
A SUGGESTION TOWARDS A FINITIST’S REALISATION

OF TOPOLOGY

to Vita Kreps Z"L in memoriam

This kind of universality is what, we believe, turns the hidden wheels of the human thinking machinery.

Abstract. — We observe that the notion of a trivial Serre fibration, a Serre fibration,

and being contractible, for finite CW complexes, can be defined in terms of the

Quillen lifting property with respect to a single map M → Λ of finite topological

spaces (preorders) of size 5 and 3, one of the simplest examples of a map contracting

something (namely, the V in M), and of a trivial Serre fibration. In particular,

we observe that the double Quillen orthogonal {M → Λ}lr is precisely the class of

trivial Serre fibrations if calculated in a certain category of nice topological spaces.

This suggests a question whether there is a finitistic/combinatorial definition of a

model structure on the category of topological spaces entirely in terms of the single

morphism M → Λ, apparently related to the Michael continuous selection theory.

1. Introduction

Fig.1.Arrow u → a
means a ∈ clu.

{
a
↙u↘

x
↙v↘

b
}

⇓

{
a
↙u=x=v↘

b
}

Being contractible, compact (for nice spaces), trivial Serre fibration
(for nice spaces, with caveats), connected, dense, extremally discon-
nected, zero-dimensional, and separation axioms T0, T1, T4, T5, can
each be defined in terms of the Quillen lifting property [1] and a sin-
gle map of topological spaces (preorders), usually with less than 7
points [2, 3], and related either to the definition or a simple example
of the property. This suggests a combinatorial, computational nota-
tion for these topological properties, which could perhaps be of use in
computer algebra and proof verification. This notation shows there is
finite combinatorics implicit in the basic definitions of topology—what
does it tell us ?

In this note we show the finite combinatorics implicit in the basic
definitions of contractible, trivial fibrations, and fibrations. We observe
that for a certain M → Λ of finite topological spaces (see Fig. 1), one
of the simplest examples of a map contracting something (namely,
the V in M), and of a trivial Serre fibration, its double Quillen orthogonal (negation)
{M → Λ}lr, defined below, is exactly the class of trivial Serre fibrations if calculated in
a certain category of nice spaces. If we calculate it in the category of (all) topological
spaces, we only prove that {M → Λ}lr is a class of trivial Serre fibrations, and

a finite CW complex X is contractible iff X → {o} ∈ {M → Λ}lr
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Michael selection theorem ([6, Thm.1.2], see §3.1) implies that, if calculated in the
category of paracompact spaces of finite Lebesgue dimension, {M → Λ}lr(1) is a class
of trivial Serre fibrations containing many natural examples, for example all maps
of completely metrisable spaces with weakly connected locally uniformly weakly con-
nected fibres, e.g. locally trivial maps with weakly connected locally weakly connected
fibres. This category is large enough not to affect the calculations of ({{o}Ð→ {o→c}}

r
<5)

lr

(compactness), {∅→ {o}}rll (connected), and {∅→ {o}}lrrrl (quotient).
These observations allow us to state in §2.4 a conjectural definition of a model

structure in what looks almost like a computer syntax and does not mention the real
numbers. We follow the notation for finite spaces of [2], cf. Fig. 1.

Conjecture (M → Λ). — A closed model structure on the category of topological

spaces is defined as follows:

(c) {{
a
↙u↘

x
↙v↘

b
}Ð→ {

a
↙u=x=v↘

b
}}

l

is the class of cofibrations.

(wf) {{
a
↙u↘

x
↙v↘

b
}Ð→ {

a
↙u=x=v↘

b
}}

lr

is the class of trivial fibrations.

(f) a map p ∶ Y → B is a fibration iff for any commutative diagram of solid ar-

rows labelled as shown there exist an arrow X → Y making the total diagram

commutative:

A A
idoo //

(c)
��

Y

p

��

X

(wf)

`` >>

// B

(wc) a map is a weak cofibration iff it is has the right lifting property with respect to

all fibrations: (wc):=(f)l

(w) a weak equivalence is the composition of a trivial cofibration with a trivial fibra-

tion: (w):=(wc)(wf)

In §2.5 we show that the expression below describes(2)(3) the lifting property defin-
ing microfibrations, thereby suggesting to replace (f) by (f)micro

(f)micro a map is a fibration iff it admits a decompostion

⋅
{{o→a↔ b}Ð→{o=a↔b}}

l

ÐÐÐÐÐÐÐÐÐÐÐÐÐÐ→ ⋅
{{o→a↔ b}Ð→{o=a↔b}}

lr,{{a←u→x←v→b}Ð→{a←u=x=v→b}}
lr

ÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ→ ⋅

(1)Recall that a morphism i in a category has the left lifting property with respect to a morphism p,
and p also has the right lifting property with respect to i, denoted i ⋌ p, iff for each f ∶ A → X and

g ∶ B → Y such that p ○ f = g ○ i there exists h ∶ B → X such that h ○ i = f and p ○ h = g.
For a class P of morphisms in a category, its left orthogonal P⋌l with respect to the lifting property,

respectively its right orthogonal P⋌r, is the class of all morphisms which have the left, respectively

right, lifting property with respect to each morphism in the class P . In notation,

P⋌l ∶= {i ∶ ∀p ∈ P i ⋌ p}, P⋌r ∶= {p ∶ ∀i ∈ P i ⋌ p}, P lr ∶= (P l)r, ..

Taking the orthogonal of a class P is a simple way to define a class of morphisms excluding non-

isomorphisms from P , in a way which is useful in a diagram chasing computation, and is often used

to define properties of morphisms starting from an explicitly given class of (counter)examples. For

this reason, it is convenient and intuitive to refer to P l and P r as left, resp. right, Quillen negation
of property P . See [1] for a quick explanation and some examples.

(2)We write p ∶ Y
(P )
ÐÐ→ B or simply p ∶ Y PÐ→ B to mean that the morphism X → Y has prop-

erty P . Thus (f)micro means to say that a mophism p is a fibration iff p = pl ○ plr for some

pl ∈ {{o→a↔ b}Ð→ {o = a↔ b}}l and plr ∈ {{o→a↔ b}Ð→ {o = a↔ b}}lr ∩ {M → Λ}lr
(3)This expression almost says the the non-Hausdorff mapping cone of the map is in {M → Λ}lr.
The left orthogonal {...}l is the class of open inclusions.
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A Serre microfibration with weakly contractible fibres is necessarily a Serre fibration
[18], and this suggests that (f) and (f)micro might be consistent.

Obviously, we may also consider an analogue of this conjecture in another category
such as the of posets, simplicial sets, or the category of simplicial objects in the
category of filters [21] extending the category of topological spaces, of simplicial sets,
and of uniform spaces.
Formal topological spaces: a model category of diagram chasing constructions. — The
language of this conjecture is purely combinatorial. Can we define a model category of
“formal” topological spaces (“formal” as in formal power series), i.e. a model category
whose objects and arrows belong to a calculus of diagram chasing computations, so
to say ? A naïve hope is that the size of spaces appearing in the Quillen orthogonals
(negations) representing basic notions of topology [2, 3] is small enough (< 7) to make
feasible the exponential growth in the computer processing of such a calculus.

The following conjecture would represent a rule in such a diagram chasing calculus
of formal topological spaces,(4) and perhaps might imply the previous conjecture.

Conjecture (M2). — For each finite set P of maps of finite spaces, and each string

consisting of letters l and r, each map in the category of topological spaces(5) decom-

poses as a map in (P )sl followed by a map in (P )slr, and as a map in (P )srl followed
by a map in (P )sr:

⋅
(P )slr

��⋅ ∀ //

(P )sl

??

⋅

⋅
(P )sr

��⋅ ∀ //

(P )srl

??

⋅

The reformulations in [2, 3] show that this conjecture captures a few standard
constructions in topology, e.g. it would imply that each topological space can be
“approximated” by a compact space (Stone-Cech compactification, up to separation
axioms, see Lemma 3.2); by a space satisfying separation axiom T0,T1, T4, T5, to-
tally disconnected, extremally disconnected, Lebesgue zero-dimensional, ultranormal,
discrete; that it is well-defined to take a connected component; add an open/closed
subset to a topology, take a non-Hausdorff mapping cone/cylinder, etc.

