
Tame topology: a naive elementary approach

via finite topological spaces

an unproofread draft

.

To Evgenii Shurygin In memoriam

Misha Gavrilovich miishapp@sddf.org ∗

November 28, 2016

1 Idea

We observe that several elementary properties can be defined starting from a single morphism by
iterating the Quillen lifting property and restricting to size at most 4. This includes the properties
of a topological space being compact or being discrete, the separation axioms, a finite group being
solvable, a p-group, a group of order prime to p.

We also observe that several elementary notions in topology can be expressed in a very concise
and uniform manner using the Quillen lifting property and finite topological spaces, and, further,
that parts of several standard elementary arguments in topology correspond to manipulations
(calculations) with arrows and labels, of category-theory style.

We suggest it is worthwhile to try to develop a set of rules for manipulating arrows and labels
which allow to represent standard elementary arguments in topology as calculations, both human
readable and computer verifiable.

Should this be possible, we suggest it is then worthwhile to think whether these rules lead to
an approach to the tame topology of Grothendieck, i.e. a foundation of topology ”without false
problems” and ”wild phenomena” ”at the very beginning”.

It appears that our observations suggest it is worthwhile to try to develop the abstract theory
the Quillen lifting property and examples in specific categories including the categories of finite
groups, topological spaces, and metric spaces.

An earlier draft [Lifting Properties] tries to show how to “read off” our observations from the
text of [Bourbaki, General Topology].

Structure of the paper. §2 and §3 introduce notaton and some generalities; §4 lists examples of
lifting properties in various categories; §5 discusses several definitions of compactness; §6 observes
that a uniform structure gives rise to a simplicial object; §7 is devoted to open questions and
speculations.
§5.1 is the heart of the paper: it presents the ultrafilter definition of compactness as a lifting

property.

2 Lifting property.

Let f i g denote, for f : A −→ B, g : X −→ Y , that for each i : A −→ X, j : B −→ Y such that
ig = fj there is j′ : B −→ X such that fj′ = i and j′g = j.

∗http://mishap.sdf.org/mints-lifting-property-as-negation
Higher School of Economics, Soyza Pechatnikov str., 16, St.Petersburg, Russia.
St. Petersburg Institute for Economics and Mathematics of the Russian Academy of Sciences.
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For a class (property) C of arrows in a category, let

Cl := {f l : f l i g for each g ∈ C}

Cr := {gr : f i gr for each f ∈ C}
Note Cl∩C ⊂ Isomorphisms, Cr∩C ⊂ Isomorphisms, and C ⊂ Crl, C ⊂ Clr, Crlr = Cr and

Clrl = Cl, and that Cl, Crl are subcategories closed under limits existing in the ambient category,
and similarly Cr, Clr is subcategories closed under colimits existing in the ambient category.

We call Cl and Cr left- and right-negation of property C, or simply i -negation ; sometimes
we call double negations Clr and Crl i -generalisations of property C, or say that property Clr

and Crl is exemplified by property C.
Perhaps the easiest category theoretic way to define a class of morphism without a given prop-

erty is by taking left or right negation (i.e. lifting property) against all morphisms with the property,
hence the terminology.

3 Diagram chasing as a computation

We like to think of f i g as a diagram chasing rule which turns a commutative diagram ”with a
hole” into a linearly ordered commutative diagram

A
f−→ B

j′−→ X
g−→ Y

hence simplifying the diagram chasing computation.
We like to think of properties of morphisms as labels on arrows.
We like to think of a property (C) of a morphism as a label (c) on an arrow denoted

X
(c)−−→ Y.

We like to think of diagram chasing as a computation adding arrows and labels to commutative
diagrams, and adding rules for doing so.

For example, taking right negation of a label (C) consists of introducing the following rules:

(i) given a commutative square labelled as shown, add diagonal arrow B −→ X

A //

(C)

��

X

(Cr)

��

B //

>>

Y

(ii) given an arbitrary arrow X −→ Y , you may add new objects A,B and new arrows
A −→ X, A −→ B −→ Y forming a commutative square as shown, and add the rule:

(ii)’ if there is an arrow B −→ X making the diagram commute, put label (Cr) on
X −→ Y

Note self-reference: by (ii) label (Cr) says you can prove there is an arrow B −→ X satisfying
certain conditions.

