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Abstract We study the double coset Gal(Q/k)\Ext1(E(Q),�)/Aut(�), and interpret our
results as partially showing that the notion of a path on a complex elliptic curve E can be
characterised algebraically. The proofs show that our results are just concise reformulations
of Kummer theory for E as well as the description of the image of the Galois action on
the Tate module. Namely, we prove (a),(b) below by showing they are equivalent to (c)
which is well-known: (a) uniquely divisible abelian EndE-module extensions of the group
E(Q) of algebraic points of an elliptic curve, by � ∼= Z2, lie in finitely many double cosets
in Gal(Q/k)\Ext1(E(Q),�)/Aut(�) (b) natural algebraic properties characterise the Poin-
caré’s fundamental groupoid of a complex elliptic curve, restricted to the algebraic points, (c)
up to finite index, the image of the Galois action on the sequences (Pi )i>0, j Pi j = Pi , i, j > 0
of points Pi ∈ Ek(Q) is as large as possible with respect to linear relations between the
coordinates of the points Pi ’s. Our original motivations come from model theory.

Keywords Fundamental groupoid · Galois group · Abelian group extensions · Categoricity ·
Elliptic curve · Tate module · Kummer theory · Logic

1 Introduction

In Sects. 1.1 and 1.2 we briefly state our main results and motivations; in Sects. 1.3 and 1.5
we sketch the relation to arithmetics.

1.1 Abelian group extensions

The universal covering space of an elliptic curve A = E is just C; the linear structure on
C plays an important rôle in the theory of (complex) elliptic curves as algebraic varieties.
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136 K-Theory (2008) 38:135–152

This suggests that the relevant linear structure on C is determined up to isomorphism by the
algebraic curve itself. The linear structure is that of a uniquely divisible abelian extension
of the group E(C) by Z2; thus, the above considerations suggest that such an extension is
unique, up to an Aut(C/Q)-automorphism of E(C) and an End E-module automorphism of
the kernel � ∼= Z2.

The next proposition partially confirms these suggestions. We conjecture it holds for C

and in general, any algebraically closed field of zero characteristic.
Note that that we consider a somewhat unusual action of Gal(Q/k) on Ext1(E(Q),�),

namely the one induced by the action of Gal(Q/Q) on the first argument E(Q) where E is
defined over k.

Proposition 1 Let E be an elliptic curve defined over a number field k ⊂ Q. Assume that all
the endomorphisms of E are definable over k. Then the set of uniquely divisible EndE-module
extensions in Ext1

EndE-mod(E(Q),�)of EndE-modules, splits into finitely many double cosets

of the set Gal(Q/k)\Ext1(E(Q),�)/Aut(�) .

Here � denotes the kernel of the EndE-module covering map C → E(C). We prove
the proposition by an inductive argument using Kummer theory of E and the description of
Galois action on the Tate module; moreover, the proof shows that Proposition 1 is equivalent
to these arithmetic results.

1.2 An algebraic notion of a path up to homotopy

We ask whether the notion of paths (up to fixed point homotopy) on an elliptic curve E(C)
may be described by its natural algebraic properties. “Paths up to fixed point homotopy”
are usually thought of in the context of the Poincaré’s fundamental groupoid, which can be
thought of as a 2-functor. Hence, we may reformulate the question as: Is the fundamental
groupoid functor on the complex algebraic varieties determined by its natural algebraic
properties up to natural equivalence and an automorphism of the source category?

In terms of category theory the above could be expressed as follows. Consider the com-
posite functor V −→i TopSpaces −→h HD where V is a category of algebraic varie-
ties over a field K , TopSpaces is the category of topological spaces, and HD denotes a
category of some kind of algebraic homotopy data associated with topological spaces, say
fundamental groupoids. The composite functor i ◦ h : V −→ HD is a functor between
two categories, both algebraically defined, and it makes sense to ask whether the compo-
site functor i ◦ h can be characterised by its algebraic properties. However, there is a lot
of freedom in choosing the embedding i = iσ : V −→ TopSpaces which depends on an
embedding σ : K → C. Therefore, it may be better to ask whether the family of functors
{iσ ◦ h : V −→ HD | σ : K → C} admits an algebraic characterisation. In this paper we
consider V = E to be the full subcategory consisting of Cartesian powers of an elliptic curve,
take h = π

top
1 to be the fundamental groupoid functor (to the category of strict groupoids),

and K = Q. Then the question becomes whether we can characterise the family of functors
{iσ ◦ π1 : E −→ Groupoids | σ ∈ Gal(Q/Q)}.

Proposition 2 is a partial positive answer to this question.

Proposition 2 (Universality of fundamental groupoid functor) Let E and k be as in Propo-
sition 1. Let E be the full subcategory of Var/Q consisting of Cartesian powers of E.

Let � : E → Groupoids be a functor satisfying conditions (1)–(3) of Definition 1 below
(unique path-lifting along étale morphisms, preservation of direct product, etc).
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Assume further that

(4) �(E) is a connected groupoid
(5) there is an isomorphism

�0,0(E) := {γ ∈ �(E) : s(γ ) = t (γ ) = 0} ∼= Z2 as EndE-modules.

Then there exists finitely many functors F1, . . . ,Fn : E → Groupoids satisfying conditions
(1)–(5) above such that for any functor � satisfying (1)–(5) above there exists a Galois
automorphism σ ∈ Gal(Q/k) and a number 0 < i < n + 1 such that � and Fi ◦ σ are
naturally equivalent.

Here Groupoids denotes the category of strict groupoids.
We prove Proposition 2 by reducing it to Proposition 1.