Logical ideas.— Of course, the real temptation is to develop a computer algebra
system doing topology using a syntax extending the concise syntax for topology we
discuss, and to use it in teaching a first year course combining topology and category
theory. To find a diagram chasing calculation deriving the axioms of a model category
from Conjecture M2 and other diagram chasing rules of topology such as [19, 2.3],

(4)See [19, §2.3] for a discussion how to view the axioms of topology as rules of diagram chasing

with preorders.
(5)Here it may be important (and, inasmuch, in Conjecture 2.4.1) to consider the category of all
topological spaces rather than a convenient category of topological spaces, for the orthogonal (Quillen

negation) for compactness is a natural example which, in a sense, captures the definition of compact-

ness via ultrafilters, and, accordingly, its calculation requires considering topological spaces associated

with ultrafilters. However, note that these spaces are (non-Hausdorff) paracomact of finite Lebesgue

dimension, simply because they have very few open covers.
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arguably, might clarify the topological notions/intution and be an indication that our
observations lead to a tame topology of [4].
Structure of the paper. — As a warm-up the reader may want to skip, §2.1-2.2 define
connected, quotient, and compact in terms of maps of spaces with at most 2 points, as

{∅→ {o}}rll, {∅→ {o}}lrrrl, and ({{o}Ð→ {o→c}}
r
<5)

lr

In §2.1 we also define a few other notions starting with the simplest possible map,
the inclusion of the empty space into a singleton, and in Appendix §3.3 we list a few
more. In §2.2 we define the class of proper maps of nice spaces.

§2.3 and §2.4. is the main body of the paper. In §2.3 we discuss the def-
inition of trivial fibrations, and in §2.4 state the conjecture proposing a “finitis-
tic”/computational model structure. The reader may want to skip or skim though
the vague discussion in §2.5 of the definitions of fibrations, trivial fibrations, and
Michael selection theory, attempting to provide some intuitions and context. This
includes a diagram chasing expression for the non-Hausdorff mapping cone and an
explanation of (f)micro as defining property of a microfibration.

In Appendix §3.1 we state [6, Thm.1.2] of continuous selection theory we use, and
Appendix §3.2 we state the theorems of [14] we use for compactness.
A vague discussion of intuitions behind the conjecture. — We now make a number of
rather vague remarks in an attempt to explain and motivate the proposed definition
of the model structure.

In fact, the precise choice of the map M → Λ in the double Quillen orthogonal
(negation) {M → Λ}lr is a way to add precise “niceness” assumptions to the “naïve”
lifting property defining fibrations:
(wf) a map p ∶ Y → B is a trivial fibration iff the lifting property A → X ⋌ Y pÐ→ B

holds whenever A ⊂X is a “nice” closed subset of a “nice” space X.
(f) a map p ∶ Y → B is a fibration iff, whenever A ⊂ X closed and “nice”, for any

lifting problem A→X ⋌ Y pÐ→ B, there exists a diagonal lifting defined on some
open neighbourhood of A.(6)

(6)Formally in notation, for any commutative square

A
f
//

i

��

Y

p

��
X

φ
// B

there is an open A ⊂ U ⊂ X and a map f̃U ∶ U → Y such that the diagram

A
f
//

~~ ��

Y

p

��
U //

f̃U

77

X φ
∣U // B

commutes. This is similar to a lifting property A→ X ⋌ Yp↘
B
→ Y where Yp↘

B
is the non-Hausdorff

mapping cone of Y
p
Ð→ B, see footnote(16) for the definition and a diagram-chasing characterisation.
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We use the word “nice”, in this paper, to mean various precise assumptions of the
kind made to avoid spurious difficulties related to wild phenomena such as curves
cheerfully filling cubes, which are irrelevant from the point of view of the topological
intuition of shapes, cf. [4, §5, pp.28/29].

The definition of trivial Serre fibration in (wf) and of a Serre microfibration in (f)
chooses the nicest possible A ⊂ X – the inclusions of a sphere as the boundary of a
ball. Michael continuous selection theory [6, Thm.1.2] chooses least(?) nice ones: an
arbitrary closed subset of a Hausdorff paracompact space of finite Lebesgue dimension,
and implies that, when calculated in the full subcategory of paracompact spaces of
finite Lebesque dimension, {M → Λ}lr is a class of trivial Serre fibrations containing all
locally trivial maps (fibre bundles) of completely metrisable spaces with contractible
and locally contractible base and fibres (see §3.1, esp. Thm.3.1.2, for a summary of
[6, Thm.1.2] of Michael continuous selection theory; also see Lemma 2.1.1(4), §2.5(ii),
and Conjecture 2.4.1).

The map M → Λ does capture the implicit combinatorics of the definition of a
trivial fibration in presence of the right “niceness” assumptions, and by saying this
we mean that the double orthogonal (negation) of M → Λ leads to the right notion
if calculated in a certain subcategory of nice spaces, but it is not clear to us whether
this implicit combinatorics is sufficient if calculated in the category of all topological
spaces. Perhaps the reader would see this right away.

Simplicially, M is the barycentric subdivision of Λ, i.e. the preorder of chains
in Λ, and the geometric realisation of Λ is the interval. It is easy to see that the
map M → Λ captures the “combinatorics” implicit in the definition of normality:
a space X is normal (T4 but not necessarily T1) iff ∅ → X ⋌ M → Λ: indeed, to
give a map X → Λ is to give two disjoint closed subsets of X (the preimages of the
two closed points of Λ), and to give a factorisation X → Λ is to give their disjoint
neighbourhoods (the preimages of the open subsets of M separating the preimages of
the two closed points of Λ). Instead ofM → Λ, one may consider the more complicated
map implicit in the definition of hereditary normal (separation axiom T5, see Fig.3),
see the proof of Lemma 2.3.1 for a discussion. Seeing that the map M → Λ captures
the “combinatorics” implicit in the proof of Tietze extension theorem and, arguably,
the notion of contractability, is slightly less obvious, see the proof of Lemma 2.3.1(2).

Everything in this note is very elementary: a reader is likely to improve upon
our claims, and any proofs can be given as exercise to any student familiar with the
terminology.

2. Observations

A number of basic notions in topology can be concisely defined, often starting from
simplest examples, by repeatedly taking the orthogonal with respect to the Quillen
lifting property in the category of topological spaces [1, 2, 3].

Here is a sample: connected, compact, and contractible; see [2] for a longer list.

2.1. Connected. — We “generate” several basic notions by merely applying l and
r to the simplest possible map, the embedding of the empty set into a singleton.
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Lemma 2.1.1 (∅→ {o}). — In the category of (all) topological spaces,

r: {∅→ {o}}r is the class of surjections
rl: {∅→ {o}}rl is the class of maps A→ A ⊔D where D is discrete

rllr: {∅→ {o}}rllr is the class of maps A→ A ⊔D
rr: {∅ → {o}}rr is the class of subsets, i.e. inclusions A ↪ B with topology on A

induced from X
lrrrl: {∅ → {o}}lrrrl is the class of quotients, i.e. the maps f ∶ A → B such that a

subset U ⊂ B is open in B iff its preimage f−1(U) ⊂ A is open in A.
rll: A map f ∶ A → B of “nice” spaces belongs to {∅ → {o}}rll iff the induced map

π0(f) ∶ π0(A)→ π0(B) of connected components is surjective. In particular,

– A non-empty topological space X is connected iff for each, equiv. any,

map {o}→X from a singleton it holds

{o}→X ∈ {∅→ {o}}rll

Here in (r) and (rl), A ⊔D denotes the disconnected union of A and D, i.e. both
subsets A and D are closed and open, and the topology on both A and D is induced.

In (rll), by a space being “nice” we mean that it splits into a disconnected union
of closed and open connected components.

Proof. — 1. By definition

{∅→ {o}}r ∶= {X gÐ→ Y ∶ ∅→ {o} ⋌X gÐ→ Y }

is the class of maps which have the right lifting property with respect to the embedding
of the empty subset into a singleton. This lifting property says that any point of Y
(the image of {o} in Y ) has a preimage in X (the image of {o} in X), i.e. is surjective.
2. By definition

{∅→ {o}}rr = {X gÐ→ Y ∶ f ⋌ g for any f ∈ {∅→ {o}}r}

is the class of maps which have the right lifting property with respect to any surjection.
If map g ∶ X → Y represents a subset, i.e. X ⊂ Y , the topology on X is induced from
Y , and and f∣X = id∣X , then the image of B → Y is contained in X, and, as the
topology on X is induced, the lifting is continuous. In the opposite direction, take B
to be the image of g ∶ X → Y , and A to be the preimage of g ∶ X → Y with topology
induced from Y . Then f ⋌g lifts iff g ∶X → Y represents a subset. Rest is similar.