4 Examples of lifting properties

See [Lifting property] for a discussion how these lifting properties can be ”read off” from the text
of standard definitions.

In the category of Sets,

{} −→ {o} i g iff g is surjective
{o, o} −→ {o} i g iff g is injective
f i {o, o} −→ {o} iff f is injective
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In Rings,

0 −→ R i g iff g is surjective R −→ 0 i g iff g is injective

In R-mod, for a commutative ring R,

0 −→ P in (0 −→ R)rl iff P is projective
I −→ 0 in (R −→ 0)rr iff I is injective

In the category of metric spaces with either Lipsitz or uniformly continuous maps,

{1/n}n∈N −→ {0} ∪ {1/n}n∈N i X −→ {o} iff X is complete
{1/n}n∈N −→ {0} ∪ {1/n}n∈N i A −→ X iff A is closed in X, for A a subset of X
here the metric on {1/n}n∈N −→ {0} ∪ {1/n}n∈N is induced from the real line

In the category of finite groups,

the order of G is prime to p iff 0 −→ Z/pZ i G −→ 1

G is a p-group iff G −→ 1 in (0 −→ Z/pZ)rr

H is soluble

iff 1 −→ H is in ({1 −→ A : A abelian })lr

iff 1 −→ H is in ({[G,G] −→ G : G arbitrary })lr

H is nilpotent iff H −→ H ×H in (1 −→ ∗)lr

here (1 −→ ∗) denotes the class of maps {1 −→ G : G arbitrary } and H −→
H ×H, h 7→ (h, h) is the diagonal map

B is the normal closure of the image of A in B iff A −→ B i 1 −→ ∗ for any group ∗

ImA is subnormal in B iff A −→ B in (1 −→ ∗)lr

G is perfect iff 1 −→ G in {1 −→ A : A is abelian }l

G is soluble iff 1 −→ G in {1 −→ G : G is perfect }r

In the category of groups,

Z ∗ Z −→ Z× Z i A −→ 1 iff A is abelian
here Z∗Z is the free non-abelian group on two generators, and Z×Z is the free abelian
group on two generators

In the category of topological spaces.
First we need to introduce notation for finite topological spaces and their maps. We view a

finite topological space as a finite category whose objects are points of X and there is a morphism
x −→ y, necessarily unique, iff y ∈ cl(x); a continuous map is a functor. A category is denoted by
a list of its morphisms; ’=’ denotes an identity morphism. Unless otherwise indicated, a functor
sends each object into itself.

For example, {x ↔ y} denotes the antidiscrete space on two points, {x → y} denotes the
Sierpinski space with point x open and point y open, and {x = y} denotes the single point. There
are maps

{x, y} −→ {x→ y} −→ {x↔ y} −→ {x = y}

the last map denotes the map gluing the two points x and y.

Separation Axioms

T0 (Kolmogorov) {x↔ y} −→ {x = y} i X −→ {o}
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R0 (symmetric) {x→ y} −→ {x↔ y} i X −→ {o}
T1 (Frechet) {x→ y} −→ {x = y} i X −→ {o}
T2 (Hausdorff) {x, y} ↪−→ X i {x→ o← y} −→ {x = o = y}

where {x, y} ↪−→ X runs over all injective maps

T2.5 (Uryhson) {x, y} ↪−→ X i {x→ x′ ← o→ y′ ← y} −→ {x = x′ = o = y′ = y}
T3 (regular) {x} −→ X i {x↔ u→ o← v → b} −→ {x = u = o = v → b}

(completely regular) {x} −→ X i [0, 1] ∪ {1′} −→ {0 = x = 1→ 1′}
here point 1’ is closed, cl(1) = {1, 1′} the map sends [0, 1] to x, and 1′

maps to point 1′.

