REMARKS ON SHELAH’S CLASSIFICATION
THEORY AND QUILLEN’S NEGATION

misha gavrilovich

Abstract. — We give category-theoretic reformulations of stability and NIP by
observing that their characterisations in terms of indiscernible sequences are nat-
urally expressed as Quillen lifting properties of certain morphisms associated with
linear orders and with models, in a certain category of genenalised topological spaces
extending the categories of topological spaces and of simplicial sets.

This suggests an approach to a homotopy theory for model theory.
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1. Introduction

The Stone space of types over a model is a topological space carrying important
model-theoretic information, e.g. Cantor-Bendixon ranks, number of types. Un-
fortunately these spaces are “not nice” from the point of view of algebraic topology
and the methods of homotopy theory do not apply to Stone spaces of models.

In this note we attempt to rectify this situation.

We define the notion of a generalised Stone space of a model living in a rather
large category extending the category of topological spaces, simplicial sets, uniform
structures (e.g., metric spaces with uniformly continuous maps), and of preorders
(in several ways); a forgetful functor takes the generalised Stone space into the
usual Stone space, or rather the space of elements of a model with the corre-
sponding topology. These generalised Stone spaces and their morphisms carry
information about indiscernible sequences: essentially, a morphism between the
generalised Stone spaces of two models is a map between sets of elements pre-
serving indiscernible sequences in the sense that the image of any indiscernible
sequence is necessarily an indiscernible sequence. Our key observation is that an
indiscernible sequence in a model is the same as a injective morphism from the lin-
ear order to the generalised Stone space of the model. This reformulations allows
us to rewrite the characterisations of stability and NIP in terms of indiscernible
sequences as examples of a standard trick from homotopy theory, the Quillen nega-
tion (orthogonality), with respect to certain explicitly given morphisms associated
with linear orders.

Importantly, the definition of the generalised Stone space is easily obtained by
“transcribing” the definition of an indiscernible sequence in a particularly mech-
anistic, oversimplified manner reminiscent of the “android” in |[GHJ. In a forth-
coming pape we observe that “transcribing” the tree property in the definition
of a simple theory [Tent-Ziegler, Def.7.2.1] leads to a different object associated
with a model, and also leads to a lifting property. This object is essentially the
characteristic sequence of a first-order formula of [Malliaris].

The lifting property and Quillen negations (orthogonals) are a basic part of the
language of a natural abstract setting for homotopy theory, the formalism of model
categories introduced by Quillen [Quillen]; see |[Wikipedia,Lifting_property]| for de-
tails and examples of elementary properties defined as iterated Quillen negation.
Note an analogy to the model theoretic intuition of the properties we reformulate:
as their names suggest (not Independence Property, not Order Property), these
properties are usually thought of as the negation of a corresponding property sug-
gesting high combinatorial complexity.

The meaning of a morphism between two generalised Stone spaces is reminis-
cent of the notion of one structure representing another introduced by Shelah
[CoSh:919| (we quote [Sh:1043]) ‘try to formalise the intuition that “the class of
models of a stable first order theory is not much more complicated than the class
of models M = (A,..., E},...)sr where EM is an equivalence relation on A refin-
ing EM for s <t ; and I is a linear order of cardinality < |T|”.” We reformulate
a corollary of a characterisation of stable theories in [CoSh:919] and give a more
literal formalisation of this intuition: a theory is stable iff there is x such that for
each model of the theory there is a surjective morphism to its generalised Stone
space from a structure whose language consists of at most x equivalence relations
and unary predicates (and nothing else). Based on this reformulation we suggest a

M A preliminary exposition is given in [8, Appendix 9], see §9.1.5 and §9.2.6.
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conjecture with a category-theoretic characterisation of classes of models of stable
theories.

The main construction. — A little of category theoretic terminology allows to
explain our construction in a few words. Intuitively, our category is the category
of simplicial sets equipped with a notion of smallness; formally, it is the category of
simplicial objects in the category of filters in the sense of Bourbaki. The generalised
Stone space of a model is the simplicial set represented by the set of elements of
the model: an “n-simplex” is a tuple (ayo,...,a,) of elements, and it is considered
“very small” iff it is “very indiscernible”, i.e. ¢-indiscernible for “many” formulas
¢ (possibly with some elements repeated several times, so that (a,a...a) is also
“very small”). There is no single best definition of the generalised Stone space of
a model: we may want consider slightly different notions of “smallness”, e.g. “very
indiscernible” may rather mean being part of an infinite ¢-indiscernible sequence

for “many” ¢, cf. Definition [3.1.1.1] and Remark [3.1.2]

Stability and NIP as Quillen negation. — An indiscernible sequence is a map from
a linear order to a model. Equivalently, it is a morphism of simplicial sets to the
simplicial set represented by the set of elements of the model, from the simplicial set
represented by the linear order: an n-simplex of that is a non-decreasing sequence
19 < ... <ip, and we always consider it “small”. Then “the image of a small simplex
is necessarily small” means exactly that the sequence is indiscernible, possibly with
some elements repeated: for each “small (i.e. arbitary) n-simplex” iy < ... <4, the
“n-simplex” (a;,,...,a;,) is “small”, i.e. indiscernible, though possibly with some
elements repeated several times.

An indiscernible set is a map from a set to a model. In a similar way, it is
equivalent to consider a morphism of simplicial sets to the simplicial set repre-
sented by the set of elements of the model, from the simplicial set represented
by the set: an n-simplex of that is a tuple (i, ...,7,), and we always consider it
“small”. Then “the image of a small simplex is necessarily small” means exactly
that the set is indiscernible: for each “small, i.e. arbitrary, n-simplex” (ig, ..., %,)
the “n-simplex (a;,, ...,a;, ) is “small”, i.e. indiscernible, though possibly with some
elements repeated several times.

Hence, the definition of stability “each indiscernible sequence is an indiscernible
set” says that, in the category of simplicial sets with a notion of smallness, a
morphism to the model can be extended from one object to another, i.e. is a
Quillen lifting property (Lemma .

In a similar manner we rewrite the characterisation of NIP “each eventually in-
discernible sequence is eventually indiscernible over a parameter” (Lemma.
To do this we use different notions of smallness: for the sequence, an n-simplex”
19 < ... <14, is “small” if iy is large; and for the model, two notions: the “n-simplex
(aig, .-, a;,) is “small” iff the tuple is ¢-indiscernible for “many” formulas ¢ with
parameters, or for for “many” parameter-free formulas ¢.

Forthcoming preliminary results. — In a forthcoming paper [8,Appendices §4-§9]
we include results not ready for publication but which we hope might provide
some context for the observations in this note. In [8,Appendix 5] we sketch pre-
liminary characterisations of NIP, non-dividing, and NOP, which we think are
not optimal. A Cauchy sequence and an indiscernible sequence are morphisms
from the same object associated with the filter of final segments of a linear order
[8,Lemma . In topology the definition of a complete metric space

“each Cauchy sequence has a limit” is expressed as a lifting property involving a
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endomorphism of our category “shifting dimension” [8,Lemma; a modifica-
tion of this lifting property defines NIP via existence of average/limits of types of
indiscernible sequences |[8,Lemma ; we do not pursue the analogy between
Cauchy sequences and their limits in topology, and indiscernible sequences and
their limit types in model theory. The same endomorphism is used in a reformu-
lation of non-dividing [8,Lemma . A reformulation |[8,Lemma of
NOP is obtained by “transcribing” a definition in a particularly mechanistic way
reminiscent of the “android” in [GH]. The process of transcribing is sensitive to the
phrasing and details of the formulation being transcribed, and therefore we obtain
a different lifting property, in fact it is a lifting property on the right and not on
the left as for stability and NIP. In [8,§ we consider a simplification of the
reformulation of OP and discuss its relationship with NSOP. We also include in
18,Appendix 5| an exposition of stability very similar to Lemma but using
slightly simpler definition of the filters. In |[8,Appendix 3] we sketch a number of
examples of simplicial filters, in particular how to view a topological space as a
simplicial filter. In [8,Appendix 6] we use category-theoretic language to sketch
our construction of simplicial filters associated with models. In [8, Appendix 9] we
sketch how to reformulate NTP appearing in the definition of a simple theory.

1.2. Further work. — These observations show that our generalised Stone space
contain model theoretic information accessible by diagram chasing techniques, and,
more generally, category theoretic methods, and may bring an additional geometric
intuition and vision to model theory, particularly to the combinatorial methods of
“negative” dividing lines and indiscernible sequences.

In |[8,Appendix [7] we give a number of speculations elaborating our vision; here
we mention general directions.

Our reformulations show that several properties (classes) of models can be de-
fined very concisely in terms of iterated Quillen negation (orthogonals) starting
from an explicitly given morphism. Can the diagram chasing technique arising
from such reformulations be of use in model theory, say to shorten the exposition
of some well-known arguments? Can one define interesting dividing lines by taking
iterated Quillen negation of interesting examples or properties?

Our Categorq) carries an intuition of point-set topology ([6,83], |[7]) which
we hope might guide us to a definition of a notion of the space of indiscernible
sequences in a model or the space of maps between two models, and their connected
components.

Our category s® has two subcategories carrying a rich homotopy theory: topo-
logical spaces and simplicial sets. This raises a naive hope—or rather a grand
project—that methods of homotopy theory can be developed for s® and will pro-
vide meaningful model theoretic information if applied to generalised Stone spaces
of models.

2. The category

2.1. The category of filters. — We now introduce the main category.

(2)We suggest to pronounce s® as sF being visually similar to s® standing for “simplicial ¢ilters”,
even though it is unrelated to the actual pronunciation of these symbols coming from the Amharic
script.
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2.1.1. The category of filters. — We slightly modify [Bourbaki, 1§6.1, Def.I]:
DEeFINITION 1. A filter on a set X is a set § of subsets of X which has the
following properties :

(Fy) Every subset of X which contains a set of § belongs to §.

(Fiz o) The intersection of two sets of § belongs to .
(Fyrp) X belongs to .

Subsets in § are called neighbourhoods or §-big. We call X the underlying set of
filter § and denote it by X =|F|.

By abuse of language, often by a filter we mean a set together with a filter on
it, and by X mean §.

A morphism of filters is a mapping of underlying sets such that the preimage
of a neighbourhood is necessarily a neighbourhood; we call such maps of filters
continuous. Note that §Fu {@} is a topology on X, but this notion of continuity
is stronger: the preimage of an open set is not allowed to be empty (unless @ is a
neighbourhood).

Let ¢ denote the category of filters.

Unlike the definition of filter in [Bourbaki, 1§6.1, Def.I] we do not require
that @ ¢ §, i.e. for us the set of all subsets of X is a filter. In particular it is
possible that X = @ and § = {@}. We do so in order for the category of filters to
have limits.

2.1.2. Filters: notation and intuition. — We shall denote filters by XY, ..., and
neighbourhoods by €, 4, .., as this enables us to write in analogy with analysis that
a map f :|X| — [Y] of filters is continuous iff for each neighbourhood ¢ c |Y|
there is neighbourhood § c |X| such that f(¢) c e.

With the the notion of a filter precision can be given to the concept of sufficiently
small error and it enables one to give an exact meaning to the phrase “whenever
x is sufficiently small, x has the property P{xz}”, by saying that there is a neigh-
bourhood ¢ c |X| such that = has the property P{x} whenever z € e. We may
also define a neighbourhood to mean a set of points having some property we are
interested in, and using the word “neighbourhood” in this sense brings about the
intuition and terminology of the mathematical idea of neighbourhood in topology.
For example, it makes the language more expressive if we say “x € |X| is e-small”
to mean x € ¢, i.e. that x has the property we are interested in.

This notation and intuition is demonstrated by the following example: a map
f o |M'| — |M"| of metric spaces M', M" is uniformly continuous if it induces
a continuous map from the filter of e-neighbourhoods of the main diagonal on
M’ x M’ to that on M" x M". The filter of e-neighbourhoods of the main diagonal
on a metric space M is defined as being generated by

{(z,y) € |M|x|M| : dist(z,y) < €}

Indeed, being continuous means that for every e := {(z,y) € |M'|x|M’| : dist(z,y) <
e} there exists & := {(x,y) € |[M”| x |M"| : dist(x,y) < §} such that f(8) ce. In
more expressive terms we may say that f is uniformly continuous if the “error”
(f(z), f(y)) is as small as we please whenever the “error” (x,y) is small enough,

()Our modification of the notion of filter is used in the literature on formalisation [HIH13],
[Formalising perfectoid spaces|, where instead of f: X — Y they say “f tends to filter Y with
respect to filter X”.


http://mishap.sdf.org/tmp/Bourbaki_General_Topology.djvu#page=63
http://mishap.sdf.org/tmp/Bourbaki_General_Topology.djvu#page=63
https://home.in.tum.de/~immler/documents/hoelzl2013typeclasses.pdf
https://arxiv.org/abs/1910.12320
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or, more vaguely, the “homotopy” f(z) ~ f(y) is as short as we please whenever
the “homotopy” = ~ y is short enough.

Similarly, a map f : |X'| — |X"| of topological spaces X', X” is continuous if
it induces a continuous map from the filter of coverings on X’ x X’ to that on
X" x X" The filter of coverings on |X| x |X| consists of subsets of form

L {z} xUs

reX

where U, > x is a (not necessarily open) neighbourhood of x, i.e. (U,).ex is a
covering of X.

2.1.3. The category of simplicial filters. — Now we introduce the main object of
concern of this paper.

Let ne for n > 0 denote the finite linear order 1 < 2 < ... < n on the first n
natural numbers. Let A be the category of finite linear orders whose objects are
finite linear orders,and morphisms are non-decreasing maps, and A° denote the
opposite category of A.

Let s® = Func(A°P,®) be the category of functors from A to the category
¢ of filters; morphisms are natural transformations between functors. One may
refer to an object of s® as either a simplicial filter or a situs, if one prefers a short
name.

2.1.4. Simplicial notation. — We usually let X,,Y, denote simplicial filters, the
subscript , indicating it is a functor. We may write X, : s® to indicate that X is
an object of s®. X,(n<) € Ob ® shall denote the value of X, at nc € Ob A°p.

If we defined a construction associating an object of s® with a mathematical
object of certain type (a linear order, a model, a topological or metric space, ...), we
usually let X,,Y,, ... denote the object of s® associated with X,V ..; a superscript
may indicate the nature of the construction.

We view a weakly increasing sequence 1 < i; < ... <14, < m as a monotone map
ne — mq, and denote by [i; < ... <i,] : mc — nc the corresponding morphism
of A°. Because X, is a functor, [i; < ... < 4,] induces a morphism [i; < ... <4,] :

(") This intuition is the usual intuition of topology as described in [Bourbaki, Introduction],
though use of simplicial techniques makes our formalism somewhat more flexible then that of
[Bourbaki|, as we will see later. For example, it allows to treat uniformly the topological and
uniform structures: The filter of coverings gives the topological structure on a set, and the filter
of e-neighbourhoods of the main diagonal gives the uniform structure. We quote [Bourbakil:

— (Introduction) To formulate the idea of neighbourhood we started from the vague concept
of an element “sufficiently near” another element. Conversely, a topological structure
now enables us to give precise meaning to the phrase ”such and such a property holds
for all points sufficiently near a”’: by definition this means that the set of points which
have this property is a neighbourhood of a for the topological structure in question. .... a
topological structure on a set enables one to give an exact meaning to the phrase “whenever
x is sufficiently near a, = has the property P(x)”. But, apart from the situation in which a
“distance” has been defined, it is not clear what meaning ought to be given to the phrase
“every pair of points z,y which are sufficiently near each other has the property P(x,y)”,
since a priori we have no means of comparing the neighbourhoods of two different points.

— (I§1.2) The everyday sense of the word ”neighbourhood” is such that many of the prop-
erties which involve the mathematical idea of neighbourhood appear as the mathematical
expression of intuitive properties; the choice of this term thus has the advantage of making
the language more expressive.

— (I1§2.1) In more expressive terms we may say that f is uniformly continuous if f(x) and
f(y) are as close to each other as we please whenever x and y are close enough.


http://mishap.sdf.org/tmp/Bourbaki_General_Topology.djvu
http://mishap.sdf.org/tmp/Bourbaki_General_Topology.djvu#page=12
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X.(m<) — X,.(n<) which we may also denote by [i1 < ... <4,]. For z € X,(m<),
we denote the image of x under this morphism by z[i; < ... <i,] € Xo(ng).

For X, : s®, elements of X,(n<) are called (n — 1)-simplicies where n -1 is the
dimension; to avoid confusion we may sometimes write nc-simplex instead. An
element of the form z[i; < ... <i,] € Xo(ng) is called a face of simplex x.

We denote by {X = Y} := Hom¢ (X, Y') the set of morphisms from X : C' to
Y : C in a category C'; we may omit C' when it is clear. By {— — Y} or {— = Y}

we denote the functor C°P — Sets, X — {X et Y}

2.1.5. Simplicial filters: intuition. — Recall that the category of simplicial sets is
the category of functors sSets := Func(A°P, Sets). The forgetful functor |-|: & —
Sets taking a filter to its underlying set induces a forgetful functor |-| : s® — sSets,
sending a simplicial filter to its underlying simplicial set.

A simplicial filter is a simplicial set equipped with filters, in the following precise
sense. To give a simplicial filter s® is to give a simplicial set X, : Frunc(A°P, Sets)
and a filter §, on set X (n<) for each n > 0 such that all the face maps X (m<) —
X (n<) are continuous with respect to these filters. The continuity condition means
explicitly that for each m,n > 0, for each weakly increasing sequence 1 <1y < ... <
1, <m for each neighbourhood ¢ € §,

{z:x[iy<...<i,]ee} € T

or, using notation analogous to mathematical analysis, for each neighbourhood
€ € §, there is a neighbourhood & € §,, such that for each z € d z[i1<...<i,] €e.

Recall our intuition in that a filter is a notion of smallness. Hence, intu-
itively we think of a simplicial filter as a simplicial set equipped with a notion of
smallness.

2.2. Examples of simplicial filters and their morphisms.— We give ex-
amples of simplicial filters we use later.

In most of our examples of simplicial filters the underlying simplicial set is
represented; here we explain what this means. We also sketch how to embed into
s® the category of simplicial sets and that of uniform structures; we hope these
examples will aid the intuition.

More examples are sketched in [8 Appendix , notably the full subcategory of
sP of topological spaces. The reader may find it helpful to browse through to gain
intuition and the the wider context.

2.2.1. Discrete and indiscrete. — The set of subsets consisting of X alone is a
filter on X called the indiscrete filter, and there is a functor -indiscrete : Setg —s @,
X +— Xindiscrete “gonding a set to itself equipped with indiscrete filter { X'}. For us
the set of all subsets of X is also a filter which we call discrete.

The functor -ndiscrete . Setg —» @ induces a fully faithful embedding -ndiscrete .
sSets & s®, and in this way any simplicial set is also a simplicial filter.

2.2.2. Represented simplicial sets. — The underlying simplicial sets of most of the
examples will be variations of the following well-known construction in category
theory. A reader less familiar with category theory may wish to read first §2.2.4]
where we give this construction in the set-theoretic language.


https://mishap.sdf.org/yetanothernotanobfuscatedstudy.pdf
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Let C' be a category. To each object Y € ObC corresponds a functor hy :
X — {X = Y} sending each object X € Ob (' into the set of morphisms from

X to Y. A functor hy : C' — Sets of this form is called represented by Y.
Yoneda Lemma implies that this correspondence Y —— hy defines a fully faithful
embedding C' — Func(C°P,Sets). Indeed, a natural transformation 7 : hyr —

hyn is fully determined by morphism ny(idy) € hyn = {Y’ Y }: for arbitrary
X, nx: {X — Y’} — {X — Y”} is given by f > fony/(idy/).