2.2. Compact. — Thinking of Quillen orthogonals as a form of negation in cat-
egory theory (i.e. that taking the orthogonal of a class/property of morphisms is
perhaps the simplest way to define a class/property of morphisms without the prop-
erty in a way useful in a diagram chasing computation), we try to define compactness
(rather, the class of proper morphisms) by picking a example of a non-proper map.
Perhaps the simplest example of a map which is not proper is the embedding of a
point as the open point in the two-point space with one point open and one point
closed. We denote this map by {o}Ð→ {o→c}.
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Lemma 2.2.1 ({o}Ð→ {o→c}). — In the category of (all) topological spaces, the

class ({{o}Ð→ {o→c}}
r
<5)

lr
is a class of proper maps, and

– a map of “nice” spaces is proper iff it lies in ({{o}Ð→ {o→c}}
r
<5)

lr

In particular, a Hausdorff space K is compact iff

K → {o} ∈ ({{o}Ð→ {o→c}}
r
<5)

lr

Here, “nice” may be taken to mean Hausdorff hereditary normal (separation ax-
ioms T1 and T5), and {{o}Ð→ {o→c}}

r
<5 denotes the subclass of {{o}Ð→ {o→c}}

r

consisting of maps of spaces with less than 5 points.

Proof. — See §2.2.1 or [19, §2.2] for a verbose explanation; here we are brief. First
check that a map f of finite spaces is closed, equiv. proper, iff {o}Ð→ {o→c}⋌f . The
definition of being proper via ultrafilters (see Bourbaki [14, I§10.2,Th.1(d)], quoted
in §3.2) expresses being proper as a lifting property with respect to a class of maps
associated with ultrafilters: f is proper iff

A→ A ⊔U {∞} ⋌ X fÐ→ Y

where the topology on A⊔U {∞} is such that∞ is closed, U is the neighbourhood filter
of ∞, and the topology on A is induced [14, I§6.5, Def.5, Example]. The definition of
this topology is “read off” from the definition of a limit of an ultrafilter: for X = A and
U an ultrafilter on X, a map A⊔U {∞}→X extending the identity on X, is continuous
iff it takes ∞ to a limit of U in X. These maps belong to ({{o}Ð→ {o→c}}

r
<5)

l, hence
any map in ({{o}Ð→ {o→c}}

r
<5)

lr is proper.
Smirnov-Vulikh-Taimanov theorem [15, 3.2.1,p.136] gives sufficient conditions to

extend a map to a compact Hausdorff space, and can be generalised to give the
required lifting property. It says that a map to a compact Hausdorff space can be
extended to the whole space X from a dense subset A satisfying the (in fact necessary)
condition for every pair B1,B2 of disjoint closed subsets of A the inverse images
f−1(B1) and f−1(B2) have disjoint closures in the space X. A verification shows that
the following four maps are closed and their left orthogonals define these sufficient
conditions on A→X:(7)

{a←u→b}Ð→ {a = u = b} {a↔ b}Ð→ {a = b} {o→c}Ð→ {o = c} {c}Ð→ {o→c}
(disjoint closures) (injective) (pullback topology) (dense image)

{a=←u=→b} {a↔= b} {o=→c} {o→c}
{a<-u->b}-->{a=u=v} {a<->b}-->{a=b} {o->c}-->{o=c} {c}-->{o->c}

Hence, the Smirnov-Vulikh-Taimanov theorem [15, 3.2.1,p.136] implies that a Haus-
dorff space K is compact iff K → {o} is in

(7)Our notation represents finite topological space as preorders or finite categories with each dia-

gram commuting, and is hopefully self-explanatory; see [3] for details. In short, an arrow o → c
indicates that c ∈ cl o, and each point goes to “itself”; the list in {..} after the arrow indicates new

relations/morphisms added, thus in {o → c} Ð→ {o = c} the equality indicates that the two points

are glued together or that we added an identity morphism between o and c. The notation in the 3rd

line informal (red indicates new/added elements), and in the 4th line reminds of a computer syntax.
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{{a←u→b}Ð→ {a = u = b},{a↔ b}Ð→ {a = b},{o→c}Ð→ {o = c},{c}Ð→ {o→c}}
lr

,

and the latter is a subclass of ({{o}Ð→ {o→c}}
r
<5)

lr.

In what way may it be useful to say that these four maps of preorders reveal combi-
natorics implicit in the notion of compactness ?

Note that for this statement it is important that the category of topological spaces
contains spaces associated with ultrafilters that would usually be considered to belong
to wild phenomena such as curves cheerfully filling cubes, which are irrelevant from
the point of view of the topological intuition of shapes, cf. [4, §5, pp.28/29].

Remark 2.2.2. — Other choices of examples lead to modifications of compactness
discussed in literature. [12]calls a space X E-compact iff it is a closed subset of a
power of E (for Hausdorff E a retract is necessarily closed), i.e. X → {o} ∈ {E →
{o},{c} → {o → c}}lr. Later [13] introduced the notion of extension closed subspace

and considered the class of extension closed subspaces of a power of a finite space
containing those X such that X → {o} ∈ ({{c}→ {o→ c}}∪{F → {o} ∶ ∣F ∣ <∞})lr. A
retract of a Hausdorff space is necessarily closed, and a retract of an arbitrary space
is necessarily extension closed, and this allows to relate results of [12, 13] to the weak
factorisation systems indicated.

2.3. Contractible. — A simple example of a map contracting something is pro-
vided by by the map M → Λ from a space M with 5 points (two open and three
closed), into a space Λ with 3 points (one open and two closed), see Fig. 1: it con-
tracts the V in M to get Λ. Accordingly, we use this example to try and define
contractible (among “nice” spaces).

Lemma 2.3.1 (M → Λ). — In the category of (all) topological spaces, {M → Λ}lr is
a class of trivial Serre fibrations, and

1. A “nice” space Y is contractible iff

Y → {o} ∈ {M → Λ}lr

2. X is normal (not necessarily Hausdorff) iff ∅→X ∈ {M → Λ}l, i.e.

∅→X ⋌M → Λ

3. For a map A → X from a Hausdorff space A to a “nice” (meaning Hausdorff

hereditary normal) space X, it represents a closed subset A ⊂ X iff A ↪ X ∈
{M → Λ}l, i.e.

A↪X ⋌M → Λ
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In (1), “nice” may be taken to mean “being a finite CW complex”.(8) What we need
is that Y is a retract of some Euclidean space Rn iff Y is weakly contractible.

Remark 2.3.2. — It is not hard to see that Lemma 2.3.1(2,3) implies the following.
If calculated in a category of piecewise linear maps of finite CW complexes and fi-
nite topological spaces (defined appropriately), {M → Λ}lr is the class of trivial Serre
fibrations. Michael selection theorem ([6, Thm.1.2], see §3.1) implies that, if calcu-
lated in the category of paracompact spaces of finite Lebesgue dimension, the double
Quillen negation {M → Λ}lr contains many natural examples of trivial fibrations, for
example all locally trivial maps of completely metrisable spaces with locally connected
fibres. Note that this category is large enough for the calculation of Lemma 2.2.1 for
the triple Quillen negation of compactness to be valid.

Of course, this tempts a conjecture

Conjecture 2.3.3. — A map of “nice” spaces is a trivial fibration iff it belongs to

{M → Λ}lr.

Proof. — Recall that

{M → Λ}lr = {Y pÐ→ B ∶ A iÐ→X ⋌ Y pÐ→ B whenever A iÐ→X ⋌M → Λ}

Thus, to see that {M → Λ}lr is a class of trivial Serre fibrations it is enough to verify
that Sn → Dn+1 ∈ {M → Λ}l, where Sn → Dn+1 denotes the standard embedding of an
n-sphere into the n + 1-ball as the boundary. This is done in (3) using that Dn+1 is
hereditary normal.(2). To give a map X Ð→ Λ is to give two disjoint closed subsets of
X; to give a lifting to M is to find their disjoint neighbourhoods. (1). It is enough to
show that for Y = [0,1]: indeed, r-orthogonals are closed under products and retracts,
and any contractible finite CW complex is a retract of some [0,1]n, n > 0 [10]. The
proof for Y = [0,1] we give is the standard proof of the Tietze extension theorem
retold in a diagram chasing notation.