1.3 Kummer theory and Galois representations

We prove Propositions 1 and 2 by a rather simple induction based on Kummer theory and the
image of Galois action on the Tate module. The full proof is carried out in Sect. 4; here we just
present an argument showing how these arithmetic results may be relevant. For simplicity
assume EndE = Z and that E is defined over Q. A uniquely divisible extension H →ϕ E(Q)
induces extra structure on E(Q) : for every point x ∈ E(Q), there is a countable family
of distinguished sequences (ϕ(v/n))n∈N, ϕ(v) = x . Proposition 1 implies that for every
two uniquely divisible extentsions as considered, their classes of families of distinguished
sequences are conjugated by Galois action. Group automorphisms of E(Q) act on the set
of extensions and then also on the corresponding classes of distinguished sequences; this
implies that the action by Galois automorphisms and group automorphisms of E(Q) induce
the same orbits on the set of all families of distinguished sequences associated to an extension
of the required type. Therefore, if we consider action of group automorphisms on the tuples
of distinguished sequences rather then on classes of families thereof, each orbit of group
automorphisms action splits into at most countably many orbits of Galois action. Properties
of profinite groups imply that then such an orbit splits into only finitely many orbits of Galois
action. Now consider the distinguished sequences associated to 0 ∈ E(Q); these form the
Tate module T (E); the considerations above imply that an GL2(Ẑ)-orbit splits into finitely
many Galois orbits. This is the result of Serre on the image of Galois action on the Tate
module. To see how to recover the statement of Kummer theory, consider, for example,
the distinguished sequences associated to a pair of Z-linearly independent rational points
x, y ∈ E(Q); similarly to above, Ẑ2 acts by shifts on the distinguished sequences associated
to the points x and y, and the considerations above imply that we need that the image of
Galois group action has at most finitely index in Ẑ.

1.4 Model theory: motivations and generalisations

The results of this note appear naturally in a model-theoretic framework of stability theory
and particularly «logically perfect structures» as developed by Zilber [23]; in this way they
have been obtained in the author’s DPhil thesis [6]. We believe that the context and techniques
of model theory are essential to generalise our results to other varieties and fields of arbitrary
cardinality including the field of complex numbers. However, in this note we do not discuss
the model theoretic motivations and techniques; we refer to the the author’s DPhil thesis
[6] for that. The note presents only those results of the thesis which can be stated and
proven in a model-theory free fashion; in particular, the note omits the discussion of the
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Shafarevich conjecture on holomorphic convexity of universal covering spaces and the case
of semi-Abelian varieties of higher dimension. The results follow a line originated by Zilber
[22] treating fully the case of the multiplicative group of an algebraically closed field of
characteristic 0.

1.5 Fields of arbitrary large cardinality and arithmetical questions

To prove Proposition 1 for fields of higher cardinality one needs to consider composites
of linearly disjoint fields; this is a non-trivial observation due to model theory, namely the
technique of excellent classes of Shelah [18,19]. The number theoretic questions appearing
there, as shown in [22], involve linearly disjoint fields, tensor products of algebraically closed
fields, and infinitely divisible points of E(K̄ ⊗k̄ K̄ ) over such fields. For example, a condition
of the following type is useful to extend our results to fields of cardinality ℵ2:

Condition of (2,ℵ0)-existence. Let k̄ ⊂ K̄ be countable algebraically closed fields of
characteristic 0. For a group H, let div H = {h ∈ H : ∀N∃n > N∃h′ h = nh′} denote the
subgroup of elements divisible by infinitely many integers. Then

div E(K̄ ⊗k̄ K̄ ) = E(K̄ )⊗E(k̄) E(K̄ ) = div E(K̄ )⊗div E(k̄) div E(K̄ )

That is, a point of E(K̄ ⊗k̄ K̄ ) is infinitely divisible only if it so for trivial reasons, i.e. it
is a product of divisible points of the copies of E(K̄ ). It is conceivable that this question can
be answered with techniques described in [4,10].

1.6 Structure of the paper

We state our results in detail in Sect. 2.
We prove Proposition 1 in Sect. 4. We establish the equivalence of the algebraic approach

of Proposition 1 and the topological approach of Proposition 2 in Sect. 5. We state a precise
conjecture about Shimura curves in Sect. 6.

We refer to [15,16] for the definitions and results on elliptic curves; see also [3–5,17,21]
for later developments.

2 Results

In this section we state our results in full, and hint on a connection between the reformulations.

2.1 Uniquely divisible extensions of Abelian groups

Let E be an elliptic curve defined over a number field k ⊂ Q ⊂ C, and let

0 −−−−→ � −−−−→ C
p−−−−→ E(C) −−−−→ 0.

be the universal covering of E(C). Let 0 ∈ E(k) denote a k-rational point which is zero of
the additive group E(C).

Proposition 1 Let E be an elliptic curve defined over a number field k ⊂ Q. Assume that all
the endomorphisms of E are definable over k. Then the set of uniquely divisible EndE-module
extensions in Ext1

EndE-mod(E(Q),�)of EndE-modules, splits into finitely many double cosets

of the set Gal(Q/k)\Ext1(E(Q),�)/Aut(�) .
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We conjecture the proposition holds for any algebraically closed field of zero characteristic.
Zilber [22] proves the transitivity of the Aut(K̄/Q)-action on Ext1(K̄ ∗,Z) for arbitrary
algebraically closed field K = K̄ of characteristic 0.

A way to think of the proposition is that it claims that it is possible to describe the universal
covering space of an elliptic curve in a purely algebraic way, admittedly with respect to a
rather weak, linear structure on it.

Note that the set of non-equivalent extensions Ext1
EndE-mod(E(Q),�) is of cardinality 2ℵ0 .

Moreover, the set of non-equivalent uniquely divisible abelian extensions is also of cardinality
2ℵ0 ; indeed, any such extension can be modified by an EndE-module automorphism of E(Q)
which generically gives rise to a different extension.

Also note that the injectivity of the profinite completion ̂� of the kernel � implies
Ext1

ÊndE-mod
(E(Q),̂�) = 0; thus if we replace � by ̂�, the proposition becomes trivially

true. And indeed, the theory of algebraic fundamental group can be used to define the “profi-
nite completion” of the universal covering space of an algebraic variety in a purely algebraic
way.

2.2 Relation between Propositions 1 and 2

Let us now informally indicate the relationship between Proposition 1 and Proposition 2. In
Sect. 5 we use this interpretation to derive Proposition 2 from Proposition 1. Identify points
in C and homotopy classes of paths in E(C) starting at 1 via the period map γ �−→ ∫

γ
dz.

Then the addition on C corresponds to the point-wise addition of paths, and dividing by
n corresponds to the path-lifting along the étale morphism nx : E(C) → E(C). Unique
divisibility of C corresponds then to the unique path-lifting property along étale morphisms
from E(C) to E(C).

These observations allow us to reformulate Proposition 1 as an algebraic characterisation
of the Poincaré’s fundamental groupoid of a complex elliptic curve, i.e. that the notion of
paths (up to fixed point homotopy) on a complex elliptic curve E(C) may be described by its
natural algebraic properties.