A simplicial set I3 : A°? — Sets co-represented by a preorder I< is the functor
sending each finite linear order n< into the set of monotone maps from n< to I<:

ne —s {n . F} (ot €Tt < <t}

~ preorders

A map [i; < ... <i,] : ne — mg induces by composition a map

~ preorders ~ preorders

ER S AR

(t1 <o <) —> (tiy, < ... < )

A monotone map f : I — J< of preorders induces a natural transformation
of functors f, : [$ — J£: for each n > 0, a weakly increasing sequence (r; < ... <
z,) € I*(n<) goes into a weakly increasing sequence (f(z1) < ... < f(z,)) € JE(n).
Moreover, every natural transformation f, : IS — J$ is necessarily of this form, as
the following easy argument shows. Let (y1,...,yn) = fn(21, .., ,); by functoriality
using maps [i] : 1 — n,1 — i we know that y; = (y1,..,yn)[?] = fulz1, .., 20)[1] =
fi(z;). In a more geometric language, we may say that we used that each “simplex”
(Y1, .-, Yn) € JS(n<) is uniquely determined by its “O-dimensional faces” yi, ..., y, €
J=.

In the category-theoretic language, the facts above are expressed by saying that
preorders with monotone maps form a full subcategory of sSets and therefore of
s5P.

An important special case is when the preorder is an equivalence relation with
one equivalence class, i.e. a set with no additional structure. In that case we call
the functor just defined represented by the set I, denote it by ||, : A°P — Sets.
This gives a fully faithful embedding Sets — sSets.

2.2.3. Metric spaces and the filter of uniform neighbourhoods of the main diagonal.
— Let M be a metric space. Consider the simplicial set |M|, : AP —> Sets
represented by the set |M| of points of M defined above, i.e. the functor

ne— {n o M1 = (1) € M) = 1P
Now equip |M|.(n<) = |M|" with the “filter of uniform neighbourhoods of the main
diagonal” generated by

{(z1,..,2,) € | M|" = dist(z;,z;) <e VI<i,j<n}

as € ranges over Ryo. A map f : |M’| — |M"| is uniformly continuous iff it induces
a natural transformation f, : M! — M/ of functors A°® — ®. For n = 2 this is
checked in and for n > 2 the argument is the same.

Thus we see that the category of metric spaces and uniformly continuous maps
is a fully faithful subcategory of s®.
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Though not used, we present the following reformulation of the definition of
uniform structure [Bourbaki, II§1.1,Def.1] to illuminate how translation to the lan-
guage of s® works. Below we put in “()” the properties as formulated in [Bourbakil;
the notation is explained in the proof.

Lemma 2.2.3.1 ([Bourbaki, I1§1.1,Def.1]). — A uniform structure (or uni-
formity) on a set X is a structure given by a filter 3 of subsets of X x X such that
there is an object X, : A°® — ® of s® satisfying
(Up) Its underlying simplicial set |X.| = |X|s is represented by the set |X| of points
of X.
(Ur) (“Every set belonging to 3k contains the diagonal A.”)
The filter on X,(1<) is indiscrete, i.e. is {|X.(1<)|}-
(Up) (“If Vel then V-1 esl.”)
The functor X, factors as

X, : A’ — FiniteSets®” — &

(Um) (“For each V €\l there exists W e U such that W oW cV.”)
forn>2|X|.(ne) = | X|" is equipped with the coarsest filter such that the maps
X" — X x X, (x1,..,2,) = (z5,711), 0<i<n, of filters are continuous.

Figure 1.

Figure 1 [Bourbaki, I§I.1,Def.I] illustrates either of the following equivalent
statements:
(Viy) If 'V belongs to B(x), then there is a set W belonging to B(x) such
that, for each ye W, V belongs to B(»).
where B(x) denotes the set of neighbourhoods of point x € X.
(Viy) The map [1,3] : X x X x X — X x X is continuous when X x X is
equipped with the filter of coverings and X x X x X is equipped with the
coarsest filter such that both maps [1,2],[2,3] : X x X x X — X x X are
continuous. To see the equivalence to the previous item, consider that the
preimage of the set |V|x|V|c |X]|x|X| contains {z} x W x V c | X]|x|X]|x|X].
Figure 2 [Bourbaki, II§1.1,Def.I] illustrates the filter & of subsets of X x X above.

Proof(sketch). — (U;): Consider the map |X| — |X| x |X|, x — (z, ) induced
by the map [1,1] : 2 — 1.. Being continuous with respect to the indiscrete filter
{|X|} and the filter 4l on | X| x| X| means exactly every set belonging to  contains
the diagonal d := {(z,z) :x € X}.


http://mishap.sdf.org/tmp/Bourbaki_General_Topology.djvu#page=15
http://mishap.sdf.org/tmp/Bourbaki_General_Topology.djvu
http://mishap.sdf.org/tmp/Bourbaki_General_Topology.djvu#page=15
http://mishap.sdf.org/tmp/Bourbaki_General_Topology.djvu#page=15
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(Un): As the functor factors via FiniteSets®”, the permutation |X|x |X| —
| X| x|X]|, (z,y) — (y,z) induces a continuous map of { into itself. This means
exactly that if V' e 4 then V-1 e { where V! := {(y,z) : (x,y) € U}. (Um):
Recall W’ o W = {(x1,x3) : exists xo such that (x1,25) € W’ and (xq,x3) €
W}, The coarsest filter on |X|4(3<) = | X[ such that the two maps X3 —
X x X, (x1,29,23) = (x1,22), (1, 22,23) ~ (x2,23) of filters are continuous, is
explicitly described as being generated by

{(x1, 22, 23) : (x1,22) e W and (9, 23) e W"},  for W/ W" el

Continuity of the map [1,3] : | X]? — |X|? means exactly that for any V' € i there
exists W/, W' e U such that W/ oW"” c V. Now take W :=W’'nW". O

2.2.4. An explicit set-theoretic description of a simplicial filter on a simplicial set
represented by a preorder. — A class of examples of objects of s® associated with
preorders can be described explicitly as follows.

Let (I,<) be a preorder, i.e. < is a binary transitive relation on I. We will be
interested in the examples where it is a linear order and where it is an equivalence
relation with only one equivalence class, i.e. a set with no further structure.

For each 0 < n e w, let §,, be a filter on

]n = {(th 7tn) € |I|n tti<.. g t”}

such that for each m,n > 0, weakly increasing sequence 1 <1, < ... <4, < m, for
each neighbourhood ¢ € §,

{(tl, ,tm) € |]|m : (til, ...,tin) € 8} € "L?f’m

Such a sequence of filters gives rise to a simplicial filter I5 : A% — & defined
as follows:

- ]f(nﬁ) = Srn
— for each weakly increasing sequence 1 <4y < ... <14, < m, the continuous map
of filters [i; < ... < iy, : [E$(m<) — I£(n<) is given by

(tl, ...,tm) > (tz‘l, ...,tin)

The condition on the filters §, means exactly that these maps are continuous.
A verification shows that these maps commute as required by functoriality:
explicitly, this requirement states that

1< .<jm] [i1<...<in ] [Jiy S -Sdin ]

— the composition I I, I, is equal to [, —— I, as
shown
[Jiy S--SFin ]

for each [,m,n > 0, each weakly increasing sequences 1 < 77 < ... < j,, <[,
1<iy<..<ip<m,

Let I)5: A°® — ® be a simplicial filter associated with another preorder (I, <)
and a sequence g/, n > 0 of filters.

A verification shows that a monotone map f : I — I’ induces a morphism
I — I= iff for every n, every ¢ € §,, there is 0 € §/, such that f(J) c ¢, and that
each such s®-morphism is induced by a unique such map.
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2.2.5. The coarsest and the finest simplicial filter induced by a filter. — Let § be
a filter on I. We can define the coarsest and the finest such sequence such that
§1 =7 as follows:

(C1) &, is the coarsest filter such that all maps [i] : §, — F1, 1 <@ < n are
continuous. Explicitly, §, is generated by {I, ne":c € §1}, i.e. by

{{(t1,....tp) el ty,....t,ec} : c€F1}

(F1) §. is the finest filter such that the map [1<...<1]:§; — §, is continuous,
i.e. is generated by

{{(t,....t) el :tec} : ceF1}

Let I5% : s® be the object of s® defined in (C). Later we will use it when [ is
a linear order and § is the filter of final segments.

Let I’ be another preorder, and let §’ be a filter on I’. A verification shows that
a monotone map I — I’ continuous with respect to filters § and §’ induces an
s®-morphism I5° — IIS’SI, and each such s®-morphism is induced by a unique
such map.

Let |I|S : s® denote the object of s® defined in (Cy) when the preorder on I
is the equivalence relation with only one equivalence class, and § is a filter on I.

Note that this defines a functor ® — s®.

2.2.6. Topological and uniform structures as simplicial filters. — More generally,
let § be a filter on I, for some m > 0. We can define the coarsest and the finest
such sequence such that §,, = as follows:

— §, is the coarsest filter such that all the face maps [i1 < ... < i) : & — Sms
1< <... <4y <noare continuous. Explicitly, §, is generated by

{{rel,:x[iy<...<ip]ecticeFm, 1<i1 <. <y <}

— §, is the finest filter such that the map [i1 < ... <i,] 1§ — Fn, 1 <1< L
i, <m is continuous, i.e. is generated by

{{(ts,, .., t;,) e Ly: (t1,.,tm) €} i e€Fm, 1<i1 <. <0y <m}

Let §7,, n > 0 be the sequence of coarsest filters associated with a filter §" on I},
for some preorder I’. A monotone map f : I — I’ induces amap f, : [,, — I/, and
this map is continuous with respect to g, and §/, iff f,, : I, — I/, is continuous
with respect to §,, =& and §/, = §'. Indeed, as §, is the coarsest filter, we only
need to check that the preimages in [,, of the preimages in I] of neighbourhoods
in [/ are neighbourhoods, and this follows from commutativity as they contain
the preimages in I,, of the preimages under f of the neighbourhoods in I7,.

Take the preorder I be the set of points of a topological space X equipped with
the equivalence relation with only one equivalence class, and take § to be the filter
of coverings on | X|x|X|. This defines an object of s® corresponding to a topological
space, which we will denote X,. In §2.1.2) we observed a map f : |X'| — |X"| of
topological spaces X', X" is continuous iff it induces a continuous map from the
filter of coverings on X’ x X’ to that on X" x X”. A verification shows this implies
that f:|X’| — |X"| is continuous iff it induces an s®-morphism X, — X/, and
each such morphism is induced by a unique continuous map. In the language of
category theory, this is expressed by saying that we just constructed a fully faithful
embedding of the category Top of topological spaces into the category of s®.

Similarly, we can take § to be the filter of e-neighbourhoods of the main diagonal
on |M|x|M]|, for a metric space M. This defines an object of s® corresponding to a
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metric space, which we will denote M,, a fully faithful embedding of the category
of metric spaces and uniformly continuous maps into the category of s®.

3. Model theory

We now proceed to reformulate several notions in model theory in the language
of s®.

3.1. Generalised Stone spaces. — Now we define a notion of generalised
Stone space of a model in s®, and give some examples. We also point out that the
generalised Stone space of a model carries information of the usual Stone space of
1-types, or, rather more precisely, the topology on the set of elements of the model
induced by formulas of one variable as clopen subsets.

To define NTP in Appendix [0} we use another way to associate an object of s®
with a model.

3.1.1. Generalised Stone spaces associated with structures. — Call a sequence (to-
tally) ¢-indiscernible with repetitions iff each subsequence with distinct elements
is necessarily (totally) ¢-indiscernible. Recall that an totally indiscernible se-
quence is the same as an indiscernible set. Note that we allow that there are
only finitely many distinct elements in a ¢-indiscernible sequence with repetitions,
e.g. (a,b,a,b,a,b,...) is ¢-indiscernible with repetitions for {a,b} an indiscernible
set.

Definition 3.1.1.1 (M MZ MZ]A: s®). — Let M be a model, and let 3 be
a set of formulas in the language of M.
Let MF : A°®» — @ be the simplicial filter whose underlying simplicial set is [ M|,

represented by the set of elements of M, i.e. the functor {— o |M|} : A°P — Sets.
A subset
e {ne o M1} = () €M7 = M1

is a neighbourhood iff there is a finite subset >/ ¢ ¥ and N > 0 such that it
contains each sequence which can be extended to a >’-indiscernible sequence with
repetitions with at least N distinct elements. In notation:
A subset
ec {n — |M|} = (w1, o) € [M]") = [T

= Sets
is a neighbourhood iff the following holds for some finite subset ¥/ c ¥ and N >0

— (ay,...,a,) € € whenever there exist distinct a,,1,...,an such that for any
m >0 for any 1 <4y < ... <14, < N any subsequence a;,,..,a;, with distinct
elements a;, # a;,, 1 <k #1< N, is ¥'-indiscernible.

For a subset A c |M| of parameters, let M,/A be the quotient of M} by the
equivalence relation of having the same type over A, i.e. MZ[A(n<) is the set
SM(A) of n-types over A realised in M equipped with the filter induced from
M.(n).

Let M, denote M} for X the set of all parameter-free formulas of the language
of M, and let MEA denote MZ for ¥ the set of all formulas of the language of
M with parameters in A. Let M denote M7 for ¥ the set of all quantifier-free
formulas of the language of M.
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To verify that M : A°® — & is indeed a functor to ® rather than just Sets, it
is enough to verify that for each ¢ € X M Aov — @ is indeed a functor to ®
rather than just Sets. We only need to check that maps

[i1 <. i : M™ — M",  (21,..,2m) — (Tiy, .., Ti,)

are continuous for any 1 <14 < ... <4, <m. This says that for each neighbourhood
e C |M|* there is a neighbourhood § c |M|™ such that f(d) € . That is, for
some N, a tuple (a;,,...,a;,) can be can be extended to a ¢-indiscernible sequence
with repetitions with at least N distinct elements, whenever, for some N’ not
depending on N, tuple (aq,...,a,) can be extended to a ¢-indiscernible sequence
with repetitions with at least N’ distinct elements. It is enough to take N’ = N +n.

Remark 3.1.1.2 (Generalised Stone spaces: variants)
In the definition above one may drop N and define the filter on |M|" as:

— A subset
e s —o 1M1} = (1) M) = P

is a neighbourhood iff there is a finite subset >/ c 3 such that € contains each
Y’-indiscernible sequence (ay, ..., a,) with repetitions

This is simpler but arguably less model-theoretically natural. Either variant of
the definition can be used in the reformulations below involving the filter of tails
and eventually indiscernible sequences, but the verification of “degenerate” cases,
i.e. of diagrams involving non-injective maps, will be different. We shall denote
these spaces by M and M.

With this version of the definition the filter on |M| is necessarily indiscrete, i.e.
{|M|}; the filter on |M x M| is generated by sets ¢(x) < ¢(y), ¢ € X unary. and,
more generally, the filter on [M"] is generated by sets of ¢()-indiscernible sequences
with repetitions where ¢ € 3.

3.1.2. Generalised Stone spaces and the usual Stone spaces. — It is easy to see

how to recover the usual Stone space of 1-types from the filter on |M x M| as
defined in Remark B.T.1.2

— a subset U of |[M| is open, i.e. of form ¢(x) for some unary ¢(-), iff Us :=
UxUu(|M|\NU) x (|]M|~U)} is a neighbourhood.

Indeed, if U = {z: M & ¢(x)} then Uy = {(z,y) : M = ¢(z) < ¢(y)}. Converse is
a compactness argument: if U is a neighbourhood, then there are finitely many
formulas ¢1(z), ..., ¢(z) such that Uy o {(z,y) : M = A¢i(z) < ¢:(y)}. By the

definition of U,, this means that that for any z it holds zthat
M e VaVy(\ di(z) < ¢i(y) = veU < yel)

Thus U = Aper{y : M E ¢(x) < ¢(y)} and [M|NU = Apqupo{y : M E d(x) <
#(y)}. By compactness it is enough to take finitely many formulas, and hence U
is defined by a formula, i.e. U ={z: M k ¢(x)} for some formula ¢(-).

In fact the forgetful functor s — Top (see ||[7,§2.6.3], also [6,§2.2.4]) takes
MZ> /A so defined into the Stone space of 1-types over A, and takes M, into the

set of elements of M with Stone topology, where we consider MZ> /A and M, as
defined in Remark B.1.1.21


https://mishap.sdf.org/Skorokhod_Geometric_Realisation.pdf
http://mishap.sdf.org/6a6ywke/6a6ywke.pdf#24
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Analogously, the the forgetful functor s® — Top takes M /A as defined in
Definition [3.1.1.1] into the subspace of the Stone space of 1-types p(-) consisting
of types which admit infinite indiscernible sequences with elements of type p(-).

3.1.3. Examples of generalised Stone spaces of a model with a formula. — Gener-
alised Stone spaces as defined in Remark |3.1.1.2| are somewhat easier to describe,
as we do not have to deal with finiteness. We start with them.

Example 3.1.3.1 (MQ{¢}) — Let M be a model, and let ¢ be a formula in the
language of M.
— Let ¢(=) be a unary formula. Then the filter on [M{? (1)] = [M] is indiscrete,
the filter on [M{ (n)| = [M|" is generated by the set

{(z1,,20) 2 0(21) © O(21) < ... = P(2n)}

— Let ¢(z,y) be a binary formula. Then the filters on [M| = [M{?(1)| and
|M x M| =| M (2)| are indiscrete.

— Let binary formula ¢(z,y) be either x < y or x < y where < is a linear order on
M. Then the filters on [M| = |]\~4.{¢}(1)| and |Mx M| = |]\~4.{¢}(2)| are indiscrete.
The filter on |M|* = |M&? (n)] is generated by the set of monotone sequences

{(z1,..ymp) 21 <. Sxp 00 Ty 2.2y}

— Let binary formula ¢(z,y) be an equivalence relation. Then the filters on
|M| = [MI?(1)| and |M x M| = [MI?}(2)] are indiscrete. The filter on |M|* =
IMI? (n)| is generated by the set which contains sequences whose elements

all represent the same equivalence class, or all represent different equivalence
classes:

{(z1,..;zn) o~ mwax, or VI<i<j<n(z ¢z;)}

In the generalised Stone spaces as defined in Definition |3.1.1.1] issues of being
finite are important: whether elements are algebraic, the number of equivalence
classes is finite, etc.

Ezample 3.1.3.2 (M{?'). — As before, let M be a infinite model, and let ¢ be
a formula in the language of M.

— Let ¢(-) be a unary formula. If both ¢(x) and —~¢(x) are infinite, the filter
on [MI?'(1)| = |M] is indiscrete. If say ¢(z) is infinite and —~¢(z) is finite,
then the filter on |Mi?*(1)| = |M| generated by the set {¢(z) : M & ¢(z)}.
The filter on [MI? (n)| = [M|" is generated by

{(z1, ., 20) + ¢(21) « @(12) < ... = ¢(z,) and 3%y (@(y) < é(21))}

— Let ¢ be a formula. Then the filter on |M| = | M (1)] is generated by the set
of elements which belong to an infinite ¢-indiscernible sequence. The filter
on [M|* = [MI*} (n)| is generated by the set of ¢-indiscernible sequence with
repetitions which can be extended to an infinite ¢-indiscernible sequence.

— Let binary formula ¢(x,y) be either z <y or z <y where < is a linear order

on M. The filter on |[M|* = |]\~4.{¢}(n)| is generated by the set of monotone
sequences

{(z1,..c,zn) : VNIzpg oy (21 € o S0y < Tpa1 < oo <Tn V 212000 220> Tpar > . > )}
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Thus, for example, if a < b € M and b is a maximal element of M, then
(a,b) € |[M x M]| lies outside of this neighbourhood in M x M.