Represent the interval [0,1] as a union
[0,1] = {0} ∪ (0, t1) ∪ {t1} ∪ (t1, t2) ∪ ... ∪ (tn−1,1) ∪ {1}

Contract the open intervals to (open) points, and denote the resulting map by
[0,1] → Λn where Λn = {

0
↙t

−
0,1↘

t1
↙t

−
1,2↘

t2
↙....↘

tn−2
↙t

−
n−2,n−1↘

tn−1
↙t

−
n−1,n↘

1
}.

Subdividing the open intervals gives maps Λ2n → Λn. The map Λ2 = M → Λ = Λ1
corresponds to subdividing a single open interval into two. Use that r-orthogonals are

(8)As pointed out by Tyrone Cutler at mathoverflow.net, “finite” is important: Let CN be the cone

over a countably infinite discrete complex (this is a contractible 1-dimensional polyhedron). van

Douwen and Pol [van Douwen, Eric K.; Pol, Roman. Countable spaces without extension properties.

Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 25 (1977), no. 10, 987–991.] have

constructed a countable regular T2 space X (which is thus perfectly normal) and a function A→ CN,
defined on a certain closed A ⊂ X, which does not extend over any neighbourhood inX. In particular,

the map of countable complexes CN→ {o} is both a Hurewicz fibration and a homotopy equivalence,

but is not soft wrt all perfectly normal pairs.

https://mathoverflow.net/questions/409266/are-trivial-fibrations-of-finite-cw-complexes-soft-for-normal-maps
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closed under pullbacks to see that Λ2n → Λn ∈ {M → Λ}lr, and that r-orthogonals are
closed under inverse limits to see that Λω → Λ ∈ {M → Λ}lr where Λω ∶= lim

Λ2n→Λn

Λ2n

and that r-orthogonals are closed under composition to see that Λω → Λ ∈ {M → Λ}lr,
and that r-orthogonals are closed under composition to see that Λω → {o} ∈ {M → Λ}lr

as Λ → {o} is a retract of Λ4 → Λ2. Finally, the maps [0,1] → Λn induce an embed-
ding [0,1]→ Λω of [0,1] into Λω as a retract, hence, an orthogonals are closed under
retract, we get the required result. (3). Pick a map sending X to the open point of Λ,
and the separating neighbourhoods of two distinct points of A to the two open points
of M . A lifting would provide separating neighbourhoods of their images. Therefore,
the map A→X is injective. To see that it is closed, pick a map sending the whole of
A to the closed point in the “middle” of M , and an arbitrary point x of X −A into a
closed point of Λ. A lifting would provide neighbourhood of x disjoint from A. To see
that the topology on A is induced, pick a map X → Λ sending X to the open point
of Λ, and a map A→M sending an arbitrary open subset U of A into an open point
of Λ. A lifting would provide an open subset of X whose intersection with A is U .
In the opposite direction, use that a space is hereditary normal iff whenever each of
two disjoint subsets can be separated from the other by an open neighbourhood, they
have disjoint open neighbourhoods, cf. Fig. 3. We remark that this characterisation
is a lifting property.

Remark 2.3.4. — [9, Thm.3.5] almost says that ∣∆Y ∣ → Y ∈ {∣∆Λ∣ → Λ}lr where
∣∆Y ∣ denotes the geometric realisation of the simplicial set n≤ ↦ Hom≤(n≤, Y ) of
non-decreasing chains in a finite preorder Y .(9) Note that ∣∆Λ∣ = [0,1] and ∣∆Λ∣→ Λ
is the map [0,1] → Λ contracting (0,1) to the open point of Λ. This suggests that
∣∣Y ∣∣ → Y ∈ {M → Λ}lr where ∣∣Y ∣∣ ∶= lim

Y (n+1)→Y (n)
Y (n) is the non-Hausdorff geometric

realisation of Y , where Y (n+1) is the preorder of increasing chains (the barycentric
subdivision) of Y (n), and Y (0) ∶= Y . Note M = Λ(1).

2.4. A naïve finitist’s “computational” model structure. — In a model cat-
egory, the class of fibrations can sometimes be defined in terms of cofibrations and

(9)[9, Thm.3.5] says also that the lifting X → ∣∆Y ∣ is unique up to homotopy over Y . This is implied

by X × {0,1} ∪A × [0,1]→ X × [0,1] ∈ {∣∆Λ∣→ Λ}lr.
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trivivial fibrations in a diagram chasing manner.(10) This and considerations above
suggest the following naive conjecture.(11)

Conjecture 2.4.1 (M → Λ). — A closed model structure on the category of topolog-

ical spaces is defined as follows:

(c) {M → Λ}l is the class of cofibrations.

(wf) {M → Λ}lr is the class of trivial fibrations.

(f) a map p ∶ Y → B is a fibration iff for any commutative diagram of solid arrows

labelled as shown there exist a diagonal arrow X → Y making the total diagram

commutative:

A A
idoo //

(c)
��

Y

p

��

X

(wf)

`` >>

// B

(wc) a map is a weak cofibration iff it is has the right lifting property with respect to

all fibrations: (wc):=(f)l

(w) a weak equivalence is the composition of a trivial cofibration with a trivial fibra-

tion: (w):=(wc)(wf)

With these definitions, classes of (trivial) fibrations are subclasses of (trivial) Serre
fibrations, and a map of Hausdorff hereditary normal spaces is a cofibration iff it is a
closed inclusion; and, for any contractible finite CW complex I, the map A×I

(wf)
ÐÐÐ→ A

(10)For example, using the following diagram rule, valid in any model category: a map p ∶ Y → B is

a fibration iff

– given a commutatitive diagram of solid arrows labelled as shown, you can always construct

the dotted arrow making the whole diagram commutative.

A A
idoo //

(c)
��

Y

(f)
��

X

(wf)

`` >>

// B

This gives the right definition of a Serre or Hurewicz fibration in the category of topological spaces.
(11)A sketch of a conjecture, rather. The choice of M → Λ is somewhat arbitrary; the conjecture

with the more complicated map for separation axiom T5 (hereditary normal, see Fig. 3) would

have been equally well-motivated. We may need to consider the assumptions of Michael continuous

selection theory, paracompactness and finite Lebesgue dimention, which can also be represented

as lifting properties, cf. Appendix 3.1. To demonstrate the flexibility/vagueness, let us say that

we can easily add to the conjecture the assumption of “Lebesgue zero dimension" by considering

{M → Λ,{a← u, v → b}Ð→ {a← u = v → b}}, using that a topological space X is zero-dimensional

iff ∅ → X ⋌ {a ← u, v → b} Ð→ {a ← u = v → b} [5, Proposition 2(c)]. Of course, this particular

example is not what we would want. We may also to consider an analogue of this conjecture in

another category such as the of posets, simplicial sets, or the category of simplicial objects in the

category of filters [21] extending the category of topological spaces, of simplicial sets, and of uniform

spaces.

Importantly, (f) can probably be improved, see §2.5 for a discussion.
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is a trivial fibration, and map A
(wc)
ÐÐ→ A × [0,1] is a trivial cofibration whenever

A × [0,1] is Hausdorff hereditary normal.
In §2.5 below we show that the lifting property of a microfibration can be formu-

lated as follows, thereby suggesting replacing (f) by
(f)micro a map is a fibration iff it admits a decompostion

⋅
{{o→a↔ b}Ð→{o=a↔b}}

l

ÐÐÐÐÐÐÐÐÐÐÐÐÐÐ→ ⋅
{{o→a↔ b}Ð→{o=a↔b}}

lr,{M→Λ}lr

ÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ→ ⋅
Formal topological spaces: a model category of diagram chasing constructions. — The
language of this conjecture is purely combinatorial. Can we define a model category of
“formal” topological spaces (“formal” as in formal power series), i.e. a model category
whose objects and arrows belong to a calculus of diagram chasing computations, so
to say ? A naïve hope is that the size of spaces appearing in the Quillen orthogonals
(negations) representing basic notions of topology [2, 3] is small enough (< 7) to make
feasible the exponential growth in the computer processing of such a calculus.