T4 (normal)

(i) {} −→ X i {a← u→ o← v → b} −→ {a← u = o = v → b}
(ii) {} −→ X i {0′} ∪ [0, 1] ∪ {1′} −→ {0′ ← 0 = x = 1→ 1′}

here points 0’ and 1’ are closed, cl(0) = {0, 0′}, cl(1) = {1, 1′} the map
sends [0, 1] to x, and 0′ maps to point 0′, and 1′ maps to point 1′. Note
(ii) implies (i) as the map {0′}∪[0, 1]∪{1′} −→ {0′ ← 0 = x = 1→ 1′}
factors via {a ← u → o ← v → b} −→ {a ← u = o = v → b}; and
the classical proof of Uryhson Lemma that (i) implies (ii) is an infinite
iteration of (i) and passing to the limit

(perfectly normal) {} −→ X i [0, 1] −→ {0← x→ 1}
here points 0 and 1 are closed, the map sends (0, 1) to x, and 0 maps to
point 0, and 1 maps to point 1.

(extremally disconnected) {} −→ X i {x → x′ ← o → y′ ← y} −→ {x = x′ →
o← y = y′}

Various properties

X is connected iff {} −→ X i {x, y} −→ {x = y}
X is discrete iff

{} −→ X in ({} −→ {o})rl

{} −→ X i {x→ y} −→ {x↔ y}
{} −→ X i {x, y} −→ {x↔ y}

A Hausdorff space K is compact iff {} −→ K in

({z ← u↔ v → t} −→ {x→ z = u = v = t})lr =

{ {y} −→ {o→ y}; {x↔ y} −→ {x = y}; {o→ y} −→ {o = y}; {z ← o→ t} −→ {z = o = t}}lr

(see below for explanation)

For a connected space K, each real-valued function on K bounded iff

{} −→ K i ∪n∈N(−n, n) −→ R

here ∪n∈N(−n, n) −→ R denotes the map to the real line from the disjoint union
of intervals (-n,n) which cover it.

A −→ B is injective

iff A −→ B i {x↔ y} −→ {x = y}
iff {x, y} −→ {x = y} i A −→ B

topology on A is induced from B iff A −→ B i {x→ y} −→ {x = y}
ImA is dense in B iff A −→ B i {y} −→ {x→ y}
X is a closed subset of Y iff X −→ Y in ({y} −→ {x→ y})rl
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({y} −→ {x→ y})rl is the class of inclusions X −→ Y where X is a closed subset
of Y

({y} −→ {x↔ y})rl is the class of inclusions X −→ Y where X is a subset of Y

ImA is open in B iff A −→ B i {o→ x↔ y} −→ {o = x↔ y}
A −→ B i {x ← o → y} −→ {x = o = y} iff for each disjoint closed subsets
Z ′,Z ′′ of A, the closures of their images in B are also disjoint.

A −→ B i {z ← x ← o → y → z} −→ {o → x = y → z} for each closed subsets
Z ′,Z ′′ of A, clB(ImZ ′) ∩ clB(ImZ ′′) = clB(ImZ ′ ∩ ImZ ′′)

5 Compactness.

Here we discuss 3 or 4 definitions of compactness: via ultrafilters, finite subcovers, and universally
closed. We also discuss compactness as being uniform, i.e. it is allowed to change of order of
quantifiers ∀∃ −→ ∃∀.

The only (almost) satisfactory reformulation is that of the definition via ultrafilters. Our
discussion of the other definitions is preliminary.

5.1 Compactness via ultrafilters.

Mathematically, this reformulation is the definition of compactness via ultrafilters [Bourbaki, Gen-
eral Topology, I§10.2, Thm. 1(d), p.101] and a Taimanov’s 1952 theorem [Taimanov] on extending
functions to compacta from dense subspaces.

Let {0} −→ {0 → 1} denote the map sending a point into the open point of the Sierpinski
two-point space.

(cn) := {g : X −→ Y : {0} −→ {0→ 1} i g, |X|, |Y | < n+ 1}

Theorem 1. The class (cn)lr, n > 0, is contained in the class of proper maps. A Hausdorff space
K is compact iff the map K −→ {o} sending K to a single point is in (c3)lr. Moreover, a map
f : X −→ Y of normal (T4) spaces X,Y is proper iff f is in (c4)lr.

Proof. Note that for a map g : X −→ Y of finite spaces X,Y , {0} −→ {0 → 1} i g means g is
closed and hence proper.

Let F be an ultrafilter on the set of points of a discrete topological space A. Define topology
on A ∪F {∞} as follows: a subset is closed iff it either contains ∞ or is an F -small subset of A.

Let A −→ A ∪F {∞} be the obvious embedding.