— Let binary formula ¢(x,y) be an equivalence relation. Then the filter on
|M| = |M.{¢}(1)| is generated by the union of infinite equivalence classes. If
the number of equivalence classes is finite, the filter on |[M x M| = |M.{¢}(2)| is
generated by the pairs of elements of infinite equivalence classes. If the num-
ber of equivalence classes is infinite, then the filter on |M x M| = [M{?*(2)] is
generated by the set of the pairs of elements of infinite equivalence classes, as
before, and of pairs of non-equivalent elements. In notation, this is described
as follows. The filter on |M]|* = |M.{¢}(n)| is generated by the set which con-
tains sequences whose elements all represent the same infinite equivalence
class, or all represent different equivalence classes if there are infinitely many
of them:

{(x1,...,2,) : 1 ~ ... » x, and the equivalence class of x1,xs, ..., z, is infinite,

or there are infinitely many equivalence classes and V1 <i<j<n(z; # x;)}

3.1.4. Generalised Stone spaces of the dense linear order and of an equivalence
relation. — Now let us describe the generalised Stone spaces associated with the
theory of one or many equivalence relations, and the theory of the dense linear
order. )

Again we start with M, so that we do not have to deal with issues of finiteness.

Example 3.1.4.1 (Dense linear order DLO). — Let (M;<) be a model of
DLO, the theory of dense linear order. Quantifier elimination implies that any
<- mdlscermble sequence is also ¢-indiscernible for an arbitrary parameter- free for-
mula ¢ of DLO. Thus M, = M!¥, and thus the filters on [M]| = |M,(1)| and
|M x M| = |M,(2)| are indiscrete,. and the filter on |M|* = M,(n) is generated by
the set of monotone sequences

{(z1,...,xp) s o1 <o STy Or T 2 2Ty

Now consider MX™ for A c | M|, the Stone space with parameters in A c |M].
Quantifier elimination implies that for an arbitrary parameter-free formula ¢ of
DLO with parameters in A there are finitely many 1-ary formulas of form z < a,
a<x, a<x<b, such that a sequence is ¢-indiscernible iff it is indiscernible with
respect to < and each of these formulas. Hence, the filter on MES g generated
by the filters ML, and MI*9 and M a,be A.

Explicitly, the filter on | M| = |M,(1)| is indiscrete; the filter on | M x M| = |M.(2)|
is generated by sets {r:x < a}x{r:x<alu{r:xz>a}x{r:x>a}, and
{r:x<<a}x{r:x<a}u{r:x>a} x{z:2>a}.

Remark 3.1.4.2. — A model M is o-minimal iff there is a model (Q; <) of DLO

such that there are isomorphisms ML(M)(l) {so), Qf(Q)(l) and M.L(M)(Q) RGN

Q.L(Q)(2) commuting with the simplicial maps.

(zso)

Equivalently, there is a bijection |M| — |Q| of sets inducing isomorphisms of

filters MEOD (1) 222 (is0) L(Q)( 1) and M.L(M)(Z) o), Q.L(Q)(Q)-

Indeed, the map ME) (2) RGN QL@ (2) being an isomorphism of filters means
exactly that each 1-ary formula of M corresponds to a l-ary formula of @), and

hence is a union of intervals.
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Example 3.1.4.3 (The theory of an equivalence relation)

Let (M;w~) be a model of a theory with a single equivalence relation with in-
finitely many classes, all of which are infinite. Quantifier elimination implies that
any ~-indiscernible sequence is also ¢-indiscernible for an arbitrary parameter-free
formula ¢ of the theory. Hence, M, = M. = }, and, by assumption that the classes
are infinite and there are inﬁnitely many of them, both versions of the Stone space
coincide M, = M,.

Now consider M&™ for A ¢ |[M], the Stone space with parameters in A c [M].
Quantifier elimination implies that for an arbitrary parameter-free formula ¢ of
the theory with parameters in A there are finitely many 1-ary formulas of form
x ~ a such that a sequence is ¢-indiscernible iff it is indiscernible with respect to ~
and each of these formulas. Hence, the filter on MER g generated by the filters
M and MI™ g e A, and also we have that both versions of the Stone space
coincide MH = ppE@.

Explicitly, the filter on [M| = M) (1)] is indiscrete; the filter on [M x M| =
|VE (2)] is generated by sets {z:z ~va}x {z:z~va}u{z:zda}x{z:zéal,
a € A. The filter on [M x M x M| =|M.(3)| is generated by, for a € A,

{(x1,20,23) ;s 1 m...waz or VI<i<j<3(z; #x5)}

and

{(x1,29,m3) :ramxymwamazor V1<i<j<3(a;4a)}

The latter sets are in fact the pullbacks of filters on |M x M| = |M.L(A)(2)| along
simplicial maps M™ — M2, (x1,...,x,) — (z5,2;), 1 <i<j<n.
The filter on |M"| =|M,(n)| is generated by

{(z1,..;zn) o~y or VI<i<j<n(z ¢z;)}

and

{(gcbgc2,;z:3) tam Iy N ... .8, or V1 si<j£n(:z:iaéa)}

The latter sets are in fact the pullbacks of filters on |M x M| = |ML(A)(2)| along

simplicial maps The latter sets are the pullbacks of filters on |M x M| = [ME (2)]
along simplicial maps M" — M2, (x1,...,x,) — (2;,7;), 1 <i<j<n.

3.2. Shelah representation of stable theories by equivalence relations.
— We start with an elementary Proposition which says that if models of
a theory are “approximated” in s® by structures with boundedly many equiva-
lence relations, then the theory is stable. ” Approximated” here means there is a
surjection from the generalised Stone space of such a structure with equivalence
relations, to that of the model.

We then show that a theorem of Shelah on representations of stable theories
[CoSh:919, Theorem 3.1(7)| gives a characterisation of stable theories in these
terms, though the statement is slightly more technical.

Finally, we remark that Proposition[3.2.2.1]formalises the intuition behind [CoSh:919]
rather more literally then the paper itself.

We end by suggesting a characterisation Corollary of stable theories in
terms of category theory.


http://mishap.sdf.org/Shelah_et_al-2016-Mathematical_Logic_Quarterly.pdf
http://mishap.sdf.org/Shelah_et_al-2016-Mathematical_Logic_Quarterly.pdf
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3.2.1. Surjective images of structures with boundedly many equivalence relations
are stable. — The following is elementary.

Proposition 3.2.1.1. — A theory T is stable if there is k such that for each
model M of T there is a structure I on the same domain, |I| = |M|, with at most Kk
equivalence relations %, a < Kk (and nothing else), such that there is a s®-surjection
Iimazoxn} N M..

Proof (sketch). — Let M be a large enough model of T and let | K
be an s®-surjection. A long enough sequence indiscernible in a model M of T
has an infinite subsequence quantifier-free indiscernible in I, as the number of
quantifier-free types in I is bounded. In I, a quantifier-free indiscernible sequence
is necessarily quantifier-free order-indiscernible, and therefore order-indiscernible
in M, because s®-morphisms preserve indiscernible sequences. Hence, in M every
long enough indiscernible sequence has an infinite order-indiscernible subsequence,
and hence is order-indiscernible itself. Hence, any large enough and saturated
enough model of 7' is stable, and therefore T is stable. ]

3.2.2. Shelah representation as a characterisation of stable theories as surjective
images of structures with boundedly many equivalence relations. — Now we use
a result of Shelah to prove a characterisation of stable theories in terms of s®.
Essentially, in the statement above we replace I{***“*} — M, by a finer structure
I> where X is the set of all quantifier-free types in I. Note that the size of ¥ is
still bounded.

Proposition 3.2.2.1. — A theory T is stable iff there is k such that for each

model M of T there is a structure I on the same domain, |I| = |M|, with at most k

equivalence relations ~,, « < k (and nothing else), such that there is a s®-surjection

I — M. where ¥ is the set of quantifier-free types in 1.

Proof (sketch). — <: The same argument applies, as the cardinality of 3 is bounded.
=: We now use [CoSh:919, Theorem 3.1(7)]:

A theory T is stable iff there is x such that for each model M of T
there is a structure I with at most x unary functions (and equality, and
nothing else) which represents M.

Our argument is based on the following easy lemma.

Lemma 3.2.2.2. — In a theory in a language consisting only of equality and
unary functions, which we assume closed under composition, the quantifier-free
type of an indiscernible sequence of n > 3 elements is isolated, among types of
indiscernible sequences, by a formula of the form

N flzi)=g(@) & N\ fl@)#g9(z) & N\ f(zi)=f(z;) & N\ @) # f(x;)

1<i<n 1<i<n i<j i<
(f.9)er1 (f.9)eF> feF3 feFy

for some sets Fi, Fy of pairs of unary functions, and some sets Fs, Fy of unary
functions.

Proof. — Indeed, let f(z1) = g(x2) be in the quantifier-free type of an indiscernible
sequence (ag,as,az). Then so are f(x1) = g(x3), f(x2) = g(x3), and therefore
f(z1) = f(x2) = g(x2) = g(x3), which is equivalent to the conjunction of f(x;) =
f(xz2), f(z2) = g(x2), and g(x2) = g(x3) of the required form, and implies the
formula f(z1) = g(x2) we started with. O


http://mishap.sdf.org/Shelah_et_al-2016-Mathematical_Logic_Quarterly.pdf
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Note that in the formula in the statement above we omit atomic formulas f(z;) =
g(z;) for i # j, f # g, that are not equivalence relations.

Let M be a model of T, and let I’ represent M as in Theorem 3.1(7). By
definition of representation [CoSh:919, Def. 2.1], a quantifier-free indiscernible se-
quence in I’ is necessarily indiscernible in M, hence the identity map |I'| — |M|
induces an s®-morphism I'’*" — M, where ¥’ is the set of quantifier-free types
of indiscernible sequences in the language of I'. This morphism is obviously sur-
jective. (The requirement in the definition of representation talks about arbitrary
types, not only types of indiscernible sequences.) We may assume that the unary
functions of I’ are closed under composition. Consider the reduct I of I’ in the
language containing the equivalence relations f(x) = f(y) and unary predicates
f(x) = g(y) where f, g are functions in the language of I'. Lemma implies
that there is an s®-surjection I¥ — I’>" where ¥ is the set of quantifier-free types
of I. To finish the proof, consider the composition I¥ — I’ — M, H

Remark 3.2.2.3. — [Sh:1043, Theorem 2.1(6)] gives a similar characterisation
of superstable theories in terms of representation by the class Ex21,£ of “locally
finite” structures with unary functions. It suggests there might exist a similar re-
formulation in terms of s®-surjections from quantifier-free generalised Stone spaces

of models with boundedly many equivalence relations and nothing else.

3.2.8. Shelah’s intuition of representability. — Thus we saw that s® can express
formally in a very literal manner the following intuition expressed by |[Sh:1043|:
Here we deal with another external property, representability. This notion was a
try to formalize the intuition that ” the class of models of a stable first order theory is
not much more complicated than the class of models M = (A, ..., Ey,...)se; where
EM is an equivalence relation on A refining EM for s < ¢ ; and I is a linear order of
cardinality < |T'| . It was first defined in Cohen-Shelah |[SC16|, where it was shown

that one may characterize stability and Rg-stability by means of representability.

Note that s®-reformulation explicitly talks about equivalence relations, unlike
[CoSh:919, Theorem 3.1(7)] or [Sh:1043, Theorem 2.1(6)].

3.2.4. A category-theoretic characterisation of classes of stable models. —

Remark 3.2.4.1. — A structure I with equivalence relations »,, « < k,(and
nothing else) gives rise to a functor [{® @<} ; Aop — & which factors as

Ii%:am} : A°? — FiniteSets®® — @

which could be then be called of a “2-dimensional” “symmetric” simplicial filter.
Here by “symmetric” we mean that the simplicial filter I$****} factors as shown,
i.e. via the inclusion of categories A°® — FiniteSets®. By “2-dimensional” we
mean that for each n > 3 the filter on |I?| = |I{*eie<s}(n)| is induced from that
on B3| = I} (3,)|, i.e. is the coarsest filter such that all face maps [i < j <
k] I8 (ng) — T8} (3,) are continuous. In fact, this functor is probably
the free s®-object “started by” (i.e. 3-coskeleton generated by) (I,Ix I,IxIxT)
equipped with appropriate filters.

Note that a similar reformulation can be given to the axioms of uniform structure
§2.2.3| or topological space §, also cf. [Bourbaki,I1§1.1,Def.1], for details see
§2.2.3| or [6,Exercise 4.2.1.5]: a uniform structure is a 1-dimensional symmetric
simplicial set such that the filter of 0-simplicies is indiscrete.
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Corollary 3.2.4.2. — A theory T is stable iff there is a cardinal k such that
for each model M &= T there is a surjective s®-morphism I, — M, from a “2-
dimensional” “symmetric” simplicial filter I, : A°? — FiniteSets®® — & with at
most k neighbourhoods, or, equivalently, such that its filter structure is pulled back
from at most kK morphisms to filters of form

Jo : A? — FiniteSets™” — &
where for each n >0 |Jo(n<)| is a finite set.

Proof. — By Proposition |3.2.2.1] and Remark [3.2.4.1] this does hold for a stable
theory. The same proof as in Proposition [3.2.2.1|shows that in a saturated enough
models indiscernible sequences are in fact indiscernible sets. O

It will be interesting to compare this to |[Boney, Erdos-Rado Classes, Thm 6.8|.

3.3. Stability as a Quillen negation analogous to a path lifting property.
— Now we use the definitions and intuitions introduced in §2.1.4] to reformu-
late the characterisation of stability that “each infinite indiscernible sequence is
necessarily an indiscernible set” as a Quillen lifting property/ negation. Surpris-
ingly[(®] such a naive, oversimplified, and mechanistic way of “transcribing” this
characterisation in terms of s® produces a correct conjecture; being oversimplified
is an essential feature. We explain the process in a verbose way in §3.3.3

3.3.1. Indiscernible sequences with repetitions. — The following lemma is the key
observation which started this paper.

Let |I|, and I denote the simplicial sets represented by the set |I|, resp. the
linear order <, equipped with the indiscrete filters (see Example for details).
Recall that being equipped with indiscrete filters means that for each n > 0, the
only neighbourhood on |I|.(n<) = |I|* is the whole set {||I|(n<)|}, and the only
neighbourhood on I5(n<) = {(i1,...,3,) € [I|* : iy < ... < i,} is the whole set
{I12(no)l}-

Call an (totally) ¢-indiscernible sequence with repetitions infinitely extendable
iff it is a subsequence of a an (totally) ¢-indiscernible sequence with repetitions
with infinitely many distinct elements. This notion is only non-trivial for sequences
with finitely many distinct elements.

Lemma 3.3.1.1. — For any infinite linear order I and any structure M the
following holds.

— An infinitely extendable ¢-indiscernible sequence (a;)ier in M with repetitions
mduces an s®-morphism aq, : IS — M.{¢}, and, conversely, each morphism
I — M s induced by a unique such sequence.

() A morphism i : A - B in a category has the left lifting property with respect to a morphism
p: X > Y and p: X - Y also has the right lifting property with respect to i : A - B, denoted
i < p, iff for each f: A - X and ¢g: B - Y such that po f = g o4 there exists h: B - X such
that hoi = f and po h =g. This notion is used to define properties of morphisms starting from
an explicitly given class of morphisms, often a list of (counter)examples, and a useful intuition
is to think that the property of left-lifting against a class C is a kind of negation of the property
of being in C, and that right-lifting is also a kind of negation. See [Wikipedia,Lifting property]|
for details and examples.

(©)In fact, for the author this is the most curious observation of the paper which calls for an
explanation—why (and whether!) does this kind of naive, oversimplified, and mechanistic way
of “transcribing” produces a correct conjecture so often. A temptation is to connect this with
the speculative notion of ergologic by Gromov, by saying it is a rule of ergologic.


https://arxiv.org/abs/1810.01513
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— Aninfinitely extendable order ¢p-indiscernible sequence (a;)ie; with repetitions
induces an s®-morphism aq : |I|s — MQ{¢}, and, conversely, each morphism
|I]e — MI? is induced by a unique such sequence.

Proof. — First note that by Example maps |I| — |M]| of sets are into one-
to-one correspondence with morphisms |I|, — |M|,, i.e. the morphisms of the

underlying simplicial sets |I|, = ||| and [M], = [M{?], and the same is true for
|Ig| = |I5] — | M|, = |M.{¢}|. Hence, at the level of the underlying simplicial sets,
any sequence (a;)ie; gives rise to morphisms |I5] — | M| and ||I].] — |Md?)
of the underlying simplicial sets. Therefore, we only need to check what it means
to be continuous for the following induced maps of filters for each n > 0:
|13 (no)| = {(iyoosin) €[ I|" 1 i1 < oo <y} —> M™
1 ]e ()| = [[* — M™

The sets |I|* and {(i1,...,7,) € |[I|* : i1 < ... <i,} are equipped with the indiscrete
filter, hence continuity means that the image of the map in contained in any
neighbourhood. For the first map it means that for any weakly increasing sequence
i1 < ... <1, for any N the sequence (a;,,...,a;, ) can be extended a ¢-indiscernible
sequence with repetitions with arbitrarily many distinct elements. This exactly
means that the sequence (a;);; in M is an infinitely extendable ¢-indiscernible
sequence with repetitions.

For the second map it means that for any sequence iy, ...,4, (not necessarily
ordered, and with repetitions) the sequence (a;,,...,a;,) can be extended to a ¢-
indiscernible sequence with repetitions with arbitrarily many distinct elements.
This means that the sequence (a;);c; is totally indiscernible, and is also infinitely
extendable ¢-indiscernible, as required. O

Remark 3.3.1.2. — Using M,/ A instead of M, in the lemma above would give
us a bit of flexibility at the cost of some simplicial combinatorics. For a structure
I, I-indiscernibles induce a map of simplicial sets

18] ~ | — [M.]A]

and each such map of simplicial sets is induced by [-indiscernibles. For example,
this allows one to talk about mutually indiscernible sequences (I;); over A, though
in this case it is probably better to consider a different simplicial set which “re-
members” the order: instead of |U; Ii]e(n<) = | Uy I|” take its subset consisting of
tuples where elements of each I; occur in an weakly increasing order.

3.3.2. Stability as Quillen negation of indiscernible sets (fixme: better subtitle..)—
Let T = |{pt}|s denote the terminal object of the category s®, i.e. “the simplicial
set represented by a singleton equipped with indiscrete filters”: for any n > 0
T(n<) := {pt}, and the only big subset is {pt} itself.

Proposition 3.3.2.1 (Stability as Quillen negation)
Let M be a model, and let ¢ be a formula in the language of M. The following
are equivalent:

(i) in the model M, each infinite ¢-indiscernible sequence is necessarily a ¢-
indiscernible set

(ii) in the model M, each ¢-indiscernible sequence with repetitions and with in-
finitely many distinct elements is necessarily order ¢-indiscernible with repe-
titions
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(iii) in s® the following lifting property holds for each infinite linear order I:
IE— 1|, « M —1
1.e. the following diagram in s® holds:

Is —— i

P
|7
[
(iv) in s® the following lifting property holds
Wi fwl, « MIT—7
i.e. the following diagram in s® holds:

wi —— plot

-7

wly —— 7

Proof. — (i)<>(ii) is obvious.

(iil) = (i): Let (a;);er be an infinite ¢-indiscernible sequence. By Lemma[3.3.1.1]
it induces an s®-morphism a, : IS — M. Tt fits into the commutative square,
as any square with top vertex T commutes. By the lifting property it lifts to a
s®-morphism a : |I|, — M By commutativity of the upper triangle both
morphisms correspond to the same map of the underlying simplicial sets, i.e. to
the same sequence (a;);e;. Again by Lemma [3.3.1.1] this sequence is order ¢-
indiscernible with repetitions, and, in this case, just order ¢-indiscernible as its
elements are all distinct.

(ii) == (iili): Let aq: If — M be the s®-morphism corresponding to the
lower horizontal arrow. By Lemma it corresponds to an infinitely extend-
able ¢-indiscernible sequence (a;);e; with repetitions. Pick such an infinite exten-
sion. It is ¢-indiscernible with repetitions, and by (ii) it is order ¢-indiscernible
with repetitions. Hence, so is its subsequence (a;);e;, and by Lemma it
corresponds to an s®-morphism |/|, — M.{d)}, as required.