The following conjecture would represent a rule in such a diagram chasing calculus
of formal topological spaces,(12) and perhaps might imply the previous conjecture.

Conjecture 2.4.2 (M2). — For each finite set P of maps of finite spaces, and each

string consisting of letters l and r, each map in the category of topological spaces(13)

decomposes as a map in (P )sl followed by a map in (P )slr, and as a map in (P )srl
followed by a map in (P )sr:

⋅
(P )slr

��⋅ ∀ //

(P )sl

??

⋅

⋅
(P )sr

��⋅ ∀ //

(P )srl

??

⋅

The reformulations in [2, 3] show that this conjecture would imply that each
topological space can be “approximated” by a compact space (Stone-Cech compact-
ification, up to separation axioms, see Lemma 3.2); by a space satisfying separa-
tion axiom T0,T1, T4, T5, totally disconnected, extremally disconnected, Lebesgue
zero-dimensional, ultranormal, discrete; that it is well-defined to take a connected
component; add an open/closed subset to a topology, take a non-Hausdorff mapping
cone/cylinder, etc. The decompositions required by the conjecture are reminiscent
to cofibration-fibration decompositions required of Axiom M2 of a Quillen model
category, and are typically proved by the Quillen’s small object argument using set-
theoretic assumptions that certain classes of morphisms involved are small, which do
not necessarily hold in our case.

(12)See [19, §2.3] for a discussion how to view the axioms of topology as rules of diagram chasing

with preorders.
(13)Here it may be important (and, inasmuch, in Conjecture 2.4.1) to consider the category of

all topological spaces rather than a convenient category of topological spaces, for the orthogonal

(Quillen negation) for compactness is a natural example which, in a sense, captures the definition of

compactness via ultrafilters, and, accordingly, its calculation requires considering topological spaces

associated with ultrafilters. However, note that these spaces are (non-Hausdorff) paracomact of finite

Lebesgue dimension, simply because they have very few open covers.
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Logical ideas.— Of course, the real temptation is to develop a computer algebra
system doing topology using a syntax extending the concise syntax for topology we
discuss, and to use it in teaching.

Problem 2.4.3. — Find a diagram chasing calculation deriving the axioms of a

model category from Conjecture M2 and other diagram chasing rules of topology such

as [19, 2.3],

Arguably, this might clarify the topological notions/intuition and be an indication
that our observations lead to a tame topology of [4].

2.5. Vista: the naïve defining lifting property of a fibration. — We explain
the motivation and, to an extent, meaning of the conjectural definition of a model
structure we give in §2.4.
2.5.1. The naïve defining lifting property of a fibration. — If all spaces were “nice”,
we could perhaps define fibrations and trivial fibrations as follows:
(wf) a map p ∶ Y → B is a trivial fibration iff the lifting property A → X ⋌ Y pÐ→ B

holds whenever A ⊂X is a closed subset of a space X.
(f) a map p ∶ Y → B is a fibration iff, whenever A ⊂ X closed, for any lifting

problem A → X ⋌ Y pÐ→ B, there exists a diagonal lifting defined on some open
neighborhood of A.(14)

In (wf), we get the definition of trivial Serre fibration if we restrict A ⊂ X to be
cellular inclusions of finite CW complexes, or indeed just the inclusions Sn → Bn+1 of
an n-sphere as the boundary of n + 1-ball, n ≥ 0. In (f), the same restriction almost
gives the definition of a Serre microfibration.(15)

(14)Formally in notation, for any commutative square

A
f
//

i

��

Y

p

��
X

φ
// B

there is an open A ⊂ U ⊂ X and a map f̃U ∶ U → Y such that the diagram

A
f
//

~~ ��

Y

p

��
U //

f̃U

77

X φ
∣U // B

commutes.
(15)A Serre microfibration with weakly contractible fibres is necessarily a Serre fibration, see [18]

and references thein.

We quote [17, 5.1.2] for background: “Examples of microfibrations that occur in the general theory

are as follows:

(i) If X ⊂ Y is open then the inclusion map i ∶ X → Y is a microfibration.

(iv) If M,N are smooth manifolds then a submersion ρ ∶ M → N is a microfibration. In addition,

if M is compact, then ρ is a fibration. In case Y is a manifold then a microfibration ρ ∶ X → Y

is an open map, though not conversely. There are microfibrations ρ ∶ X → S1, X ⊂ R3 is compact
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Michael selection theory (see §3.1) says that we do get the standard notions of a
trivial fibration, and of a (micro)fibration, if we take X to vary among paracompact
spaces of finite Lebesgue dimension; then it is sufficient for p ∶ Y → B to be a map of
complete metric spaces with uniformly weakly contractible fibres, e.g. locally trivial
with weakly contractible fibres, or that for each ε > 0 there is δ > 0 such that, inside
each fibre, each sphere of diameter < δ can be contracted by a homotopy remaining
both in the fibre and its ε-neighbourhood. iThese assumptions come from Michael
continuous selection theory [6, Thm.1.2], see §3.1.

We rewrite (wf) and (f) in the diagram chasing manner using Lemma 2.5.1 and the
notion of non-Hausdorff mapping cone/cylinder,(16)

Lemma 2.5.1. — In a full subcategory of “nice” topological spaces,

(wf)′ a “very nice” map is a trivial fibration iff it belongs to {M → Λ}lr

(f)′ a “very nice” map is a fibration iff the map from its non-Hausdorff mapping

cone to the base belongs to {M → Λ}lr

Yp↘
B
→ B ∈ {M → Λ}lr

Here, being “nice” means being (possibly non-Hausdorff) paracompact of finite
Lebesgue dimension, and “very nice” means say a map of finite CW complexes or
being smooth in a suitable sense (we need something to ensure that a fibration is
necessarily a map of complete metrisable spaces with uniformly locally contractible
fibres), and Yp↘

B
denotes the non-Hausdorff mapping cone of Y pÐ→ B.

Proof. — Recall that

{M → Λ}lr = {Y pÐ→ B ∶ A iÐ→X ⋌ Y pÐ→ B whenever A iÐ→X ⋌M → Λ}

A map to a Hausdorff spaces necessarily glues together points which cannot be sepa-
rated by neighbourhoods (for their images can if distinct), hence we may assume that
both A and X are Hausdorff and by Lemma 2.5.1(3) that A iÐ→ X is the inclusion of
a closed subset. Hence, (f)′ states precisely (f) above, i.e. the conclusion of Michael
selection theorem Theorem 3.1.2 for trivial fibrations.

(not a polyhedron), that are not Serre fibrations. Let ρ ∶ X → Y be a microfibration where X,Y
are compact polyhedra and ρ is piecewise linear. It seems reasonable to conjecture that ρ is a Serre

fibration. The literature does not seem to address this question.”
(16) Intuitively, this is the usual (Hausdorff) mapping cone Y × [0,1]/{(y,1) = p(y)} where we con-

tracted [0,1) of [0,1] to point, thereby replacing [0.1] by the two-point Sierpinski-Kolmogorov space

{o→c}. Set-theoretically, the non-Hausdorff mapping cone/cylinder of a map p ∶ Y → B, denoted by

Yp↘
B
, is Y ×{o→c} /(−, c) = p(−), i.e. the disjoint union Y ⊔B equipped with the following topology:

an open subset is either an open subset of X, or the union of an open subset of B and its preimage.

Diagram-chasingly, a non-Hausdorff mapping cone fits into a (P )l(P )lr decomposition, cf. Conjec-

ture 2.4.2, for P ∶= {{o→a↔ b} Ð→ {u=a↔ b}} or P ′ ∶= P ∪ {{a ↔ b} → {a = b}} defining “open

subset”, as, e.g. Y
{{o→a↔ b}Ð→{o=a↔b}}

l

ÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ→ Yp↘
B

{{o→a↔ b}Ð→{o=a↔b}}
lr

ÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ→ B
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Similarly, (wf)′ is (wf) using the diagram chasing property of the non-Hausdorff
mapping cone:

– is to give a map X → Yp↘
B is the same as to give a commutative square

U
f
//

i

��

Y

p

��

X
φ
// B

for some open subset U of X.

