexplained con-
cepts and to use them as our starting point, postulating Theorems
(A), (B), and (C) as neighborhood axioms.1 Open sets G are then
defined as sums of neighborhoods or as sets in which every point
xεG has a neighborhood Ux B G (the null set included). Theorems
(1), (2), and (3) about open sets are then provable.

....

1 Such a program was carried through in the first edition of this
book. [Grund- zügeder Mengenlehre. (Leipzig, 1914; repr. New
York, 1949),]
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5 Appendix C. Examples of lifting properties in
other categories.

Here we give a list of elementary notions in algebra defined by lifting properties.

Claim 3. (i) �g Ð� ����r, �0 Ð� R�r, and �0 Ð� Z�r are the classes of
surjections in in tha categories of Sets, R-modules, and Groups, resp.,
(where ��� is the one-element set, and in the category of (not necessarily
abelian) groups, 0 denotes the trivial group)

(ii) ���, Y� Ð� ����l � ���, Y� Ð� ����r, �R Ð� 0�r, �Z Ð� 0�r are the
classes of injections in the categories of Sets, R-modules, and Groups,
resp

(iii) in the category of R-modules,
a module P is projective iff 0Ð� P is in �0Ð� R�rl

a module I is injective iff I Ð� 0 is in �R Ð� 0�rr

(iv) in the category of Groups,

a finite group H is nilpotent iff H Ð� H � H is in �0 Ð� G �

G arbitrary�lr

a finite group H is solvable iff 0Ð�H is in �0Ð� A � A abelian �lr �
� �G,G�Ð� G � G arbitrary �lr

a finite group H is of order prime to p iff H Ð� 0 is in �Z~pZÐ� 0�r

a finite group H is a p-group iff H Ð� 0 is in �Z~pZÐ� 0�rr

a group H is torsion-free iff 0Ð�H is in �nZÐ� Z � n A 0�r

a group F is free iff 0Ð� F is in �0Ð� Z�rl

a homomorphism f is split iff f > �0Ð� G � G arbitrary�r

Proof. In (iv), we use that a finite group H is nilpotent iff the diagonal
��h,h� � h > H� is subnormal in H �H. Other examples are straightforward to
verify using the definitions.
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