The above reformulation can be naturally expressed in terms of logic by introducing a
formal language to describe paths on an algebraic variety (cf. [6]). However, we can further
reformulate the above in terms of category theory. Generalised slightly, the question then
becomes: Is the fundamental groupoid functor on (a subcategory of) the complex algebraic
varieties determined by its natural algebraic properties up to natural equivalence and an
automorphism of the source category?

Proposition 2 provides a partial positive answer to this question; let us now introduce it
in detail.

2.3 The universality property of the Poincaré’s fundamental groupoid functor

In this subsection we introduce in detail the notions of category theory appropriate to state
Proposition 2.

2.3.1 The example: fundamental groupoid functor π top
1 (E(C)) as a two-functor

It is convenient to consider 2-functors instead of functors to groupoids; the notions are
equivalent. Before defining a 2-functor formally, we illustrate the notion by an example of
Grothendieck [7].
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The path 2-functor � on the category Top of topological spaces is a tuple (Pt,�, s, t, ·)
consisting of a functor of points Pt : Top → Sets and a paths functor � : Top → Sets
together with the following data:

(1) Pt(T ) is the set of points of topological space T and the morphism Pt( f ) : Pt(T1) →
Pt(T2) is f : T1 → T2 as a map of sets.

(2) �(T ) is the set of all paths in topological space T , i.e. continuous functions γ : [a, b] →
T , a, b ∈ R; similarly �( f ), f ∈ Hom Top(T1, T2) is the map taking a path γ :
[a, b] → T1 into f ◦ γ : [a, b] → T2.

(3) sT , tT : �(T ) → Pt(T ) are functions from the set of paths in T to their endpoints in
T ; the function s(γ ) = γ (a) (source) gives the beginning point of a path γ , and the
function t (γ ) = γ (b) (target) gives the ending point of path γ .

(4) ·T : �(T ) × �(T ) → �(T ) is the partial operation of concatenation of paths, taking
γ1 : [a, b] → T , γ2 : [b, c] → T into γ = γ1γ2, γ|[a,b] = γ1, γ|[b,c] = γ2.

Thus, a 2-functor from Top to Sets consists of two functors Pt,� : Top → Sets, and
two natural transformations s, t : � → Pt from functor � to Pt; s stands for source and t
stands for target. For each T , there is also a functorial associative operation ·T defined on
�x,y(T )×�y,z(T ) → �x,z(T ), where �x,y(T ) = {γ ∈ �(T ) : s(γ ) = x, t (γ ) = y}, etc;
the operation · makes �x,x (T ) into a group; in the example above, �x,x (T ) is the set of all
loops in T based at x ∈ T .

In particular, for each T the set �(T ) carries the structure of a groupoid; in fact, it is
conventional to consider � as a functor to the category of groupoids.

If in item (2) we define �(T ) to be the set of all paths up to fixed point homotopy, then
we obtain the notion of the fundamental groupoid functor. The advantage of the original
definition is that one may try and define n-functors describing n-dimensional homotopies
on topological space T , cf. Grothendieck [7] for motivations; Voevodsky–Kapranov [20]
propose an exact definition. Grothendieck [7] explains that it is essential not to insist on strict
associativity etc, but rather to consider all the identities to hold up to a homotopy of higher
dimension. This may be useful to generalise Proposition 2.

2.3.2 Abstract fundamental groupoid functors

Here we define the path-lifting property for a 2-functor, and an abstract fundamental groupoid
functor as a functor preserving direct products, possessing the path-lifting property and with
a particular functor of points.

Definition 1 Let � be a 2-functor from a subcategory E of the category of varieties over an
algebraically closed field K , into Sets. We say that � is an K -valued abstract fundamental
groupoid functor if � satisfies the following properties:

(1) functor Pt is the functor of K -rational points:

Pt(X) = X (K ) = MorVar/K (0, X)

(here 0 denotes a single point variety defined over k)
(2) functor � preserves direct products:

�(X × Y ) = �(X)×�(Y )

�( f × g) = �( f )×�(g)

sX×Y = sX × sY , tX×Y = tX × tY

(γ1 × γ2) ·X (γ
′
1 × γ ′

2) = (γ1 ·X γ
′
1)× (γ2 ·X γ

′
2)
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(direct product is taken in the category of Sets.)
(3) unique path-lifting property: if p ∈ Hom E(X, Y ) is an étale morphism of algebraic

varieties, then for any point x ∈ Pt(X) the map

�(p) :
⋃

y∈Pt(X)

�x,y(X) →
⋃

z∈Pt(Y )

�p(x),z(Y )

is a bijection.

2.3.3 Universality of the fundamental groupoid functor

Let

E ⊂ V, Ob E = {En : n � 0}, MorE(X, Y ) = MorVar/K (X, Y )

be the full subcategory of the category of varieties whose objects are the Cartesian powers
of E including E0 = 0 a variety consisting of the single point 0. By the definition of a full
subcategory, the morphisms of E are morphisms of varieties between the objects of E.

Galois group Gal(Q/k) acts on the category E; the action leaves the objects invariant
but permutes the morphisms. Recall we assume that all endomorphisms of E preserving
0 ∈ E(k) are defined over its field k of definition.

Recall a groupoid �(E) is connected iff for every x, y ∈ Pt(E) there exists γ ∈ �(E)
“going from point x to point y”, i.e. x = s(γ ), y = t (γ ). The set of such paths satisfying
x = s(γ ), y = t (γ ) is denoted by �x,y(E).

Using the notion of an abstract fundamental groupoid functor, we restate Proposition 2;
in Sect. 5 it is essentially equivalent to Proposition 1. The proof basically reconstructs the
“universal covering space” V as the set of all paths

⋃

∗∈E(Q) �0,∗(E) leaving a particular
point; functoriality of � allows us to define EndE-module structure on V ; the unique path-
lifting property of � ensures unique divisibility.

Proposition 2 (Universality of fundamental group functor) Let E be an elliptic curve defined
over a number field k. Let E be the full subcategory of Cartesian powers of E as above.

Let � be a Q-valued abstract fundamental groupoid functor on category E. Assume

(1) �(E) is a connected groupoid
(2) there is an isomorphism

�0,0(E) ∼= Z2 as EndE-modules.