Lemma 1. A map g : X −→ Y is proper iff A −→ A ∪F {∞} i g for each map associated with
an ultrafilter.

Hence, maps A −→ A ∪F {∞} are (c3)l, and thus (c3)lr-maps are necessarily proper.

Proof. This is a characterisation of (not necessarily Hausdorff) compacta and proper maps via
ultrafilters (Bourbaki, General Topology, I§10.2,Th.1(d)). For example, for Y a point, it says
X −→ {o} is proper, i.e. X is compact, iff any ultrafilter F on X converges, and that can be
expressed as A −→ A ∪F {∞} i g where A is the set of points of X, A −→ X to be the obvious
map. (Lemma)

Lemma 2. A −→ B is (c4)l implies A is an open dense subset of B, and

(t) for each disjoint closed subsets Z ′,Z ′′ of A, their closures in B are also disjoint.

(t’) for each Z ′,Z ′′ closed subsets of A, clB(Z ′) ∩ clB(Z ′′) = clB(Z ∩ Z ′′)

Proof. See the section on examples. (Lemma)
Now let i : A −→ B, g : X −→ Y , f : A −→ X, j : B −→ Y . Necessarily for the lifting function

f ′ : B −→ X it holds

f ′(b) ∈ ∩{clX(f(Z)) : Z ⊂ A closed, b ∈ clB(i(Z))}
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Let us first prove that this intersection is non-empty, and, assuming X and Y normal, is exactly
one point and f so defined is continuous.

As g : X −→ Y is closed,

j(b) ∈ j(clB(i(Z))) ⊂ clY (j(i(Z)) = clY (g(f(Z)) = g(clX(f(Z)),

hence
∩{clX(f(Z)) : Z ⊂ A closed, b ∈ clB(i(Z))} ∩ g−1(b)

is non-empty as a directed family of closed subsets of a compact space g−1(b).
To prove the intersection consists of a single point and the function f ′ is continuous, notice

that each neighbourhood U of a point x in X contains a closed subset V ⊂ U such that Inn V is
an open neighbourhood of x. This set V is part of the intersection above.

(Theorem).

Question 1. It is really necessary to assume T4 in the theorem, e.g. does (c5)lr coincide with
proper maps for non-Hausdorff etc spaces?

5.2 ”An open covering has a finite subcovering”; ”an open neighbour-
hood U(x) of a point x as a function of the point”

Mathematically, this reformulation is based on the following observation:

a space K is compact iff for each open covering U of K, K is closed in K ∪ {∞} in the
topology generated elements of U as closed subsets.

This lets us express being finite with the help of the notion of the topology generated by a
family of sets.

[Hausdoff, Set theory] denotes by U(x) a neighbourhood of a point x, which suggests viewing
U(x) as a (possibly multivalued) function of a point x ; in our arrow notation this would correspond
to

{x} −→ K
(U(x))−−−−→ {x→ y} (∗)

here it is implicit that x maps to x in the composition; (x) in U(x) signifies that U(x) depends on
x.

Changing a single symbol “→” into “←” leads us to consider elements of U as closed subsets
of K:

{x} −→ K
(U(x))−−−−→ {x← y} (∗∗)

How would appear the topology generated by? Manipulating a definable family of arrows from
an X, by its nature, is similar to working with the topology on X satisfying properties which reflect
what we use about the family.

Of course, this change of a symbol would only make sense within a context of a formal calculus
which we do not have yet. In our calculus, the arrows (∗∗) should inherit some properties from
(∗), e.g. a family of arrows (∗∗) commutes iff the corresponding family of arrows (∗) commutes.
..A collection of arrows of form (∗∗) (or (∗)) should define a topology generated by sets in U .... ....

5.3 ”the image of a closed set is closed”

We shall see that this can be understood as an instance of being uniform, i.e. a change of order of
quantifiers ∀∃ −→ ∃∀:

K is compact iff the following implication holds for each set X and each subset Z ⊂ X ×K:

∀y ∈ K∃U∃V (U ⊂ X open and V ⊂ K open and a ∈ U and y ∈ V and U × V ⊂ Z)

∃U∃V ∀y ∈ K(U ⊂ X open and V ⊂ K open and a ∈ U and y ∈ V and U × V ⊂ Z)

The hypothesis says Z contains a rectangular open neighbourhood of each point of the line {a}×K;
the conclusion says that Z contains a rectangular open neighbourhood of the whole line {a} ×K.
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5.4 Being uniform — Changing the order of quantifiers ∀∃ −→ ∃∀
We give three more examples where a use of compactness is changing the order of quantifiers. Later
we see that paracompactness can also be expressed this way.