(i)e(iv): by compactness (i) holds if it holds for sequences (ay)ne, indexed

by w, which is what the proof of the equivalence (i)<>(iii) gives us in the case
I=w. [l

3.8.3. An informal explanation. — Surprisingly, the following naive, oversimpli-
fied, and mechanistic way of thinking produces a correct conjecture. Let us try
“transcribe” in terms of s® the characterisation “each infinite indiscernible se-
quence is necessarily an indiscernible set” we used; we explain the process in a
verbose way; being oversimplified is an essential feature.

An indiscernible sequence is indexed by a linear order and we would like to think
of it as a map from a linear order to a model. An indiscernible set is indexed by
a set rather that a linear order, and we would like to think of it as a map from a
set to a model.

In s® or indeed in sSets, a straightforward way to interpret “a map from a linear
order I* to a model M” is to consider a morphism [§ — |M|, from the simplicial
set I represented by the linear order, to the simplicial set |M|, represented by the
set of elements of the model.



22 MISHA GAVRILOVICH

Note an oversimplification: we say nothing on the crucial property assuring that
this map encodes an indiscernible sequence.

Similarly, a straightforward way to interpret “a map from a set |I| to a model
M” is to consider a morphism |I|, —> |M]|. from the simplicial set |I|, represented
by the set || of elements of the linear order, to the simplicial set |M|, represented
by the set of elements of the model.

Note that in this simplicial formalisation, a map from an ordered set is not
automatically a map from its underlying set, even though it is more natural when
thinking of homomorphisms. And indeed, if in our formalism a map from an
ordered set were automatically a map from its underlying set, we would not be
able to reformulate the characterisation of stability (it would hold trivially).

The characterisation says that each infinite indiscernible sequence gives rise to
an indiscernible set; accordingly, we’d like to say that in s® and sSets, a map
Is — |M|, gives rise to a map |I|, — |M|,. Let us continue to ignore the
meaning of being indiscernible.

The characterisation says that each infinite indiscernible sequence is necessarily
an indiscernible set; accordingly, in s® and sSets, there is a morphism /5 — |I|,.

This enables us to rephrase the characterisation by saying that each map I3 —
|M|, extends to to a map |I|, —> |M]|., which is written as a lifting property

IS —>|I|e « My — T

where T is the terminal object of s® and thus can be ignored.

So far we did not discuss “indiscernability”. A sequence is indiscernible iff for
each n “each m-tuple in increasing order is”. A straightforward way to talk in
s® about “indiscernible n-tuples” is rather tautological: to consider the filter on
|M|™ = |MJ(n<)| generated by the set of indiscernible n-tuples, or say the sets
of ¢-indiscernible tuples for various ¢. The phrase “each n-tuple” suggests that
we consider each tuple in I$ and ||, to be “small” i.e. equip I$ and |I|, with the
indiscrete filters. A verification now shows that, with these definitions, an injective
(continuous) morphism I — |M], is the same as an indiscernible sequence in M
indexed by I, and an injective (continuous) morphism |I|, — |M|, is the same as
an indiscernible set in M indexed by I.

Now we see that the preceding fulfils details of this little program and gives a
precise definition of M, so that this lifting property does indeed say that M is
stable. We’d like to stress again the particularly mechanistic and oversimplified
nature of the considerations above. Indeed, in the big picture, perhaps the observa-
tion of most consequence is that such mechanistic and oversimplified consideration
are useful.

3.4. NIP and eventually indiscernible sequences. — The notion of an even-
tually indiscernible sequence needed for NIP involves the filter of final segments of
a linear order.

First we associate s® objects with the filter of final segments of a linear order,
so that an eventually indiscernible sequence is a morphism from that object to the
model. Then we rewrite the characterisation of NIP “each indiscernible sequence
is eventually indiscernible over a parameter” as a diagram which is almost, but
not quite, a lifting property. We then modify slightly the definition of M, so that
it becomes a lifting property.
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We note that there is a bit of flexibility in choosing details of the construction
of M,, which sometimes matter: the filters we use for NIP do not fit for stability
because they lack symmetry.

3.4.1. Simplicial filters associated with filters on linear orders. —
Definition 3.4.1.1 (|I|3, Istails |[|tails : sd). — Let I be a linear order, and let

§ be a filter on |I|.
Let |I[3 be the simplicial filter whose underlying simplicial set is represented by

the set ||, i.e. the functor {— — |I|} : A°? — Sets. The set

Sets

{ne o 11} = (0t bty = o1

is equipped with the filter generated by sets of the form £”, ¢ € §.
Let I5S be the simplicial filter whose underlying simplicial set is represented by

IS} : A°P — Sets. The set

the linear order I, i.e. the functor {—
preorders

{n< . F} c{(tt) eIt < <)

" preorders

is equipped with the filter generated by sets of the form
{(t1,..,ty)ee” 1ty <...<tp}, €€F

Let [gtails .= 158 |I|tails .= |I[S for §:= {{x: 2 >4} :i €I} the filter generated by
non-empty final segments of .

3.4.2. NIP as almost a lifting property. — Let 1 = |{}|s = |@|s denote the initial
object of the category s®, i.e. “the simplicial set represented by the empty set: for
any n >0 L(ne) == @, and the only big subset is & itself.

Lemma 3.4.2.1 (NIP as almost a lifting property)
Let M be a structure. Let I be an infinite linear order. The following are
equivalent:

(i) in the model M, for each b e M, each formula ¢(—,b) each eventually indis-
cernible I-sequence (over @) is eventually ¢(—,b)-indiscernible

(ii) in s® each injective morphism It —s M, factors as Its — MEOD
M,, i.e. the following diagram holds:

1L —— )

| ]

].Stails ~(inj)— M.

(iii) in s® each injective morphism wstes —s M, factors as wstels — MEOD
M,, i.e. the following diagram holds:

1L ——— ppkon

| |

w.sta'ils —(inj)— M.
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Proof. — (ii) = (i): Let (a;)is be an indiscernible sequence. It induces a mor-
phism [gtils —s M, (the bottom arrow), which by the diagram in (ii) lifts to a
diagonal arrow [5tails —s MEAD, By commutativity of the triangle it corresponds
to the same sequence, and continuity means this sequence is indiscernible.

(i) = (ii): Consider the bottom arrow [gtals —s M,. Tt corresponds to a
sequence (a;)q;. Injectivity means its elements are all distinct. For such a sequence
continuity of the morphism then means the sequence is ¢-indiscernible, hence is
eventually indiscernible over any parameter. Hence, the diagonal map [5tils —s
MEM) g continuous.

(i)«>(ii): by compactness. O

However, note the diagram (ii) may fail for a non-injective morphism. Indeed,
consider a sequence (a,b,a,b,...) where a,b are elements of an indiscernible set, is
not indiscernible over b. It represents a continuous map I5%s —s M, but it is

. L(M)
not continuous as a map to M, .
In the next subsection we slightly modify the definition of the filters on M, to

take care of this “degenerate” case, and define NIP as a lifting property
| —> Istaﬂs < M.L(M) — M.

In [8, Appendix we also reformulate as a lifting property the characterisa-
tion of NIP using average/limit types as a lifting property reminiscent of the lifting
property defining completeness of metric spaces. They both use an endomorphism
“shifting dimension” of A and s® which is also used in topology to define limits
(and being locally trivial).

3.4.8. NIP as a lifting property. — Call a sequence (totally) ¢-indiscernible with
consecutive repetitions iff each subsequence with distinct consecutive elements is
necessarily (totally) ¢-indiscernible. The sequence (a,b,a,b,a,b,...) where {a,b} is
an indiscernible set, is an example of a sequence which is indiscernible with repeti-

tions but not indiscernible with consecutive repetitions. A sequence (a,a,b,...,b,c, ..

is ¢-indiscernible with consecutive repetitions. Note that an infinite indiscernible
sequence with consecutive repetitions is necessarily either eventually constant or
has infinitely many distinct elements.

Let M/* denote the simplicial set |M|, equipped with filters defined as in Def-
inition where everywhere words “with repetition” are replaced by “with
consecutive repetitions”.

Note that for an injective map a : |I| — | M|, the induced map a, : I5%5 — M!
is continuous if and only if the induced map a, : I5%ils —s M, is continuous.

Lemma 3.4.3.1 (NIP as a lifting property). — Let M be a structure. Let I
be an infinite linear order. The following are equivalent:

(i) in the model M, for each b e M, each formula ¢(—,b) each eventually indis-
cernible I-sequence (over @) is eventually ¢(—,b)-indiscernible

(i) in s® each morphism I —s M, factors as I£t%0s —s MIEOD M!,
i.e. the following lifting property holds:

| —> [Stails P M.,L(M) — M’
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i.e. in s® the following diagram holds:

L—— pyn

| 7]

[tails y M!

(iii) in s® each morphism wstels —s M, factors as wst*ls —s MED
1.e. the following lifting property holds:

1 — w.stails % M.’L(M) — M

1.e. in s® the following diagram holds:

| 7]

w.stails , M./

Proof. — (ii) = (i): same as before because here we need to consider only injec-
tive maps.

(i) = (ii): Consider the bottom arrow Ig%ls — M!. Tt corresponds to a se-
quence (a;);s. For such a sequence continuity of the morphism then means for
each ¢ some final segment (a;);s;, is ¢-indiscernible with consecutive repetitions.
If this final segment has only finitely many distinct elements, it is eventually con-
stant, hence eventually indiscernible over any parameter. If it has infinitely many

distinct elements, we can use (i) to conclude it is eventually indiscernible over any
IL(M) .

parameter. Hence, the diagonal map [5tils —s M, is continuous.
(ii)<>(iii): by compactness. O
3.4.4. Cauchy sequences: a formal analogy to indiscernible sequences. — This is

formally unnecessary but might help the reader’s intuition.

Recall that with a metric space M we associate its simplicial filter M, whose
underlying simplicial set |M|, is represented by the set of elements of M, and where
we equip |M|* with the filter of e-neighbourhoods of the main diagonal generated
by the subsets, for € > 0

{(@1,...,2,) : dist(z;,z;) <efor 1<i<j<n}

The lemma below establishes a formal analogy between Cauchy sequences and
indiscernible sequences with repetitions: they both are defined as in s® as mor-
phisms from the same object associated with a linear order.

Lemma 3.4.4.1. — For any linear order I and any metric space M the following
holds.

(i) A sequence (a;)ier in M induces an morphism ae : |I|e — | M|+ of sSets, and,

conversely, each morphism |I|e — |M|s is induced by a unique such sequence

(ii) A Cauchy sequence (a;)ie; in M induces an s®-morphism a, : [£0 — M,

and, conversely, each morphism It —s M, is induced by to a unique such
sequence.

(i) A Cauchy sequence (a;)ir in M induces an s®-morphism a, : |I]i9 —

M,, and, conversely, each morphism |I|t*s — M, induced by a unique such
sequence.
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Proof. — (i): A map a : |I| — |M| of sets induces a natural transformation of
functors f, : I — |M|.: for each n > 0, a tuple (i1 < ..,< 4,) € I$(ne) goes
into tuple (ag,,...,a;,) € |M|* = |[M|.(n<). Now let us show that every natural
transformation a, : I$ —> |M]|. is necessarily of this form, by the following easy
argument. Let (y1,..,y,) = fu(x1,..,2,); by functoriality using maps [i] : 1 —
n,1 ¢ we know that y; = (y1, .., yn)[7] = fu(21, .., 2,)[7] = fi(x;). Finally, use that
for any yi,..,y, € |M|e(1<) = |M] there is a unique element g € |M|.(ns) = |M]|"
such that y; = g[¢]. In a more geometric language, we may say that we used the
following property of the simplicial set |M|,: that each “(n-1)-simplex” (y1,..,Yn)
is uniquely determined by its “0O-dimensional faces” vy, ...,y, € M.

(ii): We need to check what it means to for the map f, : I5(n<) — M™ of
filters to be continuous. Consider n = 2; for n > 2 the argument is the same.
Continuity means that for each ¢ > 0 and thereby “e-neighbourhood ¢ := {(z,y) :
x,y € M,dist(z,y) < €} of the main diagonal” there is N > 0 and thereby a “N-
tail” neighbourhood & := {(7,7) ew xw: N <i < j} such that a(d) ce, i.e. for each
j 24> N it holds dist(a;,a;) <e.

(iii): We need to check what it means to for the map f, : |[I|* — M" of
filters to be continuous. Consider n = 2; for n > 2 the argument is the same.
Continuity means that for each € > 0 and thereby “e-neighbourhood ¢ := {(z,y) :
x,y € M,dist(x,y) < €} of the main diagonal” there is N > 0 and thereby a “N-tail”
neighbourhood 6 := {(i,j) e wxw :4,j > N} such that a(d) c ¢, i.e. for each i,j > N
it holds dist(a;, a;) <e. O

3.4.5. Stability as Quillen negation of eventually (totally) indiscernible sequences.
— The characterisation of stability “each eventually ¢-indiscernible sequence is
necessarily an eventually order ¢-indiscernible” and is a lifting property with re-
spect to Istails,

Proposition 3.4.5.1 (Stability as Quillen negation)
Let M be a model, and let ¢ be a formula in the language of M. Let I be a
linear order. The following are equivalent:

(i) in the model M, each eventually ¢-indiscernible sequence is necessarily even-
tually order ¢p-indiscernible
(i) in the model M, each eventually ¢-indiscernible sequence with repetitions is
necessarily eventually order ¢p-indiscernible with repetitions
(iii) the following lifting property holds in the category s®:

].Stails . |]|f¢lil$ P M.{(b} N
i.e. the following diagram in s® holds:

].s tails , M.{¢>}

2
l /
Ve
Ve

|]|Eails s T

Proof. — (ii) == (i) is trivial so we only need to prove (i) = (ii): Consider
an eventually ¢-indiscernible sequence with repetitions. Take a maximal subse-
quence with distinct elements. First assume it is infinite. Then it is eventually
¢-indiscernible, hence eventually order ¢-indiscernible by (ii), hence the original
sequence is eventually order ¢-indiscernible with repetitions.
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So what happens if there are only finitely many distinct elements Call this
sequence (a;);s. Pick an initial segment (a;);<;, of the sequence which contains
all the elements of (a;);; which occur only finitely many times; then in the corre-
sponding final segment (a;);s;, each element occurs infinitely many times whenever
it occurs there at all. Therefore any finite subsequence of that final segment occurs
there in an arbitrary order, hence (a;);si, is ¢-indiscernible with repetitions iff it
is order ¢-indiscernible with repetitions.

(iii) = (ii): Let (a;):s be an eventually ¢-indiscernible sequence with repeti-
tions. By Lemma it induces an s®-morphism a, : I5tls — M By the
lifting property it lifts to a s®-morphism a : |I[(21ls — M. By commutativity
they both correspond to the same map of the underlying simplicial sets, i.e. to the
same sequence (a;);e;. Again by Lemma this sequence is eventually order
¢-indiscernible with repetitions.

(i) = (iii): Let a, : [5tails —s M be the s®-morphism corresponding to
the lower horizontal arrow. By Lemma [3.3.1.1] it corresponds to an eventually
¢-indiscernible sequence (a;);; with repetitions. By (ii’) this sequence is also
eventually order ¢-indiscernible with repetitions. By Lemma|3.3.1.1]it corresponds
to an s®-morphism |I[tls — ME? | as required. ]

3.5. Questions. — Let us now formulate several questions the technique of
Quillen negation allows us to formulate. Note it would be rather cumbersome to
reformulate these questions back into model theoretic language.

3.5.1. Double Quillen negation/orthogonal of a model. — In the notation of Quillen

negation[®)] Proposition [3.3.2.1](iii) can be stated concisely as:

— a model M is stable iff M, — T € {ws —> |w|s}"

(MWe remark that in category theory it is often important that things work in a “degenerate”
case, such as, here, the case of a ¢-indiscernible sequence which has only finitely many distinct
elements. Note that we would not have been able to write the lifting property if not for this
set-theoretic argument.

(®) For a class C' of morphisms in a category, its left orthogonal C' with respect to the lifting
property, respectively its right orthogonal C", is the class of all morphisms which have the left,
respectively right, lifting property with respect to each morphism in the class C'. In notation,

Cli={f : VgeC, f«g} C":={g:VfeC, [ «g}

Taking the orthogonal of a class C' is a simple way to define a class of morphisms excluding
non-isomorphisms from C, in a way which is useful in a diagram chasing computation. Thus, in
the category Set of sets, the right orthogonal {@ — {*}}" of the simplest non-surjection @ — {*},
is the class of surjections. The left and right orthogonals of {z1,22} — {*}, the simplest non-
injection, are both precisely the class of injections,

{{z1, 22} — {*}}l ={{z1,x2} > {#}} = {f : f is an injection }.

A number of notions can be defined by passing to the left or right orthogonal several times
starting from a list of explicit examples, i.e. as C!,C*,C"™,C", where C is a class consisting of
several explicitly given morphisms. A useful intuition is to think that the property of left-lifting
against a class C'is a kind of negation of the property of being in C, and that right-lifting is also
a kind of negation. Hence the classes obtained from C' by taking orthogonals an odd number of
times, such as C', ™, O™, C! etc., represent various kinds of negation of C, so C!,C™, C™*, C™!
each consists of morphisms which are far from having property C.

It is convenient to refer to C' and C* as the property of left, resp. right, Quillen negation of
the property of being in the class C, and C™ = (C™)! o C and C™ := (CY)" > C as Quillen
generalisation of property C.
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Purely by a standard elementary diagram chasing calculation the Proposition|3.3.2.1
above implies that if a model M is stable and N is an arbitrary model,

— N, — T e { M, — T}" implies N is stable

— N is stable iff N, — T € { M, — T : M a stable model}"

Indeed, Proposition [3.3.2.1| states that for a stable M { M, — T}1 contains a

particular morphism, and thus every morphism in { M, — T}lr lifts with respect
to that morphism. This allows us to formulate the following amusingly concise
questions:

Question 3.5.1.1. — Is the following true@

— A model M is stable iff My — T € {(C;+,*)e — T}lr-
— A model M is distal iff My — T € {(Qp; +,*)e — T}lr-
— For an algebraically closed field C, of prime characteristic p,

{(Cir ) =T} = {(Cpit)e — T}
(@i, )e = T = (Rt ) — 1Y

Answering these questions, perhaps negatively, will represent a grasp of s® and
its expressive power at an elementary level.

3.5.2. ACFy- and stable replacement of a model. — And, in a similarly concise
manner, our category theoretic techniqud™ID[12)] leads us to define an “ACFy-
replacement” of a model N as the decomposition

{Co—1} . {Co—T}"

N,

or a “stable replacement” as

{ Me—>T : M a stable model}! { Me—>T : M a stable model}'"
N, .

()In set theoretic notation the classes of models defined by these double Quillen negations are
explained in Lemma [8.1.2.2] This explantation is preliminary.

(19) Tt is convenient to say that a morphism A — B has a property P by writing it above the
(P)

arrow as A — B.

(11) Given a property P of morphisms in a category, it is desirable that each morphism decomposes

P 1 P Ir P rl Py
as e Q . Q e and as e Q . Q e. The axiom M2 of closed model categories is of

this form where P is the class of fibrations or cofibrations, and, for example, the connected
components of a topological space X fit into decomposition

({0,13—{0=1})’ - ({0,1y—{0=1}))"

X o(X) {0=1}

where ({0,1} — {0 =1}) denotes the (class consisting of the single) morphism gluing together
the two points of a discrete space of two points; a similar definition can be made in s® as well.
Some details appear in |[6,84.7].

(12)Such decomposition may fail to exist, particularly for set theoretic reasons if the property

involved is a class, not a set, see the next footnote.


https://mishap.sdf.org/6a6ywke.pdf
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or “indiscernible sequence” replacement{(!3)}
{Istails |I|tails}r1 {|I|gtails |7]|stails }r
L] L] L] L]
[ ]

N,

Question 3.5.2.1. — Is it true that the stable part Stp; of a model M can
be defined in terms of one of the M2-decompositions above, i.e. by one of the
equations

P rl P)*
M 25 (st Y5

or 1 1
M (St 5
for some nice class P of morphisms ?
Note that if this holds for any class, it does for (P) := {M, — (Stu). :
M is a model} (top) or (P) := {(Sty)e —> T : M is a model} (bottom), and

this constitutes a precise question.