Then there exists finitely many Q-valued abstract fundamental groupoid functors F1, . . . ,

Fn : E → Groupoids such that for any other abstract fundamental groupoid Q-valued
functor � there exists a Galois automorphism σ ∈ Gal(Q/k) and a number 0 < i < n + 1
such that � and Fi ◦ σ are naturally equivalent:

� ∼= Fi ◦ σ
The conditions in the definition of an abstract fundamental groupoid functor are somewhat

reminiscent of the conditions defining the scheme-theoretic algebraic fundamental groupπalg
1

[SGA4 1
2 ]; however, there πalg

1 takes values in the category of profinite groups, in particular

π
alg
1 (C∗, 1) = Ẑ, πalg

1 (E(C), 0) = Ẑ2.
It is natural to consider whether a path lies in an algebraic subvariety, so if� is to provide a

useful notion of a path on E(C), the 2-functor� restricted to E should be able to express when
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(a representative of the homotopy class of) a path lies in an arbitrary algebraic subvariety of
En(C). This is indeed the case:

Remark 3 (Recovering �(Z) for arbitrary closed subvariety Z of En) The information
contained in the functor π top

1 |E restricted to the full subcategory E of Cartesian powers
of an elliptic curve is enough to determine whether a path lies in a closed subvariety. The key
fact here is that for a normal subgroup H � π1(En(C)), there exists an H-Shafarevich mor-
phism ShH : En → Em such that for an arbitrary irreducible Z ⊂ En(C), it holds Z ⊂ ker f
iff the image Im [π1(Ẑ , z) → π1(En(C), z)] has a finite index subgroup contained in H .

3 Preliminaries

In this section we introduce the necessary preliminaries on Kummer theory of elliptic curves,
in order not to interrupt the exposition later.

3.1 Kummer theory

3.1.1 The main statement of the Kummer theory for an elliptic curve

Let us state the main lemma in a form convenient to us to make an inductive process; that
is a form natural from the model-theoretic point of view and corresponds to the property of
atomicity of certain formulae over the kernel.

Lemma 4 (Kummer theory for an elliptic curve) Let E be an elliptic curve defined over a
number field k. Let a1, . . . , an ∈ E(Q) be a sequence of points linearly independent over
EndE. Then there exists N ∈ Z such that any two compatible sequences (a(i)1 , . . . , a(i)n )i∈N,

(b(i)1 , . . . , b(i)n )i∈N of division points in E(Q) starting at a1, . . . , an and such that a(N )1 =
b(N )1 , . . . , a(N )n = b(N )n , are Gal(Q/k)-conjugated by σ ∈ Gal(Q/k),

σ(a( j)
i ) = b( j)

i , for all 0 � i � n, j ∈ N.

Proof of Lemma See Bashmakov [1] for original results for elliptic curves; see [2,8,13,14]
for Kummer theory of Abelian varieties, and see [3] for a summary of results of Kummer
theory of Abelian varieties; we quote [3, Theorem 2] from that paper.

We now introduce the notations of Bertrand [3, Theorem 2]. Let G = A × L be a product
of an Abelian variety by a torus L so that after a finite extension of k it satisfies Poincaré’s
complete reducibility theorem (as a variety over k).

Let l denote a prime. Let Gl∞ = {x ∈ G(k̄) : ∃n ln x = 0} be the l∞-torsion of G. For
a point P ∈ G(k̄), let G P be the smallest algebraic subgroup of G containing P , i.e. the
Zariski closure of subgroup ZP of G, and let G◦

P be its connected component through the
origin, and finally let

ξl∞(P) : Gal(k̄/k(Gl∞ , P)) −→ Tl∞(A × L)

σ �−→ σ(Pl∞)− Pl∞

for Pl∞ = {Plk }k∈N a compatible sequence of division points, P1 = P . It can be checked by
direct computation the map ξl∞(P) : Gal(k̄/k(Gl∞ , P) → Tl∞(A × L) does not depend on
the choice of Pl∞ .
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Let T (G◦
P ) be the sequences of T (A× L) consisting of elements of G◦

P ; then, according to
[3, Theorem 2], the image of ξ∞(P) = ∏

l ξl∞ has finite index in T (G◦
P ) ⊂ ∏

l Tl∞(A × L),
i.e. the image contains N T (G◦

P ), for some natural number N ∈ N large enough.
We claim that if we take G = En , P = (a1, . . . , an) ∈ En(Q), then N above is N required

in Lemma. By the result cited above, it is enough to prove that if a1, . . . , an ∈ E(Q) are EndE-
linearly independent, then G◦

P = En . Assume G◦
P �= En and consider the quotient En/G P .

By Poincaré’s reducibility theorem, there is an isogeny f : En/G P → Em , for some natural
number m. Finally consider the composite morphism g : En →π En/G P → f Em where
π : En → En/G P is the natural projection. The connected component G◦

P has finite index
in Kerg and therefore g is non-trivial and represents a non-trivial EndE-linear relation on
P ∈ G P . This is a contradiction which completes the proof. ��

4 Proof of Proposition 2

In this section we state and prove Proposition 2; as was mentioned earlier, the proof is a
model theoretic argument based on Kummer theory and the description of the image of
Galois action on Tate module T (E). However, we tried to be very explicit and have avoided
any model-theoretic terminology in the exposition of the proof. The only model theory left
in the proof is in the level of motivations and ideas; however, we do not attempt to explain
these.

4.1 Gal(Q/k)-action on the uniquely divisible End E-module extensions of E(Q) by �

To fix notations for the proof, we restate Proposition 1 in an expanded form.

Proposition 1′ Let E(C),� be as above.

(1) There exists a uniquely divisible EndE-module V and a short exact sequence of
EndE-modules

0 −−−−→ � −−−−→ V −−−−→ E(Q) −−−−→ 0.

(2) There exist finitely many uniquely divisible EndE-module extensions W1, . . . ,Wn of
E(Q) by �, fitting into the short exact sequences as above, such that for any uniquely
divisible EndE-module extension V there exist a commutative diagram:

0 −−−−→ � −−−−→ V
ϕ−−−−→ E(Q) −−−−→ 0

∃h|�
⏐

⏐

� ∃
⏐

⏐

�
h∈Hom (V,W )

⏐

⏐

�∃σ∈Gal(Q/k)

0 −−−−→ � −−−−→ Wi
ψi−−−−→ E(Q) −−−−→ 0

Proof By assumption there is a covering

0 −−−−→ � −−−−→ C
p−−−−→ E(C) −−−−→ 0

The endomorphisms act on the complex plane C by multiplication by complex numbers,
and so in particular C is a uniquely divisible EndE-module. The set E(Q) of points of E
over an algebraically closed subfield is closed under addition and EndE-multiplication i.e. is
an EndE-submodule, necessarily uniquely divisible; so is then V = p−1(E(Q)); take that
to obtain a short exact sequence as above. This proves (1).