Question 2. Describe a logic and a syntactic class of formulae where such exchange ∀∃ −→ ∃∀ of
order quantifiers is permissible.

Is there a treatment of compactness in terms of changing the order of quantifiers ?
Find more interesting examples where a use of compactness is expressed as a change of order

of quantifiers; Martin Bays noted that in a sense, most of our examples are not very interesting
as there is a directed system associated with the quanfifier free formula. Find a general theorem
covering these examples.

5.4.1 Each real-valued function on a compact set is bounded

∀x ∈ K∃M(f(x) ≤M)

∃M∀x ∈ K(f(x) ≤M)

Note that the hypothesis holds trivially: take M := f(x).
Note this is a lifting property, for K connected:

{} −→ K i ∪n∈N(−n, n) −→ R

here ∪n(−n, n) −→ R denotes the map to the real line from the disjoint union of intervals (−n, n)
which cover it. Note this is a standard example of an open covering of R which shows it is not
compact.

5.4.2 A Hausdorff compact is necessarily normal.

The application of compactness in the usual proof of this amounts to the following change of order
of quantifiers:

For each pair of closed disjoint compact subsets A and B of a Hausdorff space K, it holds:

∀a ∈ A∀b ∈ B∃U∃V (a ∈ U and b ∈ V and U ∩ V = {} and U ⊂ K open and V ⊂ K open)

∃U∃V ∀a ∈ A∀b ∈ B(a ∈ U and b ∈ V and U ∩ V = {} and U ⊂ K open and V ⊂ K open)

5.4.3 Lebesgue’s number Lemma

Let S be a family of (arbitrary!) subsets of a metric space X.

∀x ∈ X∃δ > 0∃U ∈ S∀y ∈ X(dist(x, y) < δ =⇒ y ∈ U)

∃δ > 0∀x ∈ X∃U ∈ S∀y ∈ X(dist(x, y) < δ =⇒ y ∈ U)

The hypothesis says that {InnU : U ∈ S} is an open cover of X; the conclusion is as usually
stated, that each set of diameter < δ is covered by a single member of the cover.

Note that this lemma may be expressed in terms of uniform structures; see our remarks on
uniform structures as simplicial objects

6 A uniform structure as a simplicial object

Let X be a set.
Recall a simplicial object in a category C is a contravariant functor

F : {o→ o→ ..→ o}op −→ C

where {o → o → ... → o} denotes the full subcategory of the category of categories generated by
the finite linear orders o→ o→ ...→ o viewed as categories.
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With a set X, one can associate the trivial simplicial object (X)× in Sets

F (o→ o→ ...→ o) = X ×X × ...×X

whose maps correspond to removing and repeating coordinates, i.e. in other words, face and
degeneration maps correspond to coordinate projections and diagonal embeddings.

Theorem 2. A uniform structure U on a set X correspond to a simplicial object (U)o in the
category of topological spaces such that

(i) the underlying sets form the trivial simplicial object (X)× in Sets associated to X

(ii) topology on X0 is antidiscrete

(iii) the topology on Xn+1 is the pullback of the topologies on Xn and Xn−1 with any choice of
face and degeneration maps satisfying the obvious restrictions

(iv) the involution X ×X −→ X ×X is a homeomorphism

Proof. Equip X ×X with the topology generated by the subsets (U-entourages) of X ×X in U .
As each entourage V ⊂ X×X contains the diagonal, the map X0 −→ X×X is continuous. Equip
Xn with the topology according to (iii). This is well-defined because for each W there is V such
that V ◦ V ⊂W . (iv) is satisfied because entourages are assumed symmetric. (Theorem)

Question 3 (Alexandroff). writes ”as it seems to me, one of the deepest and most interesting
properties of paracompacts” is the following theorem of A.Stone: that

A T1-space is paracompact iff for each open covering α of X there is an open covering
β such that for each x in X there is U in A such that ∪{V ∈ B : x ∈ V } ⊂ U

As quantifier exchange, this is:

for each open covering α exists open covering β. ∀x ∈ X∀V ∈ β∃U ∈ α(x ∈ V =⇒ V ⊂ U)

for each open covering α exists open covering β. ∀x ∈ X∃U ∈ α∀V ∈ β(x ∈ V =⇒ V ⊂ U)

The hypothesis holds trivially: take β = α, V = U . Reformulate this property in simplicial terms.
More generally, develop the theory of uniform structure in simplicial terms.