Indeed, this means that the lifting property A iÐ→X ⋌ Yp↘
B

pÐ→ B of item (f)′ holds iff
for any open subset U of A and a commutative square

U
f
//

i

��

Y

p

��

X
φ
// B

there is an open U ⊂ V ⊂X and a map f̃V ∶ V → Y such that the diagram

U
f
//

��

Y

p

��

V φ∣V //

f̃V

>>

B

commutes. This is almost the conclusion of Michael selection theorem Theorem 3.1.2
for fibrations as stated.

Finally, by Lemma 2.5.1(3), {M → Λ}l contains the inclusion Sn → Bn+1 of an
n-sphere as the boundary of n+ 1-ball, n ≥ 0, and thereby {M → Λ}lr is a subclass of
trivial Serre fibrations. (f)′ implies that Y pÐ→ B is a microfibration [17, 5.1.2], and,
under strong suitable assumptions (e.g., a proper submersion), that it is a fibration.

2.5.2. The diagram chasing of the non-Hausdorff mapping cone. — However, (f)′
is not quite satisfactory, as it is not in terms of Quillen negation (orthogonals) and
does not reveal a combinatorial structure. To reveal the combinatorics of the no-
tion/construction of the non-Hausdorff mapping cone, observe that it fits into(17)

Y
{{o→a↔ b}Ð→{o=a↔b}}

l

ÐÐÐÐÐÐÐÐÐÐÐÐÐÐ→ Yp↘
B

{{o→a↔ b}Ð→{o=a↔b}}
lr

ÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ→ B

Indeed, {{o→a↔ b}Ð→ {o=a↔ b}}l is the class of open maps such that the topology
on the domain is induced from the target (for T0 spaces, it means being open subsets),

(17)Recall that we write X
P l

Ð→ Y to mean that the morphism p ∶ X → Y lies in (equiv., has property)

P l.
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and thus the required lifting property is straightforward to check.(18) This shows that
(f)′ is equivalent to
(f)′′ a “very nice” map p ∶ Y → B is a fibration iff it admits a decomposition

Y
{{o→a↔ b}Ð→{o=a↔b}}

l

ÐÐÐÐÐÐÐÐÐÐÐÐÐÐ→ ⋅
{{o→a↔ b}Ð→{o=a↔b}}

lr,{M→Λ}lr

ÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ→ B

3. Appendix.

3.1. Appendix. Michael continuous selections. — We sketch the statement of
the Michael continuous selections theorem [6, Thm.1.2] we use, see also [5, 7].
3.1.1. The statement of [6, Theorem 1.2].— Let (Fx)x∈X be a family of non-empty
subsets of a topological space Y . Michael selection theory thinks of such a family
as a multivalued function φ ∶ X → 2Y and refers to the family as a carrier. Michael
selection theory gives sufficient conditions for existence of a continuous choice function
f(x) ∈ Fx, x ∈X. These conditions are satisfied when the family (Fx)x∈X is the family
of fibres of a fibration of "nice" spaces. [7] considers families of convex subsets of a
Banach space but we do not discuss it here.

The family (Fx)x∈X is lower semi-continuous iff, whenever U ⊂ Y is open in Y ,
the subset {x ∈ X ∶ Fx ∩ U ≠ ∅} is open in X. This subset can be thought of as the
preimage of U under the multivalued function (Fx)x∈X .

A set F is called locally n-connected (LCn) if,for every y ∈ Y and neighborhood
U ofy, there exists a neighborhood V of y such that every continuous image of an
m-sphere(m ≤ n) in V is contractible in U ; Y is called n-connected (Cn) if every
continuous image of an m-sphere (m ≤ n) in Y is contractible in Y . (Note that
since there is no such thing as a (−1)-sphere every Y is (−1)-locally contractible and
(−1)-contractible.)

The family (Fx)x∈X is uniformly locally n-contractible (equi − LCn) iff, for every
x ∈ X and every y ∈ Fx, and every neighbourhood U ∈ y of y ∈ Y , there exists a
neighbourhood V ∋ y of y ∈ Y such that, for every Fx′ , x′ ∈X, every continuous image
of an m-sphere (m ≤ n) in Fx′ ∩ V is contractible in Fx′ ∩U . [6] uses the convention
that each family is uniformly locally −1-contractible “since there is no such thing
as a (−1)-sphere”. As a diagram ∀x ∈ X ∀y ∈ Fx ∀Uy ∋ y ∃Vy ∋ y, Vy ⊂ Uy∀x′ ∈ X
Sn

��

∀ // Fx′ ∩ Vy

��

Bn+1 ∃ // Fx′ ∩Uy
By dimension, or dim, we mean the Lebesgue (covering) dimension; i.e., dimX ≤ n

iff every finite open covering U of X has a finite, open refinement V of order ≤ n
(i.e. every x ∈ X is in at most n + 1 elements of V). If A ⊂ X is closed, then we say
that dimX(X −A) ≤ n if dim(C) ≤ n for every C ⊂ X −A which is closed in X; for

(18)To see that this double Quillen negation (orthogonal) is rather close to being an equivalent

definition, consider the lifting property Y → Yp↘
B
⋌ Y ′ → B
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metric X, this is equivalent to dim(X −A) ≤ n. For a normal space X, dimX ≤ n iff
A → X ⋌ Sn → {o} for every closed subset A ⊂ X. A space is paracompact iff every
open covering has a locally finite open refinement; for a regular space it is equivalent to
require only that every open covering has a closure-preserving refinement [8, Thm.1].
(19)(20)

Theorem 3.1.1 ([6, Thm.1.2]). — Let X be a paracompact Hausdorff space, A ⊂X
closed with dimX(X −A) ≤ n+1, and let (Fx)x∈X be a uniformly locally n-contractible
family of non-empty closed subsets of a complete metric space Y .

Then every continuous choice function on A extends to a continuous choice func-

tion on an open neighborhood of A. Moreover, if every Fx, x ∈ X is n-contractible,
then every continuous choice function on A extends to a continuous choice function

on the whole of X.

We repeat the conclusion in notation: for every continuous choice function f ∶ A→
Y such that f(x) ∈ Fx whenever x ∈ A, there is an open neighbourhood U ⊂ A of A
and a continuous choice function f̃ ∶ U → Y such that f̃(u) ∈ Fu whenever u ∈ U , and
f(a) = f̃(a) whenever a ∈ A.
3.1.2. Our application: fibrations and soft maps. — Given a commutative square
with a surjective open map p ∶ Y → B and a subset A ⊂X

A //
��

��

Y

p

��

X // B

(19)We combine [7, §9] and [8] to give background and terminology on coverings:

"A open covering of a topological space X is, in [[7]], a collection of open subsets of X whose union

is X. Its elements need not be open unless that is specifically assumed. A refinement of a covering U
is a covering V such that every V ∈ V is a subset of some U ∈ U . A covering U is point-finite if every

x ∈ X is an element of only finitely many U ∈ U , it is locally finite if every x ∈ X has a neighbourhood

intersecting only finitely many U ∈ U .
Call a collection U of subsets of a topological space closure-preserving if, for every subcollection

V ⊂ U the union of closures is the closure of the union (i.e. ∪{Ū ∶ U ∈ U} = [∪{U ∶ U ∈ U}]−). Any

locally finite collection is certainly closure-preserving, but the converse is generally false even for

discrete spaces.
(20)These notions can probably be expressed as lifting properties as follows. To give a finite open,

resp. closed, covering U is to give a map X Ð→ {V ∶ ∅ ≠ V ⊂ U} where the topology is defined by the

order V1 → V2 iff V1 ⊃ V2, resp. V1 ⊂ V2. To give a finite open covering U of order ≤ n is to give a

map X Ð→ {V ∶ ∅ ≠ V ⊂ U , ∣V ∣ ≤ n + 1}. A finite open covering U of X has a finite, open refinement

V of order ≤ n iff ∅ → X ⋌ {(W,V) ∶ ∅ ≠ W ⊂ V ⊂ U , ∣W ∣ ≤ n + 1} → {V ∶ ∅ ≠ V ⊂ U} where the

topology is generated by the orders (W1,V2) → (W2,V2) iff W1 ⊃W2 and V1 ⊃ V2, and V1 → V2 iff

V1 ⊃ V2.
To give a point-finite closure-preserving closed covering U of X is to give a map X Ð→ {V ∶ ∅ ≠ V ⊂
U , ∣V ∣ < ω} where the topology is defined by the order V1 → V2 iff V1 ⊂ V2(sic!). An open covering

U has a point-finite closure-preserving refinement V iff ∅ → X ⋌ {(W,V) ∶ ∅ ≠ W ⊂ V ⊂ U , ∣W ∣ <
ω} → {V ∶ ∅ ≠ V ⊂ U} where the topology on the domain is defined by order (W1,V2) → (W2,V2)
iff W1 ⊂W2(sic!) and V1 ⊃ V2, on the target by the open subsets {V ⊂ U ∶ U ∈ V}, for U ∈ U .
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define a family of subsets of Y by Fx ∶= p−1(g(x)), x ∈ X. The map p ∶ Y → B
being surjective implies the subsets are non-empty, and being open implies the family
is lower semi-continuous. A continuous choice function is the same as a lifting map
X → B. For this family of subsets, [6, Thm.1.2] above amounts to the following lifting
property.