3.5.3. Lewvels of stability as iterated Quillen negations. — More generally, we may
think of the class
{M.: (M, — 1) € (N, — 1)}

is a class of models “at the same level of stability as N or lower”, i.e. having
“better” properties of indiscernible sequences than N. We may be more explicit
about these properties and define instead the class

{M, s (Mo — 1) € (1)}

where (I) is a class of morphisms associated with partial orders. Of course, these
is a lot of flexibility in this, e.g. we may consider not M, — T but some other
morphism associated with a model, as we do in NIP; or Quillen negations ™, ..
iterated several times.

This is just one of the possible questions of this type.

Question 3.5.3.1. — Can the definition of distality be expressed in this way as
Quillen negation, perhaps as a lifting property with respect to a class of morphisms
associated with linear orders, say for example as

(]1+CL+IQ+13)§ U (]1+]2+b+]3)f—>(]1+a+]2+b+]3)f A M.—>T

([1+Ig+]3)f

in the notation of the definition of distality in|/Simon, Oleron|? Can the notion of
domination of indiscernible sequences [Simon, Type decomposition in NIP theories/
or collapse of indiscernibles in [Scow, Characterization of NIP theories by ordered
graph-indiscernibles| and|[GHS, Characterizing Model-Theoretic Dividing Lines via

(13)Some explicit remarks can be made about this decomposition, which perhaps show it is of

P Ir P)*
little interest. Typically a decomposition of form e; —)> . Q o3 is constructed by a Quillen

small object argument, which is a careful induction taking pushback of the (P)" maps in the

. (arbitrary) (P)" .
decompositions e; . e3: such a pullback necessarily has property (P)". In

this case the “indiscernability” decomposition of M, — T can probably be done explicitly, by
weakening the filter structure on M, such that the map

|I|ftails _ M.I

is s®-continuous (i.e. is an s®-morphism) for I an indiscernible sequence with repetitions in M,
i.e. an s®-morphism

I.Stalls M.
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Collapse of Generalized Indiscernibles]) be expressed in terms of Quillen lifting
properties? Distality is thought of as a notion of pure instability, hence we may
ask whether the stable replacement of a distal model is necessarily trivial?

Are p-adics or say CODF “distal-NIP-complete” in the sense that the following
is the class of all distal models:

{M M, — 1L e{(@i+, ). — T}

{M:M,— 1 e{N,—71: NrCODF}"}

3.5.4. Simple theories and tree properties. — We think answering the following
question is important as it might give a technical clue towards homotopy theory
for model theory.

Question 3.5.4.1. — Define the notion of a simple theory as an iterated Quillen

negation (9]

The motivation for singling out simplicity is that its characterisation uses indis-
cernible trees: we think of such a tree as a family of indiscernible sequences (its
branches) compatible in some way, and thus analogous to a compatible family of
paths (or its negation(!)), i.e. a homotopy between paths. Another coincidence is
that a homotopy I x I — X or I — (I — X') between paths involves two linear
orders, and so does an indiscernible tree in a tree property NTP; ;. We hope that
an answer to this question might help give a clue towards how to define a notion
of the space of indiscernible sequences in a model, a start of homotopy theory.

3.5.5. Aziomatize non-abelian homotopy theory. — We take the liberty to state a
wild speculation that understanding dividing lines of Shelah in terms of diagram
chasing may suggest an approach towards axioms of “non-abelian” homotopy the-
ory. Our motivation in stating that is not any positive evidence but rather that
the technique of classification theory is so alien and unknown in homotopy theory
that any ideas there would be fresh and new in homotopy theory. Our motivation
of thinking of a homotopy theory based on s® being non-abelian is elementary and
not very convincing either: the definition of a natural notion of homotopy in s® is
not symmetric. Our motivation of mentioning the endomorphism [+1] : s® — s
is that it appears in reformulations of the notions of being locally trivial as a base
change diagram (see [7,83.4] for a sketch and for details |[6,§2.2.5,84.8]), of limit
and compactness [6,§2.1.4,84.11].

Question 3.5.5.1. — Formulate axioms of homotopy theory in terms of iterated
Quillen lifting properties/negation and the “shift” endomorphism [+1] : s® —> s®.

(14 An answer is suggested in Appendix @], or rather a straightforward way to “read it off” the
definition of the tree property, and involves a slightly different definition of Stone space of a
model; the filters on |[M|™ = |M|s(n<) are defined to consist of tuples (ay, ..., a,) such that the set
{¢(z,a1),...,¢(x,a,)} is consistent. This suggests a variation of Question[3.5.1.1} is a (saturated
enough) model M simple iff My — T € {(Random graph), — T}lr. The same trick probably

gives NT P, and NSOP; as well. However, it still remains to intrepret these reformulations as a
clue towards homotopy theory.
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APPENDICES (PRELIMINARY)

The Appendices contain an assorie of examples and constructions not quite
ready for publication, and are intended to provide some context and suggestions
for future research.

Appendix 4 contains an assortie of constructions of objects of s®, notably a
sketch of a fully faithful inclusion Top c s®.

Appendix 5 contains reformulations of NIP, NOP, non-dividing, and considera-
tions of NSOP.

Appendix 6 sketches in category-theoretic language a constructions of s® objects
motivated by Ramsey theory.

Appendix 7 presents speculations about a homotopy theory for s® non-trivial
for the subcategory of models.

Appendix 8 sketches in set-theoretic notation the definition of the class of models
{(C;+, %)y — T}, and, more genererally, { M, — T} for a model M, appearing
in Question [3.5.1.1]

Appendix 9 is a preliminary exposition of the reformulation of the tree property

solving Question [3.5.4.1

4. Appendix. Examples of simplicial filters.

We sketch a number of constructions of simplicial filters, is a somewhat informal
style. The aim is to provide context and intuitions for our constructions.
Importantly, we explain how to view the topological spaces as objects of s®.

4.1. Examples of filters and their morphisms.— We list a number of ex-
amples of filters in the hope that some may aid the reader’s intuition. The reader
should skip examples they find unhelpful or uneasy to follow.

4.1.1. Discrete and indiscrete. — The set of subsets consisting of X alone is a
filter on X called the indiscrete filter, and there is a functor -indiscrete : Setg —s @,
X +— Xindiscrete "gending a set to itself equipped with indiscrete filter {X}. For us
the set of all subsets of X is also a filter which we call discrete.

The functor Sets — ® induces a fully faithful embedding -ndiscrete : sSets — sd,
thus any simplicial set is also a simplicial filter.

4.1.2. Neighbourhood filter. — In a topological space X, the set of all neighbour-
hoods of an arbitrary subset A of X (and in particular the set of all neighbourhoods
of a point of X) is a filter, called the neighbourhood filter of A. The filter of cov-
erings on X x X consists of subsets of form

UazeX{x} X Ua:

where U, 3 x is a (not necessarily open) neighbourhood of z, i.e. (U)zex is a
covering of X.

A map f: X — Y of topological spaces is continuous iff for every point z € X
it induces a continuous map of filters from the neighbourhood filter of x to the
neighbourhood filter of f(z), or, equivalently, iff it induces a continuous map from
the filter of coverings of X on |X|x|X]| to that of Y on Y| x|Y].
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4.1.3. Cofinite filter. — If X is an set, the complements of the finite subsets of X
are the elements of a filter. The filter of complements of finite subsets of the set
N of integers > 0 is called the Fréchet filter.

4.1.4. Filter of tails of a preorder. — In a partial preorder I<, the filter of tails
consists of sets € c [ with the following property: for every i € I there is j > such
that for every k > j it holds k € ¢.

4.1.5. Uniformly continuous maps. — Let M be a metric space, and n > 0. A
uniform neighbourhood of the main diagonal on M™ is a subset which contain all
tuples of diameter < € for some € > 0; equivalently, a subset ¢ ¢ M"™ with the
following property: there is € > 0 such that for arbitrary tuple (z1,..,x,) € M", it
holds that tuple (z1,..,2,) € € whenever for each 1 <4, 5 <n dist(z;,z;) <e. Thus,
the filter of uniform neighbourhoods of the main diagonal on M™ is generated by
the subsets
{(z1,..,2,) € M™ : dist(x;,x;41) <€,0<i<n}
For n = 2 we may rewrite this filter as being generated by subsets

|_| {z} x Bree()

reX

where B,.(x) 3 x is the ball around z of diameter ¢, We may call it the filter of
uniform coverings on M x M to emphasize similarity to topological spaces.

A map f: M’ — M" of metric spaces is uniformly continuous iff it induces a
continuous map from the filter of uniform neighbourhoods of the main diagonal
of M’ x M’ into that of M" x M". Indeed, continuity just says that for each
¢ > 0 and thereby “e-neighbourhood ¢ := {(x,y) : x,y € M" dist(x,y) < €} of the
main diagonal” there is § > 0 and thereby a ”d-neighbourhood & := {(z,y) : z,y €
M’ dist(z,y) < 0} ¢ M’ x M’ of the main diagonal” such that f(8) c . In fact,
the same holds for M™ for any n > 1 instead of M x M.

4.1.6. A Cauchy sequence. — A Cauchy sequence is a map a : w — |M| such
that it induces a continuous map (w< x w=)tils — M x M from the linear order
ws x ws equipped with the filter of tails to M’ x M’ equipped with the filter of
uniform neighbourhoods of the main diagonal. Indeed, continuity of the induced
map a : (ws x ws)tls — M x M just means that for each € > 0 and thereby “e-
neighbourhood ¢ := {(x,y) : z,y € M,dist(z,y) < €} of the main diagonal” there is
N > 0 and thereby a ” N-tail” neighbourhood & := {(i,j) € wxw : 4,5 > N} such
that a(0) c ¢, i.e. for each ¢, > N it holds dist(a;,a;) <e.

In fact, the same holds for M™ for any n > 1 instead of M x M, i.e. for each n > 1
it holds that a map a : w — | M| represents a Cauchy sequence iff the induced map
((w=)m)tails —s M7 is continuous, where M™ is equipped with the filter of uniform
neighbourhoods of the main diagonal.

Later we shall see that the fact this holds for each n means that a Cauchy
sequence gives rise a morphism in s® from a certain object associated with the
linear order w to a certain object associated with metric space M. ...

4.1.7. EM-filters and indiscernible sequences: our main example. — This is a
sketch of our main model-theoretic construction in s®. We will give details in

Definition B.1.1.11

A EM-formula is a formula of form

Nz, #x &y, # 1, = (O(iy, .. 20,) < o(z),, .., 25.))

1<s<t<r

for some formula ¢(zq,...,x,.), 1 <i;<...<i.<n, 1 <j1<...<j.<n.
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For an r-ary formula ¢, let ¢"FM denote

/\ ( /\ IR :/:xit&xjs :#xjt - (¢($i17“7$ir) egb(le?"?xjr)))

1<i1<...<ip<n,1<j1 <. .<jr<n \1<s<t<r

Note that a sequence of distinct elements is indiscernible iff its EM-type contains
all the EM-formulas.

The ¢-EM-filter on M™ is the filter generated by the subset ¢"EM(M™); for a
set of formulas X3, the X-EM-filter on M™ is generated by the subsets ¢"FM(M™),
¢ € 2. The X-EM>-filter on M™ is the filter generated by arbitrary intersections
of sets of form {z : M £ ¢"FM(x)}, ¢ € ¥. We omit ¥ when ¥ is the set of all
formulas in the language of M.

The EM-filter on M is indiscrete: the only neighbourhood is the whole set.
On M x M it is generated by equivalence relations ¥(x1) < ¥(x3), for ¢ an
arbitrary l-ary formula, and thus (together with the two coordinate projections
|M| x |M| — |M]) carries the same information as the usual topological Stone
space of 1-types. The EM-filter on M x M x M is the first non-trivial filter. The
EM-filters on M™ n > 0 capture the notion of an indiscernible sequence in the
following way: a sequence (a;) of distinct elements is indiscernible iff every finite
subsequence a;, , ..., a;,,%1 < ... < i, belongs to every EM-neighbourhood in M™. In
terms of the category ® of filters this is rewritten as follows:

— an injective map I — M is an indiscernible sequence iff for each n > 0 it
induces a continuous map

indiscrete
} — M"

Ne —— 1
preorders

For n = 3 this means there is a continuous map

{(i,j,k’)EIX[X[:@'Sjsk}indiscrete_)MxMxM

4.2. Examples of simplicial filters.— We list a number of examples of simpli-
cial filters in the hope that some may aid the reader’s intuition. Some are indented
for a category theoretically minded reader. The reader should skip examples they
find unhelpful or uneasy to follow.

4.2.1. Discrete, indiscrete and the filter of main diagonals on a simplicial set.
— The functor -ndiscrete : Setg —» @ induces a fully faithful embedding -indiscrete .
sSets —> s®, thus any simplicial set is also a simplicial filter.

Let X, : A% —s Sets be a simplicial set. For each n >0, equip X.(n<) with the
filter generated by the image of the map X.(1<) — X.(n<) corresponding to the
unique morphism n< — 1< in A. A verification shows that by functoriality all the
maps X.(m<) — X.(n<), nc — mq, are continuous, and that this construction
defines a functor A°® — @, and, in fact, a fully faithful embedding -4i2¢ : sSets —
s5P.

4.2.2. Represented simplicial sets. — The underlying simplicial sets of most of
the examples will be variations of the following well-known construction.
Let C be a category. To each object Y € Ob (' there correspond a functor

hy : X —> {X e Y} sending each object X € Ob(C into the set of morphisms

from X to Y, and it can be checked that this defines a fully faithful embedding
C' — Func(C° Sets). A functor hy : C' — Sets of this form is called represented
by Y.
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A simplicial set M, : A°® — Sets co-represented by a set M is the functor
sending each finite linear order n< into the set of maps from n to M:

ne —> {n—>M}: {(x1,...,x,) e M"} = M™

Sets

A map [i; < ... <i,] : ne — m< by composition induces a map

T I -

Sets Sets

(21,0 @) — (Tiyy oy T4,)

A map f: M’ — M" of sets induces a natural transformation of functors
fo: M, — M for each n >0, a tuple (z1,..,x,) € M™ = M!(n<) goes into tuple
(f(z1),..., f(x,)) € M"™ = M!(n<). Moreover, every natural transformation f, :
M! — M/ is necessarily of this form, as the following easy argument shows. Let
(Y1, -, yn) = fu(x1, .., 2,); by functoriality using maps [i] : 1 — n,1 — i we know
that y; = (y1, -, Yn)[2] = fu(z1, .., 20)[7] = f1(x;). In a more geometric language, we
may say that we used that each “simplex” (y1,..,y,) € M’™ is uniquely determined
by its “O-dimensional faces” y1,...,y, € M'.

In the category-theoretic language, the facts above are expressed by saying that
we get a fully faithful embedding -, : Sets — sSets.

4.2.8. Metric spaces and the filter of uniform neighbourhoods of the main diagonal.
— Let M be a metric space. Consider the simplicial set |M|, : A°® — Sets
represented by the set |M| of points of M defined above, i.e. the functor

ne— {n oo M = {(tsta) €207} = 00"
Now equip |M|.(n<) = |M|* with the filter of uniform neighbourhoods of the main
diagonal. Remarks in §def:filt:metr above about uniform continuity imply that a
map [ :|M'| — |M"| is uniformly continuous iff it induces a natural transforma-
tion f,: M! — M/ of functors A°? — @,

Thus we see that the category of metric spaces and uniformly continuous maps
is a fully faithful subcategory of s®.

In fact, the definition [Bourbaki, I1§1.1,Def.I} of a uniform structure in can be
phrased in the language of s® as follows:

Lemma 4.2.3.1 ([Bourbaki, II§1.1,Def.I]). — A uniform structure (or uni-
formity) on a set X is a structure given by a filter 3 of subsets of X x X such that
there is an object X, : A — ® of s® which satisfies the following properties:

(Vi) (“Every set belonging to U contains the diagonal A.”)
The filter on X,(1<) is indiscrete, i.e. is {|X.(1<)|}-
(Vi) (“If Vel then V-tell.”)
The functor X, factors as

X, : A°° — FiniteSets”? — O

(Vir) (“For each V € Al there exists W e 3 such that W oW cV.”)
for n > 2 |X|s(n<) = |X|" is equipped with the coarsest filter such that the
maps X" — X x X, (x1,..,2,) = (2, 2:41), 0 <i<n, of filters are continuous
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4.2.4. Topological spaces and the filter of coverings. — This example is slightly
technically complicated and should be skimmed at first reading. Let X be a
topological space. Consider the simplicial set |X|. : A — Sets represented by
the set | X| of points of X. Now equip | X|.(1<) = | X| with the indiscrete filter {X };
equip |X1e(2<) = |X|? with the filter of coverings; for n > 2 equip |X|.(n<) = |X]"
with the coarsest filter such that the map X" — X x X, (z1,..,2,) ~ (2, Tit1),
0 <4 < n, of filters are continuous. A verification shows that this construction does
indeed define a simplicial filter X, : s®.

In fact, axioms of topology in terms of neighbourhoods [Bourbaki,I§1.2: (V)-
(Viv), Proposition 2| may be interpreted as saying this construction does define an
object of s®, see [6,3.1.2] for details. We paraphrase [Bourbaki, 1§1.2, Proposition
2] giving the axioms of topology in terms of neighbourhoods:

Lemma 4.2.4.1 ([Bourbaki, 1§1.2, Proposition 2]). — If to each element x
of a set X there corresponds a set M(x) of subsets of X, and there is an object X,
of s® such that
— its underlying simplicial set is | X|,
(Vi) (“The element x is in every set of M(z).”)
| X e (1<) = | X| is equipped with the indiscrete filter { X}
(V1)-(V) ( (Vi) “Bvery subset of X which contains a set belonging to M(x) itself belongs
to N(x).
(V1) “Every finite intersection of sets of M(x) belongs to N(z).”)
{Usex{z} x Uy : U, eN(2)} is a filter on X x X
— | X1e(2<) = |X| % | X| is equipped with this filter
(Viv) (“If V belongs to N(x), then there is a set W belonging to M(z) such that,
for each y e W,V belongs to M(y).”)
for n > 2 |X|s(ns) = |X|* is equipped with the coarsest filter such that the
maps X" — X x X, (x1,..,2,) = (x;,2:41), 0 <i<n, of filters are continuous

then there is a unique topological structure on X such that, for each x € X, M(x)
15 the set of neighbourhoods of x in this topology.

This defines a fully faithful embedding Top — s®; in fact it has an inverse
s® — Top. |[7,§2.6.1].

4.2.5. Linear order and the filter of tails. — Let I be a linear order. Consider
the simplicial set 15 : A°? — Sets represented by the linear order I defined as
the functor
ne s {ng - F} c{(bntn) €T i <o <)

Morphisms are defined similarly to the above. Now equip I£(n<) with the filter
of tails, where we consider I#(n<) equipped with tuples ordered element-wise:
(], ..., th) < (t],...,t0) if for each i ¢, < /.

This defines a functor I5%ls: AP — @, i.e. an object of s®.

In the same way we may define the filter of tails on the simplicial filter repre-
sented by |I| as a set. In more details, let |I|st?ils : A°» — & denote the simplicial
filter whose underlying sset

nsl—>{n5—>[£}=|]|n

Sets

is equipped with the filter of tails generated by, the subsets {(iy,...,i,) : i1 >
00y -y in 200} C |17, for iq € |I].
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The identity map defines an inclusion IS o ||stails in s,

4.2.6. Cauchy sequences and indiscernible sequences. — In §4.1.6) we saw that a
Cauchy sequence is a map a : w —> |M| such that it induces a continuous map
((we)n)tails — M™ from the linear order (w<)™< equipped with the filter of tails
to M™ equipped with the filter of uniform neighbourhoods of the main diagonal.
In the notation of the previous example, it says that a Cauchy sequence is a map
a:w — |M]| such that it induces an s®-morphism |I|st?ls — M, and therefore
also a map Ists —s ),. In fact each morphism of the underlying simplicial sets
of these sfilters is induced by a map w — | M| of sets, and hence we get a definition
of a Cauchy sequence in sP:

— a Cauchy sequence is a morphism I$%ils — )],
—  or, equivalently,
— a Cauchy sequence is a morphism |/[§%ls — M,

We shall later see an eventually indiscernible sequence in a model M is an injec-
tive morphism Ist8ls —s M, to a certain object of s® associated with model M.
This is the observation which started these notes.