7 Open questions and speculations.

We sketch several rather speculative research directions and a few more concrete questions and
conjectures.

Problem 1. Develop a calculus based on the lifting properties, arrows, labels and finite topological
spaces.

1. Standard arguments and definitions in elementary topology should be represented by short
formal calculations which are both human readable and computer verifiable.

2. In particular, the calculus should express concisely all the three definitions of compactness,
and prove their equivalence by short formal calculations.

3. It should include a formulation of the Arzela-Ascoli theorem.

Problem 2. Rewrite the theory of uniform structures in terms of the corresponding simplicial
objects. In particular, reformulate in simplicial terms the Lebesgue’s number lemma, partition of
unity, and the characterisation of paracompactness by A.Stone mentioned by [Alexandroff].

Problem 3. Write a first year course introducing elementary topology and category theory ideas
at the same time, based on the observations above and the calculus to be developed. Compactness
would be explained with help of all the definitions above; Tychonoff theorem is immediate via the
lifting property definition (c3)rl of compactness; ∀∃ −→ ∃∀ definitions would give students some
intuition.

As a first step, write an exposition aimed at students of the separation axioms and Uryhson
Lemma in terms of the lifting properties.
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Problem 4. Develop the theory of real numbers using these observations. Is it possible? Kline
characterisation of a sphere may be of use.

Question 4. Calculate left and right i -negations and generalisations, e.g. (C)r, (C)l, (C)rl, (C)ll,
(C)rr, (C)llr, ... for various simple classes of morphisms in various categories, e.g. morphisms of
finite topological spaces or finite groups.

Develop abstract theory of the lifting property.
For example, is the class of finite CA-groups or CN-groups defined by a natural lifting property?

Recall that a group is a CA-group, resp. CN-group, iff the centraliser of a non-identity element is
necessarily abelian, resp. nilpotent.

Does triviality of Cr ∩ Cl imply that either Cr or Cl is trivial?

Question 5. We give several examples where uses of compactness are expressed as change of order
of quantifiers ∀∃ −→ ∃∀. Find more examples. Is there a theorem generalising these examples?

7.1 Speculations

Question 6. Does topological intuition (as developed by a first year student) relate to the formal
calculus we’d like to develop? Note that this might be testable by an experiment, namely it might
be possible to test whether mistakes of intuition correspond to mistakes of calculation. This might
even be used to develop the calculus.

Question 7. Write a very short program which would “invent” (generate) the (very) basic theory
of topology, possibly using unstructured input such as the text of (Bourbaki, General Topology).
Our examples suggest that iterating right and left i -negation up to 3 times (i.e. the Quillen lifting
property) and restricting size to 3 or 4 is enough to generate, but not single out, the notions of
compactness, connectedness, a subset, a closed subset, separation axioms, and some implications
between them.

What is the length of a shortest such program? To what extent have the axioms of topology
to be hardcoded rather than generated?

7.2 Concrete questions

Conjecture 1. In the category of topological spaces, (c5)rl is the class of proper maps.

Question 8. Prove that each Hausdorff compact is normal using the definitions in terms of i
properties. Is there a proof using only diagram chasing with finite preorders, or are additional
axioms necessary? The easiest way to do so is probably to write an automatic prover (diagram
chaser) or a computer algebra system.

Question 9. Calculate (C)r, (C)l, (C)r ∩ (C)l, (C)rl, (C)ll, (C)rr, (C)llr, ... for the classes of
morphisms used in the examples in this short note. Do you get interesting classes this way ?

Question 10. Can either the class of finite CA-groups or CN-groups be defined as a class of finite
groups satisfying certain lifting properties in the category of all groups?
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