Theorem 3.1.2 ([6, Thm.1.2]). — Let X be a paracompact Hausdorff space, and Y
be a space admitting a complete metric.

Let i ∶ A↪X be a closed inclusion with dimX(X −A) ≤ n+ 1. Let p ∶ Y → B be an

open surjective map with n-contractible uniformly locally n-contractible fibres. Then

A
iÐ→ B ⋌ Y

pÐ→ B, i.e.

A ∀ //
��

i

��

Y

p

��

X

∃

>>

∀ // B

Without the assumption that the fibres are n-contractible, we only get that there is

an open A ⊂ U ⊂X and a map f̃U ∶ U → Y such that the diagram

A
f
//

~~ ��

Y

p

��

U //

f̃U

77

X φ∣U // B

commutes.

We say (uniformly, locally) weakly contractible to mean (uniformly, locally) n-
contractible for every n ≥ 0. A map Y pÐ→ B is called soft for paracompact (normal,

etc) pairs iff for each subset A of a paracompact (normal, etc, resp.) X it holds
A ⊂ B ⋌ Y

pÐ→ B. With this terminology, the theorem implies that an open surjective
map with n-contractible uniformly locally n-contractible fibres from a completely
metrisable space is necessarily soft for paracompact pairs of finite Lebesgue dimension.

3.2. Extending maps to compact spaces. — We explain in more detail the
proof in §2.3 of the characterisation of compactness. The reader may find a verbose
exposition focusing on logical ideas in [19, §2.2].
3.2.1. Compactness via ultrafilters by Bourbaki. — Item d) of the following charac-
terisation of proper maps by Bourbaki [14] states almost a lifting property. Arguably,
this suggests that the ideas/technique of category theory were present in [14], al-
though not the notation or language of category theory.
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Item d) expresses the following lifting property (almost): ∣X ∣Ð→ ∣X ∣⊔U{∞} ⋌X fÐ→ Y
where ∣X ∣ denotes the set of points of X equipped with discrete topology, and the
topology on ∣X ∣ ⊔U {∞} is such that U is the neighbourhood filter of ∞, and the
induced topology on subset ∣X ∣ is discrete [14, I§6.5, Def.5, Example].
3.2.2. Extending maps to compact Hausdorff spaces. — The theorem of Vulikh-
Smirnov-Taimanov [15, 3.2.1,p.136] is stated in the language of lifting properties
almost explicitly (“compact” below stands for “compact Hausdorff”):

Let us transcribe this to the language/notation of finite topological spaces and
lifting properties. We are given a dense subspace A iÐ→X of a topological space X and
a continuous mapping A fÐ→ Y of A to a [Hausdorff] compact space Y . The mapping f
has a continuous extension over X means that the arrow A

fÐ→ Y factors via A iÐ→ X
(cf. Figure 2f). A pair B1, B2 of disjoint closed subsets of Y is an arrow Y Ð→ {B1 ←
O → B2} where {B1 ← O → B2} is the space with one open point denoted by O
and two closed points denoted by B1 and B2. To say the inverse images f−1(B1)
and f−1(B2) have disjoint closures in the space X is to say that the composition
A

fÐ→ Y Ð→ {B1 ← O →B2} factors as A iÐ→X Ð→ {B1 ← O →B2} (cf. Figure 2g).
Now we need to define the class of dense subspaces. A dense subspace is an injective

map with dense image such that the topology on the domain is induced from the
target. This suggests we try to define this class by taking left Quillen negations
(orthogonals) of the simplest archetypal examples of a map whose image is not dense
({U} Ð→ {U → U ′}), a non-injective map ({x ↔ y} Ð→ {x = y}), and a map such
that the topology on the domain is not induced from the target ({o→ c}Ð→ {o = c}).

Doing so leads to the following reformulation.

Theorem 3.2.1. — Let Y be Hausdorff compact and let A
iÐ→ X satisfy (cf. Figure

2(ijk))

(i) (dense) A
iÐ→X ⋌ {U}Ð→ {U → U ′}



20 A SUGGESTION TOWARDS A FINITIST’S REALISATION OF TOPOLOGY

(ii) (injective) A
iÐ→X ⋌ {x↔ y}Ð→ {x = y}

(iii) (induced topology) A
iÐ→X ⋌ {o→ c}Ð→ {o = c}

Then the properties of A
fÐ→ Y defined by Figure 2(f) and Figure 2(g) are equivalent.

This implies that, for Hausdorff compact Y , items 3.2.1(i-iii) and A iÐ→X ⋌ {B1 ←
O ↘B2}Ð→ {B1 = O = B2} imply that A iÐ→X ⋌ Y Ð→ {●}.

Further, note that if X = A ⊔ {∞} is obtained from A by adjoining a single closed
non-open point, then

A
iÐ→X ⋌ {B1 ← O ↘B2}Ð→ {B1 = O = B2}

iff there exists an ultrafilter U such that A iÐ→X is of form AÐ→ A ⊔U {∞}.
This implies that maps of form A Ð→ A ⊔U {∞} are in P l and, finally, that a

Hausdorff space K is quasi-compact iff K Ð→ {●} is in P lr where P consists of
{B1 ← O →B2}Ð→ {●} {U}Ð→ {U ↘ U ′}
{x↔ y}Ð→ {x = y} {o↘ c}Ð→ {o = c}

3.2.3. A logical point of view: the simplest counterexample negated three times.—

We took a (the?) simplest possible non-proper map, took Quillen negation thrice (al-
though once passing to the subclass of finite spaces), and got (almost?) the definition
of a proper map.

Let us explicitly state the conjecture.

Conjecture (({{o}Ð→ {o→ c}}r<5)lr). — In the category of topological spaces, the

following Quillen orthogonal (negation) defines the class of proper maps:

({{o}Ð→ {o→ c}}r<5)lr

3.3. Appendix. Properties of the empty subspace of a singleton. — We
give a list of properties of maps one can define starting with the simplest possible
map ∅ → {o}. Note that the notion of connectivity, discreteness, and quotient arises
in this way.

[2] gives a longer list of notions one can obtain in this way starting from more
complicated maps of finite topological spaces, of up to 7 points. Note compactness
arises in this way, and also contractible, as we saw above.

We apologize for likely misprints(=mistakes) in this unproofread lemma.