4.2.7. A glossary of our notation. — For a natural number k € N, by k< we denote
the linearly ordered set 1 < 2 < .. < k with k elements viewed as an object of A°P; a
morphism 0 : k. — lc in A we denote by [i; < ... <ix] where 1 <iy =0(1) < ...i =
6(k) <1, and [i..j] is short for [i <i+1< .. <j].

By X,,Y,,.. we shall usually denote objects of s® or, rarely, another category
of functors; often XY ... is some mathematical object (a linear order, a model, a
topological or metric space, ...) and X, Y, ..., possibly with a superscript, denotes
the object of s® corresponding to X, Y, ..; the superscript may indicate the nature
of the correspondence. Sometimes we write X, : s® to indicate that X, is an object
of s®.

For X, :s®, by X.(n<) = X(n<) = X,,.1 we denote the functor X, evaluated at
ne; elements of X,(n<) = X(n<) = X, are called (n - 1)-simplicies.

By functoriality a non-decreasing map [i; < ... <ix] : k< — lc and a (I - 1)-
simplex z € X, (lc) = X;-1 determine a (k—1)-simplex z[i; < ... < i ] € Xo(l<) = X1
called a (k - 1)-dimensional face of x, and, sometimes by abuse of language, the
(k = 1)-dimensional face of x with vertices or coordinates i1 < ... < iy.

A k-simplex x € X}, is degenerate iff it is a face of some [-simplex of smaller
dimension [ < k.

A k-simplex of form x[i; < ... <4, <4, < ... <] € X}, is necessarily degenerate,
as it is a face of (k —1)-simplex z[i; < ... < ix] € Xj_1, as seen by equality z[i; <
< <LK = (e[l << <L <Y1 << r <L <k

By {X — Y} := Hom (X,Y) or {X = Y} := Home (X, Y) we denote the set of

morphisms from X : C' to Y : C' in a category C. By {— — Y} or {— =t Y} we
denote the functor C°P — Sets, X — {X gY} hence An_1, {— — NS} and

{— S Ns} denote the (NN - 1)-dimensional simplex (as a simplicial set). By

preorders
{X = Y} := Hom (X,Y") or {X = Y} := Hom, (X,Y) we denote the inner hom
from X : C'to Y : C' in a category C' whenever it is defined.
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Thus {X — Y} denotes the inner hom in the category of simplicial sets, and
thereby

{X = Y} (1<) = {X = Y} = {X — Y} = Homggets (X, Y)
sSets sSets 0 sSets
denotes the set of morphism from X to Y.
We put in quotation marks words intended to aid intuition but formally unnec-
essary; thus formally x € 6 and “d-small” x € 6 mean the same.

5. Appendix. NIP, NOP, and non-dividing.

We sketch definitions of NIP and OP by lifting properties, and discuss NSOP.
For completeness we also include a somewhat different exposition of stability. The
exposition here is sketchy and preliminary.

The category A of finite linear orders has an endofunctor which “shifts dimen-
sion” n —> n+ 1. The category s® = Funct(A°, ®) is a category of functors on
A°P and therefore an endofunctor A — A of category A of finite linear orders
induces an endofunctor s — s®. In topology (6,8§2.1.3-4,84.8-10] the “local”
notions of limit and local triviality are expressed of an endfunctor of A “shifting
dimension” sending n< —> (n + 1)«.

We use this endofunctor of A and somewhat cumbersome modifications of the
topological definitions to define NIP and non-dividing. The lifting property defin-
ing NOP is analogous to the finite cover property defining compactness.

5.1. Stability as a Quillen negation analogous to a path lifting property.
— Now we may reformulate the characterisation of stability that “each infinite
indiscernible sequence is necessarily an indiscernible set” as a Quillen lifting prop-

erty /negation

5.1.1. Simplicial filters associated with linear orders and filters. —

Definition 5.1.1.1 (|13, Istails |[|tails : ). — Let I be a linear order, and let
§ be a filter on |I|.

Let |I[$ be the simplicial filter whose underlying simplicial set is represented by
the set |I], i.e. the functor {— — |]|} : A°? — Sets. The set

Sets

s — 1} = (.t 1) =111

Sets

is equipped with the filter generated by sets of the form &”, € € §.
Let I5% be the simplicial filter whose underlying simplicial set is represented
by the linear order I, (fixme: better? corepresented by I considered as a linear

(15) A morphism i : A - B in a category has the left lifting property with respect to a morphism
p: X ->Y and p: X - Y also has the right lifting property with respect to i : A - B, denoted
i < p, iff for each f: A > X and ¢g: B - Y such that po f = g o there exists h: B - X such
that hoi = f and po h =g. This notion is used to define properties of morphisms starting from
an explicitly given class of morphisms, often a list of (counter)examples, and a useful intuition
is to think that the property of left-lifting against a class C' is a kind of negation of the property
of being in C, and that right-lifting is also a kind of negation. See [Wikipedia,Lifting_property]
for details and examples.
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order?) i.e. the functor {— IS} : A°? — Sets. The set

preorders

{ne s 1} = () I s < 1)

preorders

is equipped with the filter generated by sets of the form
{(t1,..,ty)ee” :t1 <. <tp}, €€F

Let [gtails .= 158 |I|tails .= |I[S for §:= {{x: 2 >4} :i eI} the filter generated by
non-empty final segments of I.

5.1.2. Simplicial filters associated with structures (fixme: models?))— First we
need some preliminary notation. For a formula ¢(x1, .., z,) of arity r and a natural
number n >0, let "M be the n-ary formula

/\ ( /\ Ti, #:*/Eit&xjs *x;, = (¢(mi17“7xir) <_)¢(:L‘j17"’xjv-)))

1<i1<...<ip<n,1<51<...<jr<n \1<s<t<r

The formula ¢™FM(ay, ..., a,) says that each subsequence of a4, .., a,, with distinct
elements is ¢-indiscernible. In particular, ¢"FM() belongs to the EM-type of each
¢-indiscernible sequence.

Definition 5.1.2.1 (M;{¢} 15D, My :sP). — Let M be a model, and let 3 be a
set of formulas in the language of M.

Let M? : A°®» — ® be the simplicial filter whose underlying simplicial set is | M|,
represented by the set of elements of M, i.e. the functor {— P |M|} - AP — Sets.
The set
{n< — |M|} = (1, e a) €7y = M

= Sets
is equipped with the filter generated by the sets ¢™FM(Mn) of all tuples satisfying
the formula ¢" M, for ¢ € X.

Let M, denote MZ for ¥ the set of all parameter-free formulas of the language
of M, and let M[ ) denote M7 for ¥ the set of all formulas of the language of
M with parameters in A. Let MJ denote MZ for X the set of all quantifier-free
formulas of the language of M.

The reader may wish to check that the forgetful functor s® — Top (see
[7,§12.6.3], also [6,§2.2.4])) takes M, into the set |M| equipped with the topol-
ogy generated by sets ¢(M) for all the unary formulas ¢ of M; so to say, it is
the 1-Stone space of M before it has been quotiented by the relation of having the
same type.

To verify that M s Aop — & is indeed a functor to ® rather than just Sets,
it is enough to verify that for each ¢ € X MY Aov — @ is indeed a functor to
® rather than just Sets. We only need to check that maps

[i1 <o iy : M™ — M",  (21,..,2m) — (Tiy, .., T,
are continuous for any 1 <14, < ... <4, <m, i.e. that for each x{,..,2, € M
MEe ¢™ M (2, ) = "M (24, ., 15,)

However, this is trivially true, as ¢"™FEM(x, ..., z,,) says that each subsequence of
X1, ..., Ty, with distinet elements is ¢-indiscernible, and ¢™FM(x;,, ..., ;) says that
each subsequence of x; , ..., x; with distinct elements is ¢-indiscernible. Note that
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it is essential in the argument that we talk about distinct elements, i.e. that the
inequalities in ¢"FM are essential.

5.1.8. Indiscernible sequences with repetitions. — Call a sequence (totally) ¢-
indiscernible with repetitions iff each subsequence with distinct elements is nec-
essarily (totally) ¢-indiscernible. By the definition of ¢™FM  a sequence is ¢-
indiscernible with repetitions iff "M belongs to its EM-type for any n > 0 (equiv.,
for some n > 2r where r is the arity of ¢). Note that we allow that there are
only finitely many distinct elements in a ¢-indiscernible sequence with repetitions,
e.g. (a,b,a,b,a,b,...) is ¢-indiscernible with repetitions for {a,b} an indiscernible
set.
The following lemma is the key observation which started this paper.

Lemma 5.1.3.1. — For any linear order I and any structure M the following
holds.

— An eventually ¢-indiscernible sequence (a;)ier in M with repetitions induces
an s®-morphism a, : [5toils — M;{¢}, and, conversely, each morphism I$tils —s
M is induced by a unique such sequence.

— An eventually order ¢-indiscernible sequence (a;)ie; with repetitions induces
an s®-morphism a, : ||l — Mj¢}, and, conversely, every morphism :
| I]teils — M s induced by a unique such sequence.

Proof. — First note that by Example maps |I| — |M| of sets are into one-
to-one correspondence with morphisms |I|, — |[M|,, i.e. the morphisms of the
underlying simplicial sets |Z], = ||7|©15| and [ M|, = |MI?], and the same is true for
|I5] = [I5t@is| —> | M. = | M. Hence, at the level of the underlying simplicial sets,
any sequence (a;)i; gives rise to morphisms [[£fils| — | M.{(b}| and ||I|t21s] —
|M.{¢}| of the underlying simplicial sets. Therefore, we only need to check what it
means to be continuous for the following induced maps of filters for each n > 0:
|15 (n )| = {(i1, ..., 0p) € [I|" i1 £ ... <y} —> M
1125 (o)l = " — M"

where M™ is equipped with the ¢-EM-filter, and |I|* and (i1, ...,4,) € [I|"* : i1 <
... <1, } are equipped with the filter of tails.

Continuity of {(¢1,...,%,) € [I|* : 41 < ... <i,,} —> M™ means that the preimage of
any neighbourhood, i.e. of " FM(M"), contains a neighbourhood, i.e. the subset
{(i1, .y 0n) € |I|™ ¢ ig < iy < ... < iy} for some iy € I. That is, for each iy < iy <
. iy M E "M (ay,, ... a;,). By definition of ¢"FM | it means that for two any
subsequences iy 5 e Wiy, and g, s oo Wi, 1<h<.<l,<n 1<k <...<k.<n,
with distinct elements of the final segment (a;);si,, it holds that gb(aill sy @y ) €
¢(ai, s ay, ). That is, by definition it means that the sequence (a;)izi, is ¢-
indiscernible with repetitions.

Continuity of |I|* — M™ means that the preimage of any neighbourhood, i.e. of
P EM(M™), contains a neighbourhood, i.e. the subset {(iy,...,i,) € [I|* : ip <
Q1,90 < 41, ...,99 < i, } for some ig € I. That is, for each iy < iy,...,70 < i, M &
" FEM(q;, ... a;,); note that now iq,...,4, are not necessarily either distinct or
increasing. That is, for each ig < iy < ... <4,y M E ¢"FM(qa,,, ..., a;, ). By definition of
@™ EM it means that for two subsequences Qs vy @y, AN Qg oo, @y Wit distinet
elements of the final segment (a;);s;,, it holds that qﬁ(aill, N gzﬁ(aikl, gy ).
This is exactly the definition of being order ¢-indiscernible with repetitions. [
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5.1.4. Cauchy sequences: a formal analogy to indiscernible sequences. — This is
formally unnecessary but might help the reader’s intuition.

Recall that with a metric space M we associate its simplicial filter M, whose
underlying simplicial set | M|, is represented by the set of elements of M, and where
we equip |M|* with the filter of e-neighbourhoods of the main diagonal generated
by the subsets, for € > 0

{(@1,...,2,) : dist(z;,z;) <efor 1<i<j<n}

This lemma establishes a formal analogy between Cauchy sequences and indis-
cernible sequences with repetitions: they both are defined as in s® as morphisms
from the same object associated with a linear order.

Lemma 5.1.4.1. — For any linear order I and any metric space M the following
holds.

(i) A sequence (a;)ier in M induces an morphism ao : |I|s — |M|. of sSets,
and, conversely,every morphism |I|, — |M|, corresponds to a unique such
sequence

(ii) A Cauchy sequence (a;)ie; in M induces an s®-morphism a, : [£19s — M,
and, conversely, every morphism I5teils —s M corresponds to a unique
such sequence.

(iii) A Cauchy sequence (a;)ier in M induces an s®-morphism a, : |I|L%s — M
and, conversely, every morphism |I |l — M is induced by a unique such
sequence.

Proof. — (i): A map a : |I| — |M] of sets induces a natural transformation of
functors f, : If — |M]|,: for each n > 0, a tuple (i; < ..,< 4,) € I5(n<) goes
into tuple (ag,,...,a;,) € |M|* = |M|s(n<). Now let us show that every natural
transformation a, : IS — |M]|, is necessarily of this form, by the following easy
argument. Let (y1,..,yn) = fu(x1,..,2,); by functoriality using maps [i] : 1 —
n, 1~ i we know that y; = (y1,..,yn) [?] = fu(21, .., 2,)[1] = f1(z;). Finally, use that
for any yi,..,y, € |M|o(1<) = |M] there is a unique element g € |M|.(n<) = |M]|?
such that y; = g[i]. In a more geometric language, we may say that we used the
following property of the simplicial set |M]|.: that each “(n-1)-simplex” (y1,..,Yn)
is uniquely determined by its “0O-dimensional faces” vy, ...,y, € M.

(ii): We need to check what it means to for the map f, : I$(n<s) — M" of
filters to be continuous. Consider n = 2; for n > 2 the argument is the same.
Continuity means that for each € > 0 and thereby “e-neighbourhood ¢ := {(z,y) :
x,y € M,dist(z,y) < €} of the main diagonal” there is N > 0 and thereby a “N-
tail” neighbourhood & := {(7,7) e wxw: N <i < j} such that a(d) c ¢, i.e. for each
j >i> N it holds dist(a;,a;) <e.

(iii): We need to check what it means to for the map f, : |[I|* — M" of
filters to be continuous. Consider n = 2; for n > 2 the argument is the same.
Continuity means that for each € > 0 and thereby “e-neighbourhood ¢ := {(z,y) :
x,y € M,dist(x,y) < €} of the main diagonal” there is N > 0 and thereby a “N-tail”
neighbourhood & := {(7,j) € wxw : 4,7 > N} such that a(d) c e, i.e. for each 7,5 > N
it holds dist(a;, a;) <e. O

5.1.5. Stability as Quillen negation of indiscernible sets (fixme: better subtitle..)—
Let T = |{pt}|s denote the terminal object of the category s®, i.e. “the simplicial
set represented by a singleton equipped with indiscrete filters”: for any n > 0
T(n<) := {pt}, and the only big subset is {pt} itself.
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Proposition 5.1.5.1 (Stability as Quillen negation)
Let M be a model, and let ¢ be a formula in the language of M. Let I be a
linear order. The following are equivalent:

(i) in the model M, each infinite ¢-indiscernible sequence is necessarily a ¢-
indiscernible set
(i) in the model M, each eventually (possibly finite!) ¢-indiscernible sequence is
necessarily an eventually ¢-indiscernible set
(ii") in the model M, each eventually (possibly finite!) ¢-indiscernible sequence
with repetitions is necessarily eventually order ¢-indiscernible with repetitions
(iii) the following lifting property holds in the category s®:

].Stails _ |I|iail5 p; M.{¢} T
i.e. the following diagram in s® holds:

[.Stails , M.{¢}

| |

|[|£ails s T

Proof. — (i)<>(ii) is obvious and well-known.

(ii") = (ii) is trivial so we only need to prove (ii) == (ii): Consider an eventu-
ally ¢-indiscernible sequence with repetitions. Take a maximal subsequence with
distinct elements. First assume it is infinite. Then it is eventually ¢-indiscernible,
hence eventually order ¢-indiscernible by (ii), hence the original sequence is even-
tually order ¢-indiscernible with repetitions.

So what happens if there are only finitely many distinct elements Call this
sequence (a;);es. Pick an initial segment (a;);c;, of the sequence which contains
all the elements of (a;);; which occur only finitely many times; then in the corre-
sponding final segment (a;);;, each element occurs infinitely many times whenever
it occurs there at all. Therefore any finite subsequence of that final segment oc-
curs there in an arbitrary order, hence (a;)ii, i ¢-indiscernible iff it is order
¢-indiscernible.

(iii) == (ii’): Let (a;);es be an eventually ¢-indiscernible sequence with repeti-
tions. By Lemma it induces an s®-morphism a, : [5%ils — M By the
lifting property it lifts to a s®-morphism a : [I[t2ls — M By commutativity
they both correspond to the same map of the underlying simplicial sets, i.e. to the
same sequence (a;)is. Again by Lemma , this sequence is eventually order
¢-indiscernible with repetitions.

(ii") = (iii): Let a. : I£%@ — MI? be the s®-morphism corresponding to
the lower horizontal arrow. By Lemma [3.3.1.1] it corresponds to an eventually
¢-indiscernible sequence (a;);; with repetitions. By (ii’) this sequence is also
eventually order ¢-indiscernible with repetitions. By Lemma|3.3.1.1|it corresponds
to an s®-morphism |/[t2% — M as required. O

(16)We remark that in category theory it is often important that things work in a “degenerate”
case, such as, here, the case of a ¢-indiscernible sequence which has only finitely many distinct
elements. Note that we would not have been able to write the lifting property if not for this
set-theoretic argument.
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5.1.6. NIP as almost a lifting property. —

Lemma 5.1.6.1 (NIP as almost a lifting property)
Let M be a structure. Let I be a linear order. The following are equivalent:

(i) in the model M, for each be M, each eventually indiscernible sequence (over
@) is eventually ¢(—,b)-indiscernible

(i) in s® each injective morphism I£1%s —s M, factors as 151 — MEOD
M,, i.e. the following diagram holds:

1L —— D)

| ]

].Stails ~(inj)— M.

(iii) in s® each injective morphism wstes —s M, factors as wst®s —s M, oD __,

M,, i.e. the following diagram holds:

1 —— ppEOn

| ]

w.stails —(inj)— M.

Proof. — (i)<>(ii): Both the bottom arrow and the diagonal arrow |[5t2ils| —
| MECD| = M| correspond to the same map a : |I| —> |M], i.e. a sequence (a;)ies of
elements of M. Thus, we only need to check continuity. Injectivity and continuity
of the bottom arrow Ist?ils —s M, means it is an eventually indiscernible sequence
with repetitions. Continuity of the diagonal arrow [5tails —s ME® means it is
an eventually ¢-indiscernible sequence with repetitions for any formula ¢ € L(M)
with parameters in M. This is exactly (i).

(ii)«>(iii): follows from compactness. O

However, note the diagram (ii) may fail for a non-injective morphism. Indeed, a
sequence (a,b,a,b,...) where (a,b) is an indiscernible set, represents a continuous
map Istls — M, . In Appendix § we slightly modify the notion of the EM-filter
to take care of this “degenerate” case, and define NIP as a lifting property

| — I.stails % M.L(M) — s M,

Later we also reformulate as a lifting property the characterisation of NIP using
average/limit types.

5.1.7. Simplicial Stone spaces. — Let M,/ A denote the simplicial Stone space of
types over A, i.e. the simplicial filter M, quotiented by the relation of having the
same type over A. Note that in all our characterisations above we could have
used M,/A rather than M,. We also note that from a certain category-theoretic
point of view it is somewhat more interesting, as its underlying simplicial set is
not represented.