The proof of (2) occupies the rest of this section.
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An EndE-linear map h : � → � induces a EndE-module automorphismσh : E(Q)tors →
E(Q)tors of the torsion E(Q)tors. To define extensions Wi ’s, in Sect. 4.2 we find EndE-linear
automorphisms τ1, . . . , τn : E(Q)tors → E(Q)tors such that for every EndE-linear map
h : � → �, the induced EndE-module automorphism has form σh = τi ◦ σ , for some
1 � i � n and σ a Galois automorphism, and set Wi = V, ϕi = τi ◦ p|V . The rest of proof
is by induction.

Pick a maximal linearly independent set v0, v1, v2, . . . ∈ V ; let Vn = EndEv0 + · · · +
EndEvn be the submodule generated by v0, . . . , vn , and let QVn = (EndE)−1Vn = {v :
∃N ∈ N(Nv ∈ Vn)} be its divisible closure. We construct by induction a partial EndE-
module linear map hn : QVn → Wi inducing a partial Galois map σn : ϕ(QV ) → E(Q) so
that h = ∪hn is an isomorphism of V and Wi ; then the construction implies σ = ∪σn is a
total Galois map on E(Q) to E(Q), and thus there is a commutative diagram as above. At
each step, we use information about arithmetics of E(Q) to extend hn : Vn → W .

In Sect. 4.2 the definition of Wi ’s allows us to start the induction and define the partial
map h|Etors on the torsion of E(Q); in Sect. 4.2.4 we use Kummer theory to extend hn−1 :
Vn−1 → W . The results of Kummer theory we use are given in Sect. 3.1.1.

4.2 The image of Galois representations on Tate module Tl(E)

4.2.1 Base of induction

In this subsection we construct a commutative diagram:

0 −−−−→ � −−−−→ Q�
ϕ−−−−→ Etors −−−−→ 0

h0

⏐

⏐

�

⏐

⏐

�
h0∈Hom (Q�,W )

⏐

⏐

�σ∈Gal(Q/k)

0 −−−−→ � −−−−→ Q�
ψ◦τi−−−−→ Etors −−−−→ 0

(1)

where τ1, . . . , τn is some fixed finite collection of EndE-endomorphisms of Etors independent
of V,W .

In Sects. 4.2.2 and 4.2.3 we consider two cases depending on whether E has complex
multiplication or not.

4.2.2 E has complex multiplication

Pick an arbitrary isomorphism h0 : � → � and extend it uniquely to h0 : V0 → W ; we may
do so by unique divisibility of V and W . Define an EndE-morphism τ : Etors → Etors by
τ(x) = ψ ◦h0 ◦ϕ−1(x). The calculationψ ◦h0(y +�) = ψ ◦h0(y) shows it is well-defined;
linearity of τ follows from that of ϕ, h0 and ϕ.

Ideally we would like to be able to choose h0 : � → � so that τ = τh : Etors → Etors is
induced by a Galois automorphism. Here we prove a weaker statement below.

Denote O = EndE and E[n] = {x ∈ E(Q) : nx = 0} the n-torsion of E . The set E[n]
is a free 1-dimensional O/nO-module ([9, Chap. 8, Sect. 15, Fact 1]), and AutO(E[n]) =
AutO/nO−mod(E[n]) ∼= (O/nO)∗, where (O/nO)∗ denotes the group of invertible elements
in (O/nO)∗.

An O-automorphism of Etors is given by a compatible system of O-automorphisms
of E[n], n > 0; thus we see that there is an action of Ô = limn O/nO on Etors as an
EndE-module; the fact that AutO(E[n]) = AutO/nO−mod(E[n]) ∼= (O/nO)∗ implies that
AutO(Etors) ∼= Ô.
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Now we refer to a consequence of the main theorem of complex multiplication, namely
that, in notation of [9, Chap. 8, Sect. 15, Fact 2], the image of Galois group

G K = Gal(K (Etors) : K ) →
∏

((EndE)l)
∗

is open of finite index, i.e. Im G K is a finite index subgroup of Ô∗ = ∏

l O∗
l . Choose

τ1, . . . , τn to be representatives of conjugacy classes O∗
/Im G K ; we then have that for some

i τiτ = σ ∈ Im G K ; this choice of h0, σ = τiτ makes the diagram (1) commutative, as
required.

4.2.3 E does not have complex multiplication

Assume that E does not have complex multiplication, i.e. End E ∼= Z; identify EndE = Z,
T (E) = Ẑ2, and Aut(T (E)) = GL2(Ẑ). The maps ϕ : V → E(Q), ψ : W → E(Q) define
embeddings ιϕ : � → T (E), ιψ : � → T (E) by

ιϕ : λ �→ (ϕ(λ/j)) j∈N,

ιψ : λ �→ (ψ(λ/j)) j∈N.

The images ιϕ(�), ιψ (�) of the both maps are dense in T (E) due to the surjectivity of
ϕ,ψ : Q� → Etors.

Take a pair of elements λ0, λ1 ∈ ker ϕ ∼= � generating � as an Abelian group; we want
to find λ′

0, λ
′
1 ∈ kerψ ∼= � and σ = σ0 ∈ Gal(Q/k) such that

σ ιϕ(λ0) = ιψ (λ
′
0),

σ ιϕ(λ1) = ιψ (λ
′
1).

Under identification ker ϕ = Z2, since vectors λ0, λ1 ∈ Z2 generate lattice Z2, it holds
that det(λ0, λ1) = 1. That implies that det(ιϕ(λ0), ιϕ(λ1)) is a unit in Ẑ = ∏

l Zl . Similarly
det(ιψ(λ′

0), ιψ (λ
′
1)) has to be a unit in Ẑ. This implies that there is an element of GL2(Ẑ)

taking (ιϕ(λ0), ιϕ(λ1) into (ιψ(λ′
0), ιψ (λ

′
1)).