Lemma 3.3.1. — In the category of (all) topological spaces,

r=rrl: (∅Ð→ {o})r is the class of surjections

l: (∅Ð→ {o})l is the class of maps AÐ→ B where A ≠ ∅ or A
idÐ→ B

rr=rllrr: (∅ Ð→ {o})rr = {{x ↔ y → c} Ð→ {x = y = c}}l = {{x ↔ y ← c} Ð→ {x = y =
c}}l is the class of subsets, i.e. injective maps A ↪ B where the topology on A
is induced from B

rrr: (∅ Ð→ {o})rrr is the class of maps X → Y such that A ⊂ B ⋌X → Y for every

subset A of B

lr: (∅Ð→ {o})lr is the class of maps ∅Ð→ B, B arbitrary, and A
idÐ→ B
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lrr=lrrrllr: (∅Ð→ {o})lrr is the class of maps AÐ→ B which admit a section

l: (∅Ð→ {o})l consists of maps f ∶ AÐ→ B such that either A ≠ ∅ or A = B = ∅
ll=rlll: (∅Ð→ {o})l consists of isomorphisms

rl: (∅Ð→ {o})rl is the class of maps of form AÐ→ A ⊔D where D is discrete

rll=lrrrlll: (∅Ð→ {o})rll is the class of maps A→ B such that each non-empty closed and

open subset of B intersects the image of A; for "nice" spaces this means that

π0(A)→ π0(B) is surjective.

rllr: (∅Ð→ {o})rllr is the class of maps A→ B such that ImA is the intersection of

all open closed subsets containing it

lrrrll: (∅ Ð→ {o})lrrrll is the class of maps of form A → A ⊔B where A ⊔B denotes

the disconnected union of A and B.

lrrr=lrrrrl=rllrr: {∅Ð→ {o}}lrrr is the class of injective maps, i.e. such that f(x) ≠ f(y) when-

ever x ≠ y, equiv. {a, b}→ {a=b} ⋌ f
lrrrr: {∅Ð→ {o}}lrrrr is the class of "coquetients", i.e. surjective maps A→ B where

the topology on A is pulled back from B
lrrrrr: {∅ Ð→ {o}}lrrrrr is the class of maps A → B such that no fibre has indistin-

guishable points, i.e. {a↔ b}→ {a = b} ⋌A→ B
lrrrl: {∅ Ð→ {o}}lrrrl is the class of quotients, i.e. the maps f ∶ A → B such that a

subset U ⊂ B is open in B iff its preimage f−1(U) ⊂ A is open in A.

Proof. — Each is an easy exercise in diagram chasing and point set topology. Below
we give hints. In the notation in the proof below, we always implicitly consider the
lifting property A→ B ⋌X → Y .

r=rrl: each point, i.e. the image of {o} in Y , has a preimage in X.
l: there no maps A→ ∅ for A ≠.
rr: Y ∶= B, and X ∶= A ∪ (B ∖ IA) where the topology on X is pulled back along

the obvious map to B
rrr: (∅Ð→ {o})rrr is the class of maps X → Y such that A ⊂ B ⋌X → Y for every

subset A of B
lr: There are no maps to ∅ so these maps are in the class. lr- and l-class do not

intersect, hence the domain cannot be non-empty unless it is an isomorphism (if X ≠,
take A ∶=X and B ∶= Y ).

lrr: take B ∶=X.
ll: take X ∶= A ⊔ {o}, Y ∶= B ⊔ {o}.
rl: (∅Ð→ {o})rl is the class of maps of form AÐ→ A⊔D where D is discrete take

Y ∶= B, X ∶= A ⊔ ∣B ∖ IA∣ where ∣B ∖ IA∣ is equipped with discrete topology.
rll: This class is equal to {{a} → {a, b}}l. The preimage of b in B has to a closed

and open subset of B and does not intersects the image of A. The map to {a, b} fails
to lift iff the preimage of b is non-empty.

rllr: take X ∶= A and Y to be the intersection of all open closed subsets of B
containing ImA

lrrr: Composition with a section is a lifting whenever the map is injective. To see
it is injective, note that {a, b} → {a = b} ⋌ X → Y says that f(a) ≠ f(b) whenever
a ≠ b.
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lrrl: denotes the disconnected union of A and B. Consider the following lifting
properties. and that maps on the right all admit a section:

– A→ B is injective iff A→ B ⋌ {a↔ b}Ð→ {a = b}
– the topology on A is pulled back from B via A→ B iff

A→ B ⋌ {o→c}Ð→ {o = c}
– A→ B is closed and the topology on A is pulled from B iff

A→ B ⋌ {{x↔ y → c}Ð→ {x↔ y = c}}
– A→ B is open and the topology on A is pulled from B iff

A→ B ⋌ {{x↔ y ← o}Ð→ {x↔ y = o}}
lrrrr: Consider B ∶= Y and A ∶= X ∪ (Y ∖ IX) where the topology on X is pulled

back from its image IX in Y
lrrrrr: {∅ Ð→ {o}}lrrrrr is the class of maps A → B such that no fibre has in-

distinguishable points, i.e. {a ↔ b} → {a = b} ⋌ A → B In A → B, all points of
a fibre are indistinguishable, hence the fibre would have to map to a single points.
{a↔ b}→ {a = b} ⋌ X → Y means no fibre has topologically distinct points.

lrrrl: {∅ Ð→ {o}}lrrrl is the class of quotients, i.e. the maps f ∶ A → B such that
a subset U ⊂ B is open in B iff its preimage f−1(U) ⊂ A is open in A. this is the
standard universal property of quotients with respect to injective maps.

We were unable to calculate rrr*.
In lrrrl, we apply Quillen negation 5 times and get a notion that is worthy of having

a word introduced in a first year course. Can it be more than 5 ? I.e. can we apply
Quillen negation > 5 times to something simple or natural, and still get a meaningful
and/or well-known notion ?
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(a) K id //

��

K

��

K ∪F {“x”} //

“x”↦x

99

{●}

(b) K //

��

K

��

K ∪F {“x”} //

99

{●}

(c) A //

��

A

��

A ∪F {“x”} //

99

{●}

(d) X id //

��

X

f

��

X ∪U {“x”} //

::

Y

(e) A //

��

X

g

��

A ∪U {“x”} //

::

Y

(f) A f //

��

Y

g

��

X //

>>

{●}

(g) A f //

��

Y // {B1 ← O →B2}

X

55
(h) A //

��

{B1 ← O →B2}

��

X //

88

{●}

(i) A //

��

{U}

��

X //

;;

{U ↘ U ′
}

(j) A //

��

{x↔ y}

��

X //

;;

{x = y}

(k) A //

��

{o↘ c}

��

X //

<<

{o = c}

(l) {o} //

��

X

��

{o↘ c} //

<<

Y

Figure 2. These are equivalent reformulations of quasi-compactness of
spaces and its generalisation to maps, that of properness of maps. (a)
the identity map K

id
Ð→ K factors as K Ð→ K ∪F {∞} Ð→ K (b) this

is also equivalent to K being quasi-compact (we no longer require the
arrow K Ð→ K to be identity) (c) and in fact quasi-compact spaces are
orthogonal to maps associated with ultrafilters (d) X

f
Ð→ Y is proper, i.e.

d) If U is an ultrafilter on X and if y ∈ Y is a limit point of the ultrafilter
base f(U), then there is a limit point x of U such that f(x) = y. [Bourbaki,
General Topology, I§10.2,Th.1(d)] (e) this is also equivalent to X

f
Ð→ Y

is proper, i.e. this holds for each ultrafilter U on each space A (f) The
mapping f has a continuous extension over X (h) for every pair B1, B2 of
disjoint closed subsets of Y the inverse images f−1

(B1) and f−1
(B2) have

disjoint closures in the space X (i) the image of A is dense in B (j) the
map A Ð→ B is injective (k) the topology on A is induced from B (l) for
X and Y finite, this means that the map X Ð→ Y is closed, or,
equivalently, proper

http://mishap.sdf.org/mints-lifting-property-as-negation/tmp/Bourbaki_General_Topology.djvu
http://mishap.sdf.org/mints-lifting-property-as-negation/tmp/Bourbaki_General_Topology.djvu
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Figure 3. Separation Axiom T5: Hereditary normal.
T5 says that each subspace is normal (T4), and can be expressed as follows:
a space is hereditary normal iff whenever each of two disjoint subsets can
be separated from the other by an open neighbourhood, they have disjoint
open neighbourhoods. This figure pictures this as a lifting property of
∅→X with respect to

{a↔ a′ ← U → uv ← V → b′ ↔ b, a′ → u→ x← v ← b′, u← uv → v}

⇓

{a↔ a′ ← U =uv=V → b′ ↔ b, a′=u→ x← v=b′, u← uv → v}

In natural language, this parses as: two arbitrary disjoint subsets are the
preimages of a and b, their neihbourhoods are the preimages of open neigh-
bourhoods {a ↔ a′ = u ← U = uv} and {b ↔ b′ = v ← V = uv} of these
points, and their disjoint neighbourhoods are the preimages of open neigh-
bourhoods {a↔ a′ ← U} and {b↔ b′ ← V }.
The preorder of the domain is pictured on the left, and on the right are de-
compositions of a space into open subsets induced by maps to the domain
and the target.


	1. Introduction
	2. Observations
	3. Appendix.
	References