We use these spaces to reformulate non-dividing in a diagram-chasing manner

in Appendix

5.2. NIP and limit types as Quillen negation. — To define NIP in terms
of limit types, we need to introduce the shift endofunctors of A and thereby s®,
and shifted models. We also need to modify the notion of EM-type and make it
not symmetric. We do so now.



44 MISHA GAVRILOVICH

5.2.1. The “shift” endofunctor [+oo] : A — A “forgetting the last coordinate”.
— Let us define the “shift” endofunctor of A°P “forgetting the last coordinate”.
Let [+o0] : A —> A denote the shift by 1 adding a new maximal element, which
is kept fixed by the morphisms. In notation, the endofunctor [+oo] sends the
linear order ne € Ob A into the linear order (n + 1)< € Ob A°, and a morphism
f : me —< ne into the morphism f[+o0] : (m + 1) — (n + 1)< defined by
f[+oo](m+1)=n+1, and for all 1 <i<m f[+o00](i) = f(7). The endofunctor
is equipped with a natural transformation [-oo] : [+00] = id : A% — A°P,
[1<2<..<n]:(n+1)c — n..

For a X, : s® a simplicial filter, the morphism X,[+o0] =) X, will be partic-

ularly useful to us.
To gain intuition, one may want to consider the example of a represented set.
The shift endofunctor takes a represented sset

{——>M}:(M,M><M,...)

Sets
into

{—?M}O[H] = (M x M, MxMxDM,...)
equipped with a natural transformation ““forgetting the first coordinate”: M x

M — M, (x1,72) = 1, and M x M x M — M x M, (x1,72,73) —> (21,72),...

5.2.2. Completeness of a metric space in terms of the shift endofunctor. — Re-
call that, for a metric space M, its simplicial filter M, is |[M|, where we equip
|M|™ with the filter of e-neighbourhoods of the main diagonal: a subset is big (a
neighbourhood) iff for some € > 0 it contains all tuples of diameter < .

Proposition 5.2.2.1. — A metric space is complete iff either of the following
equivalent conditions holds:

(iv") the following lifting property holds:
L—> It o M, o[+o0] — M,
(v") the following lifting property holds:

[.stails _ (I L {+oo})ftailsl_l{+oo} P M. — T

Proof. — (iv’): First consider the level of underlying simplicial sets. To give a
map |[I{| — |M,] is to give a map a: |[I| — |M| of sets. As a simplicial set,
[Mloo[+oo] = || [M]sx {ac}
Qoo €| M|
is the disjoint union of connected components |M|sx{a e}, Goo € |[M|. The sset |I215]
is connected, and thus any map f, : [It25| — |M]|, o [+o0] maps it into the single
connected component, as the following argument shows. For any i < j € |I|,(1<)
there is a simplex (i < j) € |[I]4(2<) such that ¢ = (i < j)[1] and 5 = (i < j)[2].
Consider the image fo_(i < j) = (z,y,2) € [M x M x M|. By functoriality fi_(i) =

(TFIXME: FIXME:, I find notation below with +00 somewhat more telling, but i suppose it is
also confusing...
[+o0]: (1<...<n) — (I<...<n < +00)

and a morphism f: m¢ —>< ng into the morphism f[+o0]: (m + 1) — (n + 1)< defined by

i ([+1]f)(+00) = +oo; ([+1]f)(i) =1
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fo (i < J)[1] = (z,2) and fi1.(j) = fo. (i < j)[2] = (v, 2) lie in the same component
of the disjoint union. Restricted to any component of the disjoint union, the map
|M|s x {@deo} —> |M]. is an isomorphism. Hence, the diagonal arrow

105 — | M]s 0 [+00]

corresponds to a map |I| — |M x M|, i —> (a;, aeo) for some ao, € |M|.

Continuity of this map means that for each neighbourhood {(z,v) : dist(z,y) <
€}, its preimage {7 : dist(a;, @)} contains a final segment of 7. That is, G is the
limit of a;’s.

Continuity of the bottom map I — M, means the sequence is Cauchy.
Indeed, it means that for each neighbourhood {(z,y) : dist(z,y) < €}, its preimage
{(i < j):dist(a;,a;)} contains all pairs with big enough elements.

(iv’): by a similar diagram chasing argument. O]

Thus we saw that [+oo] : s& — s® endofunctors allows us to talk about limits
in metric spaces. Unfortunately, adapting this reformulation to talk about average
types and NIP requires some tweaks. We proceed to do so now.

5.2.3. “Shifted” structures. — With NIP working locally becomes a bit cumber-
some, and so we state the definition globally for all the formulas together.

First we need some preliminary notation For a formula ¢(x1,..,z,) of arity
r and a natural number n >0, let ¢"EM be the n-ary formula

/\ ( /\ T, ¥ xis+l&xjs Fljy — (¢($i17 "axir) < ¢($j17 "73:]})))
1<i1<...<ip<n,1<g1<...<jr<n \1<s<r

The formula ¢"FM'(ay, ..., a,) says that each subsequence of a4, .., a, with con-
sequitive elements being distinct is necessarily ¢-indiscernible, and in particular,
all elements of the subsequence are distinct. (This is the difference with ¢™FM: for
distinct a, b, ¢ the formula ¢™FM (a, b, a, c) necessarily fails for ¢(z,y) being x =y,
whereas ¢"®M(a, b, a,c) is true.) In particular, ¢"FM'() belongs to the EM-type
of each ¢-indiscernible sequence.

For a formula ¢(x1,..,2,41) of arity r + 1 and natural numbers n > 0, let ¢ 1-EM’
be the (n + 1)-ary formula

/\ ( /\ xis * xis+1&xjs # xjs+1 = (¢($i17 "7xi7*7xn+1) < ¢($j1, " xjr’ In‘*'l)))
1<ii<...<ir<n \1<s<r
1<j1<...<grsn
Definition 5.2.3.1 (M[+oo],:sP). — Let M be a structure.

Let M[+o0], denote the simplicial filter whose underlying simplicial set is |M|, o
[+o00]. The set

(|M|s o [+00]) (n<) = Mo ((n+1)<) = |M|™*!

is equipped with the filter generated by sets ¢™1-EM (M+1) for arbitrary formula
¢ in the language of M.

The verification that this functor M[+oco], : A°? — & is indeed well-defined is
the same as in Definition B.1.2.11

(IB)FIXME: this notation is rather poor and misleading. We do need two notions, though,
for the characterisation of stability fails with these “unsymmetrical” filters... they talk about
indiscernible sequences without consequitive repetitions.
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5.2.4. NIP as Quillen negation. — Now we come to our main observation about
NIP. Note that the filters on M, we consider here are different from those used to
characterise stability and lack their symmetry.

Let [gtails .= 158 |I|tails .= |I[S for §:= {{w: 2 >4} :i eI} the filter generated by
non-empty final segments of I.

Let I u{+oc0} denote the linear order I with a new maximal element +oco added;

Let (I U {+oo})sltails = 5% with & := {{x: 2 > i} :i e I} the filter generated
by non-empty final segments of I. Let (I U {+oco})stails = [5% with §:= {{z: 2 >
i}u{+oo} :i €I} the filter generated by final segments of I L {+o0}.

Lemma 5.2.4.1 (NIP). — Let M be a structure. Let I be a linear order. The
following are equivalent:

(i) in the model M, for each be M, each eventually indiscernible sequence (over
@) is eventually ¢(—,b)-indiscernible
(ii) in the model M, the filter of final segments of any indiscernible sequence has
a complete average type (firme: say correctly)
(iii) in s® the following lifting property holds:

i_>[.£tails % M.L(M) — M,
.e. 1 s® the following diagram holds:
1L —— M)
| |
].Stails/4> M.
(iv) in s® the following lifting property holds:
{1}e — I3 4« M[+00], — M,

{1} —— M[+ool.
| ]
[.stails/ N M.
(v) in s® the following lifting property holds:

It | {00}, — (I u{+oo})S et f, — 7

Tu {+oo})fl—tails *;{ M,

| -~
(I.LI{-I—OO})StailS )T

FIXME: FIXME:, I'm using slightly different notation in the diagram and
the lifting property. which is better ¢

(I9FIXME:: the point of this older notation below was to show explicitly the underlying simpli-
cial set.... I guess we should abandon it, it’s not really helpful. equivalently in older notation,

{—s—>I|_|{+oo}S} —>{—s—>I|_|{+oo}S} <« My —T
preorders cofinal in I preorders cofinal
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Proof. — (i)<>(ii) is by definition of the average type.

(i) e (iii): As [MID| = |M,]|, the diagram trivially holds at the level of the
underlying simplicial sets. Recall by Fixme that a morphism I{l| — |M,]
of sSets is the same as a map |I| — |M| of sets. Thus the bottom horizontal arrow

It —s M, is a sequence (a;)is, and its continuity means it is an eventually
)

indiscernible sequence over @. Similarly, the diagonal arrow Itails —s ME s an
eventually indiscernible sequence over M.

(ii)«<(v): In (v), notice we may ignore arrows to T. Now consider first the upper
horizontal arrow I 11{+00}, —> M,. It corresponds to a map |I|u{+o00} —> | M|
of sets, i.e. a sequence (a;) e, G400- For clarity of exposition assume that all elements
of the sequence are distinct. A neighbourhood in 5%l is defined as a subset
containing all increasing tuples of large enough elements of I; thus continuity of
this map places no restrictions on a;. and just means that for every EM-formula
is satisfied by such a subset, i.e. for each ¢ the sequence (a;); is eventually ¢-
indiscernible. Now consider the diagonal arrow (I U {+oo})s™! =} _ pr - By
commutativity it corresponds to the same sequence (a;)ici, 0100 However, now
the neighbourhoods are defined differently: they are larger and have to include
+o0: namely, a neighbourhood in (7 U {+oo})ftaﬂsu{+°°} consists of all increasing
tuples of large enough elements of I L {+oo}. In particular, for each (r + 1)-ary
formula ¢, for all elements i; < ... <4, of I large enough, M = ¢(a;,, ..., 4, ,Gro0) <
&(@iyy ..y Ary0100). This means exactly that either ¢ or —¢ belong to the limit
type of the sequence. This finishes the proof that (v) == (ii). To check the
converse, we still need to check that the lifting property holds if we drop the
assumption that all elements of the sequence are distinct. However, by continuity
we know that increasing tuples of large enough elements satisfy ¢™EM for phi
being x; = x5 & x5 = x3, and this implies the sequence cannot have subsequences
of the form a,b,a with b # a by definition of ¢"FM'. An elementary combinatorial
argument now finishes the proof, by showing the sequence is either eventually
constant, or it reduces to the previous case of distinct elements. (fixme: say
nicely..)

Let us analyse (iv).

The bottom horizontal arrow picks a sequence (a;);er; by the argument above,
we only need to consider the case when all elements are distinct. In this case it is
eventually indiscernible over @, as we already know. (fixme: say nicely).

As a simplicial set, M[+o0], is the disjoint union of copies of M, indexed by M,
i.e.

|M[+o00]e| = Uapenr| M| x {aeo }

The sset I, is connected (as a simplicial set), thus it has to map into the same
connected component, and thereby the diagonal arrow pick an “end” element
a4 € M and a sequence (a});e;.

Commutativity of the lower triangle means it is the same sequence (a;); as
picked by the bottom horizontal arrow, i.e. a; = a;,7 € I. Thus, on the level
of simplicial sets, the diagonal arrow always exists, and we only need to check
continuity.

Finally, notice that {a. } has the limit type of (a;);: for any formula (r+1)-ary
¢() there is ig € I such that for any distinct elements a;,, ..., a;,, ig < i1 < ... < i,
and aj,, ..., a;, o < J1 < oo < Jpy Oy ooy iy Qo) <> G(ajy, -0, 04, Ao ). 1.€. for any
distinct elements a;,, ..., a;,, 1o < i1 < ... < ip, the sequence a;,,...,a;, 18 O(=, G1o0)-
indiscernible. O
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5.2.5. NIP and completeness have somewhat similar definitions. — A lifting prop-
erty reminiscent of Lemma [5.2.4.1iv)-(v) defines completeness for metric spaces
(and, more generally, uniform structures).

Recall that, for a metric space M, we equip M™ with the filter of e-neighbourhoods
of the main diagonal: a subset is big (a neighbourhood) iff for some € > 0 it contains
all tuples of diameter < ¢.

Proposition 5.2.5.1. — A metric space M is complete iff either of the following
equivalent conditions holds:

(iv") the following lifting property holds:
1L — Il o M, [+00] — M,
(v") the following lifting property holds:

I.Stails _ (I L {+oo})ftailsl_l{+oo} P M. T

Proof. — Indeed, both in (iv’) and (v'), a map to M, is a Cauchy sequence, and
the diagonal map picks its limit. In (v’), the image of +oo is the limit. ]

5.3. Non-dividing. — Simplicial Stone spaces allow to rewrite as a lifting
square the reformulation of non-dividing via indiscernible sequences. This demon-
strates an important difference between the simplicial Stone spaces and the objects
M, associated with models we have been using so far: the underlying simplicial
set of a simplicial Stone space is non-trivial (as a simplicial set).

5.3.1. Simplicial Stone spaces. — The definitions of M, and M[+oo], we have
to use now are slightly different from the ones used above, and follow Defini-
tion BTl

Recall that in Definition M, is defined as a simplicial set |M|, where | =
M.(ne)| = |[M|™ is equipped with the filter generated by the sets of Y-indiscernible
n-sequences with repetitions which can be extended to an indiscernible sequence
with repetitions with at least distinct N elements, where ¥ varies through finite
sets of formulas in the language of M and N varies through arbitary natural
numbers.

Let M[+o0], be defined as the simplicial set |M|,0[+00] where | = M,o[+o0](n<)| =
|M|(n + 1) is equipped with the filter generated by the sets of (n + 1)-sequences
(a1, .., an, G100 ) With repetitions such that there is a ¥-indiscernible sequence (ay, .., @y, Gpi1, -+, AN+
with at least NV distinct elements and Y-indiscernible over a,. with repetitions.

Recall that by M./A we denote the simplicial Stone space of types over A,
i.e. the simplicial filter M, quotiented by the relation of having the same type over
A. The meaning of M[+co],/A is similar.

First observe that

— to give a type p = tp(a/A) is to give a s®-morphism {pt}, — M,/ A.

— to give a type p = tp(a/Ab) is to give a s®-morphism {pt}, — M[+o0]./A.

Indeed, a morphism {pt} — M,/A is the same as an element of M,/A(1.)
which is the Stone space of 1-types over A; a morphism {pt} — M[+o0],/A is the
same as an element of M[+o0],/A(1<) which is the Stone space of 2-types over A.

5.3.2. Non-dividing. — We now rewrite as a lifting square the reformulation of
non-dividing via indiscernible sequences.

Proposition 5.3.2.1. — The following are equivalent:
1. tp(a/Ab) does not divide over A.
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2. For any infinite sequence of A-indiscernible I starting with b, there exists
some a’ with tp(a’'[Ab) = tp(a]Ab) and such that I is indiscernible over Aa'.

3. For any infinite sequence of A-indiscernible I starting with b, there exists I’
with tp(I'] Ab) = tp(I/Ab) and such that I is indiscernible over Aa.

4. the following diagram holds:

tp(afAb)

(1. M[+o0]./A
_ 7
J B /EII’/ l[+oo]
Is== I M,/A

Proof. — 12«3 is [Tent-Ziegler, Corollary 7.1.5].
Deciphering (4) gives (3), as follows. (4) = (3): Let I = (b;); be a sequence as
in (3). It induces The bottom horizontal arrow I — M,/A. The top horizontal

arrow {(b,a)}s RACLON M[+oc]s/A represents the type tp(a/Ab) and thus the

only point 1 € {1}(1.) goes into the type of a pair (V',a’) € M x M = M[+o0]4(1<)
of type tp(ba/A). By assumption [ starts with b, hence the square commutes.
The diagonal arrow I — M[oo],/A represents a sequence of pairs (b, a”); for
some a”. Commutativity of the lower triangle means that tp(b//A) = tp(b;/A) for
all 4, i.e. tp(I'JA) = tp(I/A). Commutativity of the upper triangle means that
b" " and b,a have the same type over A, i.e. tp(b”/Aa") = tp(b/Aa). Continuity
of I — MJoo]./A means the sequence (b”); is indiscernible over Aa”, i.e. is
required in (3).

(3) = (4): Indeed, the top horizontal arrow {(b,a)}. M[+00],/A rep-
resents the type tp(a/Ab). The bottom horizontal arrow IZ — M,/ A represents a
sequence which extends to an infinite indiscernible sequence I over A. Commuta-
tivity of the square means [ starts with an element of tp(b/A). Let I’ = (b}); and
a’ be as provided by (3). It means that the sequence (b,a’); induce a diagonal
arrow [ — M[oo],/A. Commutativity of the upper triangle means that (bf,a’)
and (b,a) have the same type over A, which holds by (3). Commutativity of the
lower triangle means that tp((b');) = tp((b;);), again provided by (3). O

tp(a/Ab)
_

5.4. Order properties: NOP and NSOP. — We show how a particularly
simple-minded transcribing of a definition of OP leads to a reformulation of NOP
as a lifting property. We then discuss a simplification of this lifting property and
its relationship to NSOP and how it reminds of compactness.

5.4.1. A simple-minded transcription of OP. — Now we use the Order Property
to give an example of how to “transcribe” a definition into s®-language. Our
“transcription” here is particularly simple minded and mechanistic, and it is rather
a miracle that it works.

Let M be a model. Let us now show how to rewrite the order property if the
language of s®. Recall a formula ¢(-,-) has the order pmpert in a model M
iff there exist an infinite sequence a; € M, i € w such that

(OPY(¢)) ¢(ai,a;) iff i< j
The definition mentions M and ¢, thus we assume that an s®-reformulation
should mention Ml

(200 FIXME: this is not a standard definition, should be a;, bj...
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Now note that this definition considers a linear order (w,<), and thus an s®-
reformulation should probably mention some s®-object associated with a linear
order: we already know three wg,wstils or wi. We should probably pick the
latter as it is model-theoretic and is the object associated with the linear order
(w,<) as a structure.

Also note that OP!(¢) ignores elements of M not occurring in the sequence.
This suggests us we should adjoin to w a new element » and consider filters which

“ignore” *. This leads to the following modification of wis

— the underlying simplicial set is [{*} LU w]s
— the filter on ({*} uw)” = [{*} Uw|s(n<) is generated the set of all sequences
such that the elements of w (i.e. not *) occur in monotone order

{(n1,...ng) e {{xtuw}:n,#x&n;#x = n;<n; forall 1<i<j<n}

Let us denote this simplicial filter as ({*} uw).

Hence, we have two s®-objects, and want to formulate (the full) OP. We consider
the map M — {*}uw sending a; to i for i € w, and everything else into . This map
is surjective, and OP!(¢) for any binary ¢(-,-) implies this map is continuous.
Therefore it occurs to us to reformulate (the full) OP as

— there is a surjective s®-morphism M, — ({*}u w)ﬁs}.

As we will see in Proposition [5.4.2.1] this is indeed equivalent to OP, at least when
say M = M¢4 has elimination of imaginaries. .

Remark 5.4.1.1. — We would like to make a meta-mathematical remark. We
find it must amusing that such a simple-minded transcription produces the right
result, and we think it calls for an explanation. At the very least one should collect
and systematize examples where such a simple-minded, mechanical transcription
produces correct results.

5.4.2. A less simple-minded transcription of OP. — Now let us to a less simple-
minded transcription of OP!(¢) which would give us a proof of our simple-minded
conjecture above.

We may assume that the sequence q; is indiscernible (provided M is saturated
enough), and thus rewrite OP!(¢) in terms of finite indiscernible sequences as:

(OPY(¢)gar) for each i, 7, k € w, the following implication holds:
e (i) if the 3-sequence (a;, a;, ay) is ¢-indiscernible then (ii) the 3-sequence
(7,7, k) is <-indiscernible

This trivially holds if ¢ has the order property. In the other direction, by in-
discernability of (a;) assume that ¢(a;,a;) whenever ¢ < j. Pick i < j < k and
consider the tuple (a;,a;, a;) with two first elements a;, a; permuted. By OP gy it
is not ¢-indiscernible because (7,1, k) is not <-indiscernible. However, by assump-
tion ¢(a;,ar) and ¢(a;,a), and thus indiscernability may fail only if —~¢(a;,a;),
as required by the order property with respect to ¢.