By [15] (cf. also [3, Theorem 3]), the image of the Galois group Gal(Q/k) in the automor-
phism group Aut(T (E)) = GL2(Ẑ) contains an open subgroup GL2(N Ẑ) = ker(GL2(Ẑ) →
GL2(Z/NZ)), for some N ∈ N large enough. Choose τ1, . . . , τn to be the representatives of
the conjugacy classes GL2(Ẑ)/GL2(N Ẑ); they have the required property. This finishes the
proof of the base of the induction.

4.2.4 An inductive argument based on Kummer theory

Assume now that we are on inductive step n − 1, i.e. we have defined an EndE-linear
map hn−1 : QVn−1 → W and σn−1 ∈ Gal(Q/k), hn−1(vi ) = wi , 0 � i < n such that
ψ(hn−1(v)) = σn−1ϕ(v) for every v ∈ QVn−1. Consider a compatible system
(ϕ(v0/j)) j , . . . , (ϕ(vn/j)) j , j ∈ N of division points in E(Q), and take N as in Kummer
theory Lemma 4. By the induction hypothesis we have σn−1ϕ(v0/j) = ψ(w0/j), . . . ,
σn−1ϕ(vn−1/j) = ψ(wn−1/j) for any j . Choose wn ∈ W such that σn−1ϕ(vn/N ) =
ψ(wn/N ); that is possible by surjectivity of ψ : W → E(Q). By Kummer theory lemma,
for N large enough, there exists σ ′ ∈ Gal(Q/k) such that σ ′σn−1ϕ(v0/j) = ψ(w0/j), . . . ,
σ ′σn−1ϕ(vn−1/j) = ψ(wn−1/j), and σ ′σn−1ϕ(vn/j) = ψ(wn/j); let σn = σ ′σn−1 and
hn(vi ) = wi , 0 � i � n. By construction we have that σn |ϕ(QVn−1) = σn−1|ϕ(QVn−1) and

123



146 K-Theory (2008) 38:135–152

σnϕ(vi/j) = ψ(0i/j), 0 � i < n + 1. This implies σnϕ(v) = ψ(hn(v)) for arbitrary
v ∈ QVn , thereby completing the induction step.

After countably many steps we construct a total EndE-linear map h = ∪hn : V → W
and σ : ϕ(V ) → E(Q). Since ϕ(V ) = E(Q), the Galois map σ is defined on the whole
of E(Q). Since Galois map σ is surjective, this implies h : V → W is surjective, too. This
completes the proof of Proposition 1.

The last argument could in fact have been avoided by a little more careful inductive
construction of h: instead of always choosing wn to match ϕ(vn) we could have on odd
steps picked an arbitrary wn and then choosen vn so that σn(ϕ(vn)) = ψ(wn) while on even
steps preserving the old behaviour. It is very easy to force surjectivity of the constructed map
h : V → W this way; it is a very common argument in model theory called “a back-and-forth
argument”.

4.3 Concluding remarks

4.3.1 Freedom of choice of σ ∈ Gal(Q/Q) and h : V → W

Remark 5 There is some freedom in constructing h = ∪hn andσ = ∪σn : at each step we may
modify the valuewn = hn(vn) of hn by adding any kernel element λ such that ψ(λ/N ) = 0,
for some N = Nn large enough and depending on n. This shows there are uncountably
many such σ ’s and h’s; in fact the σ ’s form a conjugacy class of an uncountable subgroup
H in the Galois group Gal(Q/Q) (an an abstract group). The subgroup H is well-defined
up to conjugation and can be explicitly described as the group of Galois automorphisms
σ ∈ Gal(Q/Q) such that the induced action σ : E(Q) → E(Q) (exists and) lifts up to an
EndE-linear automorphism of W .

4.3.2 Image of Galois representation

Remark 6 Note that for the arguments in Sect. 4.2 it is essential that the image of the Galois
action is as large as possible subject to linear dependencies. However, this is something
specific to elliptic curves and false for higher dimensional Abelian varieties: one needs to
take care of a symplectic form. This observation shows that the straightforward generalisation
to higher dimensional Abelian varieties is false. See [6, IV Sect. 7] for a discussion of this.

4.3.3 Kummer theory

Remark 6 says that in higher dimensions, the base of the induction breaks down due to
additional restrictions on the image of the Galois action. This does not happen in the the later
steps of the induction process based on Kummer theory.

Remark 7 (Generalisations of Kummer theory argument) Since Kummer theory is known in
much larger generality, say for a product of arbitrary Abelian varieties, complex tori C∗ and
complex lines C ([3]), it seems straightforward to generalise the Kummer theory argument
above to such a product A. Thus, one would prove that if there exists h0 : ker ϕ → kerψ and
a Galois map σ0 : E(k(T (E)) → E(k(T (E))) in Gal(k(T (E))/k) such that ϕ◦σ0 = h0 ◦ψ ,
then there exists h : V → W and σ ∈ Gal(Q/k)making the diagram (2) commutative. That
is, a morphism between kernel from� ⊂ V to� ⊂ W extends to a morphism on the whole
of V . Model-theoretically, this means that the types of the points of universal covering space
lying over algebraic points A(Q) is atomic over the kernel in the linear language.
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Remark 8 (Failure of Kummer theory for extensions of Abelian varieties by tori) According
to Ribet [8,14], Kummer theory may fail for non-trivial extensions of Abelian varieties by
(C∗)n due to “existence of an additional morphism”; he gives a motivic interpretation in [14].
It is natural to ask if an analogous argument could still be carried despite the failure of Kummer
theory. To state a correct conjecture, we may need to use more general considerations of [6].

5 Proof of Proposition 2

In this section we derive Proposition 2 from Proposition 1 by carrying out a formal counterpart
of the natural topological construction of a universal covering space. We do so by explicitly
constructing an extension as in Proposition 1 from a 2-functor as in Proposition 2, and
then showing that the equivalence of the constructed extensions implies the equivalence of
2-functors.

The construction is a formalisation of the geometric observation that the universal covering
space with a basepoint can be canonically identified with the set of homotopy classes of paths
leaving the basepoint of the base. The identification is via the unique path-lifting property of
the covering map, and depends only on the choice of a basepoint in the universal covering
space. In case of the universal covering space C of E(C), the correspondence is given by the
period map

γ �−→
∫

γ

dz.

5.0.4 Recovering V as the universal covering space from the 2-functor �

Let� = (Pt,�, s, t, ·) be a 2-functor from E to Sets satisfying the conditions of Definition 1.
We want to construct an extension

0 −−−−→ Z2 −−−−→ V�
ϕ−−−−→ E(Q) −−−−→ 0

of EndE-modules. The topological intuition referred to above suggests that we set

V = V� = ⋃

y∈Pt(E)
�0,y(E) = {γ ∈ �(E) : s(γ ) = 0} (disjoint union),

ϕ(γ ) = t (γ )

where 0 ∈ E(k) is the zero point of the elliptic curve E .

5.0.5 Abelian group structure on �(E)

The functoriality of� transfers EndE-module structure on E(Q) to that on V ; namely, let us
check that the maps �( f ), f ∈ EndE , and �(m), where m : E × E → E is the morphism
of addition on E , define EndE-module structure on V , or rather that their restriction to V
does.

By assumption the functor � preserves direct products so �(E × E) = �(E)×�(E),
and thus there is a map

�(m) : �(E)×�(E) → �(E).
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Maps s, t are natural transformations of � to Pt (as functors to Sets) and so s ◦ �(m) =
Pt(m) ◦ s, t ◦�(m) = Pt(m) ◦ t is the map of addition on end-points. Therefore,

�(m)(�x,y(E)×�v,w(E)) ⊂ �x+v,y+w(E),

and in particular

�(m)(�0,y(E)×�0,z(E)) ⊂ �0,y+z(E).

Thus �(m) : V × V → V gives us a binary operation. It is straightforward to show that
preservation of direct products and functoriality implies that �(m) makes �(E) into an
Abelian group. Let us check this.

By definition, associativity of m : E ×E → E means that m◦(m×idE ) = m◦(idE ×m) :
E × E × E → E ; by preservation of direct products this implies �(m) ◦ (�(m)× idE ) =
�(m) ◦ (idE × �(m)) and so �(m) is associative. Similarly, commutativity of m means
m ◦ (id1 × id2) = m ◦ (id2 × id1) : E × E → E ; that similarly implies the commutativity of
�(m). In the language of morphisms, the existence of a zero for the additive law translates
to the existence of a morphism 0 : {0} → E subject to the identifies: m ◦ (id × 0) = p2 :
{0} × E → E and m ◦ (0 × id) = p1 : E × {0} → E corresponding to a commutative
diagram:

E

E × E
��

���
E

{0} × E
��

���
{0} × E E × E��

Apply � to get �(m) ◦ (�(id)×�(0)) = �(p2) : �({0})×�(E) → �(E) and �(m) ◦
(�(0)×�(id)) = �(p1) : �(E)×�({0}) → �(E). Preservation of direct products implies
�(m)◦(id×�(0)) = �(p2) : �({0})×�(E) → �(E) and�(m)◦(�(0)×id) = �(p1) :
�(E)×�({0}) → �(E). This implies that �(0)(�({0})) is a zero point in V .

Existence of (right) inverse corresponds to the existence of a morphism i : E → E subject
to the following commutative diagram:

E −−−−→ {0}
(idE ,i)

⏐

⏐

�

⏐

⏐

�0

E × E −−−−→
m

E

Again functoriality ensures that�(i) satisfies a similar diagram, thus proving the existence
of inverses.

The above checks that �(m) is an associative commutative partial operation on �(E)
possessing a zero element and inverses; it is immediate to check V is closed under�(m) and
inverse �(i), and so is a group.

5.0.6 Action of “fundamental group” �0,0(E) on V via concatenation
and by �(m)-multiplication

Take a loop λ ∈ �0,0(E) and γ ∈ �0,y ; then both concatenation and�(m)-product of λ and
γ are well-defined; let us show that λ · γ = �(m)(λ× γ ):

�(m)(λ× γ ) = �(m)(λ · 0 × 0 · γ ) = �(m)(λ× 0) ·�(m)(0 × γ ) = λ · γ.
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The latter equality follows from the inverse element equality of morphisms m(id × 0) =
m(0 × id) = id. In the classical example, this observation corresponds to the following
calculation:

∫

γ1·γ2

dz =
∫

γ1

dz +
∫

γ2

dz =
∫

γ1γ2

dz.

Here γ1 · γ2 denotes the concatenation of the paths and γ1γ2 denotes the pointwise product
of the paths.

5.0.7 Divisibility of EndE-module structure and path-lifting property

Analogously, a morphism f ∈ EndE , �( f ) : �(E) → �(E) defines a map �( f ) :
�(E) → �(E). Arguments similar to the ones above allow us to prove that V is an EndE-
module with the operations defined above. Let us now prove that the path-lifting property
implies that V is uniquely divisible. Indeed, we know that any isogeny f ∈ EndE is étale
[11] and we may apply the path-lifting property to get a bijection

�( f ) :
⋃

0∈Pt(E)

�0,y(E) ��
⋃

z∈Pt(E)

�0,z(E).

That is, by definition of V , the map �( f ) is a bijection on V , and V is uniquely divisible as
required.

Finally, to get a short exact sequence as in Proposition 1, set ϕ(w) = t (w). Then naturality
of target map t implies ϕ(w) is homomorphism of EndE-modules; the connectivity of�(E)
implies that ϕ is surjective. The kernel ker ϕ of ϕ : V → E(Q) is�0,0(E) and is isomorphic
to Z2 by assumption.

5.0.8 Construction of a natural transformation h′ : � → π
top
1 |Q ◦ σ

For notational convenience, let �′ = (Pt,�′, s′, t ′, ·′) denote the functor π top
1 |Q.

Let W →ψ E(Q) be the EndE-module extension constructed from �′ = π
top
1 |Q in

the same way. Since V,W are both uniquely divisible extensions of E(Q) by Z2, we may
apply Proposition 1 to get an EndE-linear map h : V → W and σ ∈ Gal(Q/k) such that
σ ◦ ϕ = ψ ◦ h.

We want to get a natural transformation h′ : � → �′ ◦ σ . Recall a natural transformation
h′ : � → �′ ◦ σ is a family of maps (of sets with no further structure) h�A : �(A) →
�′ ◦ σ(A) and hPt

A : Pt(A) → Pt′ ◦ σ(A) satisfying certain compatibly conditions expressed
by commutative diagremmes (2), (3), (4).

Define hPt
A : A(Q) → A(Q) by hPt

A (x) = σ(x) ∈ Pt′(A) = (σ A)(Q) = A(Q) to be the
map induced by Galois automorphism σ : Q → Q.

By assumption of connectivity of �(E), any γ ∈ �(E) can be represented as product
γ = γ−1

1 ·γ2 where γ1, γ2, s(γ1) = s(γ2) = 0; define a map h′
E : �(E) → �′(E) by setting
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h′
E (γ ) = h(γ1)

−1 · h(γ2). If γ1
−1γ2 = γ ′

1
−1γ ′

2 then γ1
−1γ ′

1 = γ2γ
′
2
−1 ∈ �0,0(E), and so

h(γ1)
−1 · h(γ2) = h((γ1γ

′
1
−1)γ ′

1)
−1 · h((γ2γ

′
2
−1)γ ′

2)

= h((γ1
−1γ ′

1)+ γ ′
1)

−1 · h((γ2γ
′
2
−1)+ γ ′

2)

= (h(γ1
−1γ ′

1)+ h(γ ′
1))

−1 · h(γ2γ
′
2
−1)+ h(γ ′

2)

= (h(γ ′
1))

−1 · h(γ ′
2) = h(γ ′

1
−1) · h(γ ′

2),

which proves that h′ is well-defined. Similar calculations check that h′
E preserves concate-

nation ·E : h′(γ · γ ′) = h′(γ ) · h′(γ ′) for arbitrary γ, γ ′ ∈ �(E).
We define h′

En = h�En : �(En) → �′(En) from an arbitrary Cartesian power �(En) =
�(E)n by h′

E×E (γ × γ ′) = h′
E (γ )× h′

E (γ
′) etc.

5.0.9 Checking that h′ is a natural transformation of � into �′ ◦ σ

To check that h′ is a natural transformation of � to �′ ◦ σ , we need to check commutativity
of the following diagrams (note that σ on the left-hand side is not a morphism but a functor!):

En −−−−→
Pt

En(Q)

σ

⏐

⏐

�

⏐

⏐

�
σEn

En Pt−−−−→ En(Q)

A(Q) −−−−→
Pt( f )

B(Q)

σA

⏐

⏐

�

⏐

⏐

�
σB

A(Q)
Pt( f ◦σ)−−−−→ B(Q)

(2)

En −−−−→
�

�(En)

σ

⏐

⏐

�

⏐

⏐

�
h′

En

En �′−−−−→ �′(En)

�(A) −−−−→
�( f )

�(B)

h′
A

⏐

⏐

�

⏐

⏐

�
h′

B

�′(A) �′( f ◦σ)−−−−−→ �′(B)

(3)

�(A)
sA−−−−→ Pt(A)

h′
A

⏐

⏐

�
σA

⏐

⏐

�

�′(A)
s′

A−−−−→ Pt(A)

�(A) −−−−→
tA

Pt(A)

h′
A

⏐

⏐

�
σA

⏐

⏐

�

�′(A)
t ′A−−−−→ Pt(A)

(4)

�(A)×�(A)
·A−−−−→

partial
�(A)

h′
A×h′

A

⏐

⏐

�
h′

A

⏐

⏐

�

�′(A)×�′(A)
·′A−−−−→

partial
�′(A)

(5)

The first pair (2) expresses that hPt
A = (σA)A is a natural transformation of set-valued

functors from Pt to Pt ◦ σ ; the diagrams are commutative just by definition of the action of
σ ∈ Gal(Q/k) on category E. Analogously the second pair (3) expresses that h′ is a natural
transformation of set-valued functors � to �′ ◦ σ . The first diagram in (3) says that h′

En is a
map from �(En) to �′(σ (En)) = �′(σ (En)); the second one in (3) expresses the linearity
of h′ with respect to the morphisms of En → Em ; that follows from EndE-linearity of
h : V → V .
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The third pair (4) expresses compatibility of the end-point functions and h′
A; for A =

E , this follows from the main property σ ◦ s = s ◦ h when restricted to W n ⊂ �(En),
and that h′ preserves concatenation ·A; preservation of direct productss allows us to extend
this to arbitrary Cartesian power En . The diagram (5) expresses the fact that h′ preserves
concatenation; this is by the definition of h′.

This concludes the proof that h′ is a natural transformation and that of derivation of
Proposition 2 from Proposition 1.

6 Shimura curves

Arithmetics of Shimura curves is well-studied. In particular, for Shimura curves, there is a
quite explicit description of Galois action analogous to the results on the Galois action on the
Tate module of an elliptic curve: for curves without complex multiplication it is a result of
Ohta [12]; for curves with complex multiplication this is implied by the explicit description
of the Galois group provided by the theory of complex multiplication. We thank A.Yafaev
for pointing and explaining us those results. These results motivate us to make the following
conjecture.

Let S be a connected Shimura curve defined over a number field k ⊂ Q, and let SC be
full subcategory of Var/Q consisting of Cartesian powers of finite étale covers of S. Assume
that S has a k-rational point O .

Recall we denote Pt
π

top
1 |Q

(V ) = V (Q) and�
π

top
1 |Q

(V ) = {γ ∈ π top
1 (V (C)) : s(γ ), t (γ ) ∈

V (Q)} is the restriction of π top
1 to Q-rational points.

Conjecture 9 (Universality of fundamental groupoid functor) Let � = (Pt,�, sV , tV , ·V )
be a functor from category E to Groupoids such that

(1) the functor of points of is the functor of Q-rational points:
Pt(X) = X (Q) = MorSC(O, X), X ∈ SC.

(2) � preserves direct products: �(X × Y ) = �(X)×�(Y ).
(3) � has the unique path-lifting property along étale morphisms: for an étale morphism

f : X → Y , a path γ ∈ �(Y ) and a point x ∈ Pt(X) such that Pt( f )(x) = s(γ ), there
exists a unique path γ̃ ∈ �(X) such that �( f )(γ̃ ) = γ and s(γ̃ ) = x.

Assume further that

(4) �(E) is a connected groupoid
(5) there is an isomorphism

�0,0(S) := {γ ∈ �(S) : s(γ ) = t (γ ) = 0} ∼= π
top
1 (S(C), O).

Then there exists an automorphism σ ∈ Gal(Q/k) such that the functors� and π top
1 |Q ◦ σ :

E → Groupoids are naturally equivalent:

� ∼= π
top
1 |Q ◦ σ

It is possible that only a weaker conclusion holds: there exists finitely many functors
F1, . . . ,Fn satisfying (1)–(5) such that for any functor � satisfying (1)–(5) there exists
σ ∈ Gal(Q/k) such that � ◦ σ is naturally equivalent to one of F1, . . . ,Fn .
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