It can easily be checked that (OP(¢$)gas) merely states continuity of the map
M? — ({*}uw)? sending a; to i for i € w, and everything else into *, with respect
to the appropriate filters, namely the ¢-EM-filter on M? and the filter on ({*}uw)?
considered above.

Thus we obtain

Proposition 5.4.2.1. — For a sufficiently saturated model M, say with elimi-
nation of imaginaries, the following are equivalent:
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— M has NOP
— in s® there is no surjection M, —> ({x} Lw)
— the following lifting property holds:

L— M.« L({=) um)¥ — ({s}uw)?

new

Proof. — Recall that an s®-morphism M, — {{x} uw}{* is necessarily induced
by a map |M| — {*} uw. The lifting property says that the image of any con-
tinuous such map is bounded in w; this is equivalent to saying there is no such
surjective continuous map. Arguments preceding the observation establish the
equivalence of the latter to NOP. n

5.4.3. NOP and NSOP. — Let M be a model. Assume that M fails NSOP,
i.e. there is a parameter-free formula ¢(z,y) defining a linear order <, on M.

Let M.{S¢} the simplicial set |M|, equipped with the filter of the ¢-indiscernible
neighbourhood; this is very similar to the object associated with the model M
considered in the language consisting only of the formula ¢(-,-). Explicitly in
terms of the linear order <4 this filter is described as follows: a neighbourhood is
a set contacting all the <4-monotone sequences, both increasing and decreasing.
Evidently, definability of <4 implies there is a surjective s®-morphism

M. — MQ{S¢}

In the same simple-minded way as with OP this leads us to ask whether NSOP
is equivalent existence of such a continuous surjective morphism for some linear
order <.

However, we are only able to show that this condition implies OP and, as we
just saw, is implied by NSOP.

Let us show it implies OP. Indeed, by continuity of

Mo(?’s) - M;{S¢}(3s)

there is a finite set of 1- and 2-ary formulas > such that any X-indiscernible
sequence of length 3 is monotone wrt <.

Let (a1, as,a3) € M be an indiscernible sequence in M. The sequence (as, a1, as)
is not <-indiscernible, hence by continuity it is not ¢-indiscernible in M for some
formula ¢, necessarily of arity 2. That means that ¢(aq,as) & —¢p(az,ar). Now
pick (aq1,as,a3) to be a start of an infinite indiscernible sequence. This shows that
®(-,-) has the order property.

This leads to the following observation:

Proposition 5.4.3.1. — Let M be an infinite model. The following implications
hold:
NOP = (i1)e (i) < (i1)" < (ii)" < (iii)) = NSOP
FIXME: FIXME:: probably it is easy to prove all are equivalent to NSOP.
(i) model M has NSOP.
(ii) there is no linear preorder < on M with infinite chains such that the identity
map id: M, — M= is continuous
(ii)" in s® there is no surjection id : M, — 13 to an infinite structure (I,<)
where < is a linear preorder with infinite chains
(i) in s® there is no surjection id: M, —> ol for an infinite ordinal «
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(ii)” in s® there is no infinite linear order (I,<) and a surjection id: M, —> IZ
where IZ is the simplicial set |I|. equipped with the filter on |I|* = I,(n<) is
generated by the subset of monotone sequences (fixme: skip this item, this
explicit description is more confusing than helpful?)

(iii) the following lifting property holds for each limit cardinal :

J_ _ M. < |_| /8.{S} N aig}
B<a

Proof. — The only non-trivial implication is NOP = (ii)’.

NOP = (ii)": By Ramsey theory there is an infinite indiscernible sequence
such that its image in [ is infinite. Let (a1, a9,a3) € M be a subsequence of such
an indiscernible sequence in M. The sequence (as,a;,as) is not <-indiscernible,
hence by continuity it is not ¢-indiscernible in M for some formula ¢, necessarily of
arity 2. That means that ¢(ay,as) & —¢(az,a1). This gives us the order property.
This finishes the proof of this case. FIXME: TODO: ;;get strict order property if
possible??

-(i1) = =(ii): take < to be the definable linear order on M

-(i1) = =(i1)": take (I,<) = (M, <)

=(#)" = =(ii)": take a surjection IS — a5; it induces an s®-surjection
];{s} N ais}

—(41)" < =(i7)"": this is just an explicit reformulation

(i1)" <> (#ii) the lifting property says that the image of any map M, — ol is
bounded by some /3 < «. Any surjection as in —(#i)” would fails this; in the other
direction, such a map is surjective on its image, which is some infinite cardinal.

O

5.4.4. NSOP,: questions. — Let (I,<) be a preorder and n > 0. Let 15 be the
simplicial set |I|, equipped with the following filter:

— a neighbourhood is a subset containing all sequences which can be split into
at most n monotone subsequences

Note that for n = 1 it holds &% = 185},

TODO 5.4.4.1. — What is the model theoretic meaning of the following ana-
logue of (iii) above 7 Is it related to NSOP,? Find a similar lifting property
related to NSOP,,.

(iii),, the following lifting property holds for each cardinal a:
L, ] ol

B<a

5.4.5. NSOP: analogy to compactness of topological spaces (finite subcover prop-
erty). — Let o denote the ordinal o considered as a topological space with the
initial interval topology (i.e. the open subsets are initial intervals {v : v < g},
B < «). The object o : s® is described as follows: the underlying simplicial set
|a|s is represented by the set {§: § < a} = a, and the filter on |afs(n<) = a® is
generated by the set of all weakly decreasing sequences

{(617 7ﬁn) ea”: 61 2.2 ﬂn}

Note the filter on i is different, and generated by the set of all weakly decreasing
or weakly increasing sequences

{(Br,., Bp)ea™: By 2.2 0, or B <..< [}
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Proposition 5.4.5.1. — The following are equivalent for a connected topological
space X :

— X s compact, i.e. each open cover of X has a finite subcover
— X cannot be represented as an increasing union of open subsets, i.e. there is
no limit ordinal o, open subsets Ug & X such that X =g, Ug and U, & Up
fory<pB<a
— there is no surjection X — o> for a limit ordinal «
— an the category of topological spaces, each map X — o> factors via some
B> — o>, B < a, i.e. the following lifting property holds:
L— X« | |F—a
B<a
— in the category s®, each map X — «3 factors via some 57 — a7, B < a,
1.e. the following lifting property holds:
1L— X< | |8 —aZ

B<a

Proof. — Easy. To see (2)<>(3), take the Up’s to be the preimages of the initial
intervals in a. Note that the lifting property reformulation in T'op but not in
s® essentially uses that X is connected: in s® it is enough that the underlying
simplicial set of X is connected (as a simplicial set). O

6. Appendix. Ramsey theory and indiscernible in category theoretic
language

This exposition is intended for a category-theory minded reader. We formulate
in terms of simplicial sets some of Ramsey theory and the definition of the s®-
objects we associate with models.

6.1. Ramsey theory. — Ramsey theory admits a description in terms of s®.

6.1.1. c-homogeneous simplicies. — Let X, : sSet be a simplicial set, and let a
“colouring” ¢: X.(n<) — C be an arbitrary map.

Say a simplex x € X,(my) is c-homogeneous iff all its hereditary non-degenerate
faces have the same c-colour, where we say that a simplex x € X,(m.) is hereditarily
non-degenerate iff a face x[i; < ... < i,] is non-degenerate whenever 1 < i; < ... <
in <M.

The c-homogeneous simplicies form a subobject of X,. Call a subset of X,(m<) a
c-neighbourhood of the main diagonal in X,(m<) if it contains all the c-homogeneous
simplicies in X,(m<). This notion of a neighbourhood defines the simplicial filter
of c-neighbourhoods of the main diagonal.

Ramsey theory implies that if the set C of colours is finite and a simplicial set
X, has hereditarily non-degenerate simplicies of arbitrarily high dimension, then
there are c-homogeneous simplicies of of arbitrarily high dimension.

Now consider the equivalence relations of having hereditarily non-degenerate
faces being of the same colour:

— x ~. y iff for arbitrary 1< <... <1, <m
o c(z[iy £ ... <iy]) = c(y[i1 £ ... €1ip]) whenever both faces x[i; < ... <4y, ]
and y[i; < ... <1, ] are hereditarily non-degenerate
e z[iy < ... <14,] is hereditarily non-degenerate iff y[i; < ... <i,] is heredi-
tarily non-degenerate.
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Consider the quotient
Ce: Xy — C, OO(”S) = X.(TLS)/ Re

by these equivalence relations. This gives a morphism to the filter of main diagonals
on C, from the simplicial filter of c-neighbourhoods of the main diagonal on X,.

Moreover, we can define the simplicial filter of c-neighbourhoods of the main
diagonal on X, as the filter pulled back by this factorisation map from the filter
of main diagonals on Ci.

6.1.2. Filters associated with models. — Let us not observe that we can apply
this construction to formulas in the language of a structure.

Let M be a structure. Consider an formula ¢(x1, ..., z,) of the language of M as
a colouring ¢ : M™ — {true, false}, and equip the simplicial set |M|, represented
by the set of elements of M with the simplicial filter of ¢-neighbourhoods of the
main diagonal.

For a set of formulas 3, let M denote the simplicial set |M|, equipped with the
filters generated by the ¢-neighbourhoods of the main diagonal for all ¢ € X.

This is a brief description of our key construction, which is defined in Defini-

tion [3.1.1.1] in a set-theoretic language.

7. Appendix. Conclusions and Speculations.

6.1. Topological intuition/vision. — The Categor s® of simplicial filters we
use carries the intuition of point-set topology: |[6,§3] argues that the description
of the intuition of general topology in the Introduction to the book of [Bourbaki]
on General Topology can be understood to apply to s® almost verbatim. s® can
be used as one of “structures which give a mathematical content to the intuitive
notions of limit, continuity and neighbourhood”, but is somewhat more flexible
than the usual category of topological spaces: In s® the notion of limit |[6,84.10,
Ex.4.10.1.1,4.10.2.1,4.11.1.1], a Cauchy sequence [6.,Ex.4.10.1.2], and being locally
trivial [6,§4.8] can be expressed in terms of diagram chasing; these diagrams use an
endomorphism of s® = Func(A°, ®) induced by an endomorphism of A° which
is not available in the category of topological spaces but does play a role in the
category of simplicial sets. In terms of s®, an indiscernible sequence in a model
and a Cauchy sequence in a metric space are morphisms from the same object.
This allows us to modify the s®-diagram expressing expressing the notion of limit
in topological or metric spaces to define average/limit types, and we use this to
define NIP by a Quillen lifting property formally somewhat similar to the lifting
property defining completeness.

Using a combination of simplicial methods and topological intuition one can
write several definitions of spaces of morphisms from one object to another; |[7,83]
gives an example of such a definition which can be used to define geometric real-
isation of a simplicial set. It is tempting to try to define a (model theoretically
meaningful) notion of a space of maps between two models, or, perhaps more
plausibly, the space of indiscernible sequences in a model.

(DWe suggest to pronounce s® as sF as it is visually similar to s® standing for “simplicial
gilters”, even though it is unrelated to the actual pronunciation of these symbols coming from
the Ambharic script. A script rare in mathematics allows us to denote the category of filters by
a single letter ® reminiscent of @, yet avoid overusing letters.


https://mishap.sdf.org/6a6ywke.pdf
https://mishap.sdf.org/6a6ywke.pdf
https://mishap.sdf.org/6a6ywke.pdf
https://mishap.sdf.org/Skorokhod_Geometric_Realisation.pdf
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The definition of being locally trivial is a pull-back diagram in s® which is for-
mally meaningful for any object (nee [7,§3.4] for a sketch and for details [6,§2.2.5,84.8]).
Does it have model theoretic meaning for generalised Stone spaces 7

The relation of the simplicial Stone space to the usual Stone space of a model
is similar to the relation of the uniform structure to the topological structure
associated with a metric; there is a forgetful functor s — Top (cf. [7,§12.6.3], also
[6,82.2.4]) which takes M, as defined in Appendix into the usual 1-Stone
space of M (after taking the quotient). Hence one may ask whether the usual
machinery of Stone spaces, e.g. Cantor-Benedixon ranks, meaningfully generalises
to s®.

6.2. Geometric vision. — QOur approach shows a formal analogy between indis-
cernible and Cauchy sequences: both are morphisms from the same object, one to
(the generalised Stone space of) a model and one to the uniform space (considered
as an object of our category). Taking the limit of a sequence in a metric or uni-
form space corresponds to a certain lifting property involving an endomorphism
of s®; a modification of this lifting property allows to talk about limit types and
the characterisation of NIP in terms of average types.

6.3. Homotopy vision: a speculation. — s® has two full subcategories with ho-
motopy theory (the category of topological spaces, and the category of simplicial
sets), and thus one may hope it is possible to develop homotopy theory for s®
itself. It is possible to define a model structure on s®, say by extending the model
structures on these two subcategories ?

We now sketch a couple of analogies between homotopy theory and model theory
produced by wishful thinking.

A path v : [0,1] — X in a metric space is also a morphism from a linear
order (viewed as object of s® in some way than for a Cauchy sequence (|7,§2.4.2],
[6,84.3-4])). Unfortunately, while it is formally correct to consider morphisms from
the same object to a model, it does not seem a good notion. Still, it is tempting
to speculate about the possibility of analogy between indiscernible sequences and
paths. The following analogies come to mind but we do not know how to make
sense of them.

What is a “homotopy” between indiscernible sequences 7 A homotopy between
paths is a family of paths “compatible” in some way. Arrays or trees of indiscernible
sequences (FIXME: FIXME:, what’s a correct way to phrase this?) in NTP-type
(No Tree Properties) properties come to mind: perhaps to be thought of as families
of ”compatible” indiscernible sequences. Or perhaps, if one is to entertain the
idea that the failure of a tree property is analogous to failure of having every loop
contractible, then two branches of an indiscernible tree or array demonstrating
failure of a tree property represent two paths which cannot be homotoped into
each other.

What are the “ends” of an indiscernible sequence ? Nothing comes to mind but
types of finite tuples in it.

What are “connected components” of a model ? There is a definition (§, also
16,84.7]) of 7y in the category of topological spaces in terms of Quillen negations,
and it can be interpreted in s®. We would think this definition would be too
straightforward to give interesting results for models.


https://mishap.sdf.org/Skorokhod_Geometric_Realisation.pdf
http://mishap.sdf.org/6a6ywke/6a6ywke.pdf
https://mishap.sdf.org/Skorokhod_Geometric_Realisation.pdf
http://mishap.sdf.org/6a6ywke/6a6ywke.pdf#24
https://mishap.sdf.org/Skorokhod_Geometric_Realisation.pdf
http://mishap.sdf.org/6a6ywke/6a6ywke.pdf#24
https://mishap.sdf.org/6a6ywke.pdf
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8. Preliminary Appendix 8. Dechypering Question [3.5.1.1

With very limited success, below we try to dechyper the notation of Ques-
tion |3.5.1.1] and describe as much as possible in the model theoretic language the
class of (stable, as we will see) models M such that

~ M, —T e {(Ci+,%)e —TI".

Everything here is very preliminary.

8.1. Dechypering Question [3.5.1.1)(i). — Call a model M stable iff in M
any countable infinite indiscernible sequence is necessarily an indiscernible set.

Call a morphism A, — B, anti-M iff each s®-morphism A, — M, factors as
A, — B, — M,, i.e. in notation the following lifting property holds:

Ay, — By, <« My — T
In this terminology, Proposition [3.3.2.1{(iv) says that a model M is stable iff

morphism s®-morphism w, — |wl|. is anti-M.

Lemma 8.1.0.1. — The following are equivalent:

(i) Mo —T € {(C;+,%)e — T}"
(ii) M is stable, and in s® each anti-(C;+, *)-morphism is anti-M

At the moment I do not see how to simply (ii) further. What we can do, however,
is to write from it means for (ii) to hold a particular class of morphisms.

8.1.1. Extending EM-representations. — Here I describe a class of s®-morphisms
associated with structures and the notion of EM-representation. In the next sub-
section I describe a more general class of morphisms.

Let J contain (as substructure) a reduct of a substructure of J. This corre-
sponds to an s®-morphism I¥ — J¥. Let us slightly generalise the notion of
EM-representation:

Let T and M be structures, and let ¥1 and X,; be sets of formulas in
the language of T and of M, resp. We say that a structure I (35, X))
EM-represents a model M with a function f :|I| — |M]| iff for each
n > 0, and each finite subset T c 3, of formulas in the language of M
there exists a finite subset A c ¥1 of formulas in the language of I such
that
— the image under f : |I| — |M] of each A-indiscernible sequence in I
is necessarily also T-indiscernible in M, i.e. for each A-indiscernible
sequence (a;) in I its image (f(a;);) is T-indiscernible in M

Lemma 8.1.1.1. — It holds (i) = (ii)py where
(i) My — T € {(C:+,%)e — T} (as above)
(i) s M is stable, and if any (X1, Lacr) EM-representation of (C;+, *) by I extends
to an (X3, Lacr) EM-representation by J, then any (X1, Ly ) EM-representation
of M by 1 extends to an (X3, Ly ) EM-representation by J.

8.1.2. Filters on Cartesian powers of a set. — Let A be a set, and for each 0 <
n € w let §, be a filter on A™ such that

— for each m,n > 0, weakly increasing sequence 1 < ¢; < ... <4, < m, for each
neighbourhood ¢ € §,

{(t1, .., tm) € A™: (tiy, .. ty,) €€} € Fm



SHELAH’S CLASSIFICATION THEORY AND QUILLEN’S NEGATION 57

(Such a sequence of filters gives rise to a simplicial filter |A[$ : AP — & defined
as follows:
- |A|§(n£) = Sn
— for each weakly increasing sequence 1 <4y < ... <1, < m, the continuous map
of filters [iy < ... <i,] : [E(m<) —> I£(ng) is given by

(th ~~utm) > (tiu ""tin)

The condition on the filters §,, means exactly that these maps are continuous.)
Let &,, on A", n > 0 be another sequence of filters with the same properties such
that §,, is finer than &,, for each n > 0. (This means there id : |[A| — |A| induces
a morphism |A[§ — |A|®).
Say that (A;F; &) have M-extension property iff any function f: A — |M| such
that
— for each ¢ in the language of M for each m > 0 there is a neighbourhood
e € §, such that for each (ay,...,a,) € € the sequence f(ay),..., f(a,) is ¢-
indiscernibld®?)] with repetitions
it holds that

— for each ¢ in the language of M for each n > 0 there is a neighbourhood
¢ € 8, (sic) such that for each (ay,...,a,) € € the sequence f(ay),..., f(ay) is
¢-indiscernible with repetitions

Lemma 8.1.2.1. — It holds (i) = (ii’) and that (iii)<=>(iii’) where

(i) My — T € {(C;+,%)e — T} (as above)
(iii) M is stable, and for each (A;§;®) as described above

A — A% 4 (C;+,%), —> T implies AS — A® < M, — T

(iii") M is stable, and for each (A;F;®) as described above,
if (A; ;) has the (C; +, *)-extension property, then (A;§;®) has the
M-extension property

In fact in Lemma above there is no need to consider &,, to be defined on the
same set as §,, n > 0.
Let B be a set, and let filter &,, be on B" satisfying the same properties as
above. Let 1: A — B be a map of sets.
Say that (A; B;§;®) has M -extension property iff any function f: A — |M|
such that
— for each ¢ in the language of M for each n > 0 there is a neighbourhood
¢ € §, such that for each (ai,...,a,) € € the sequence f(ay),..., f(a,) is ¢-
indiscernible with repetitions

there is a function f: B — [M] such that fo¢= f and it holds that

— for each ¢ in the language of M for each n > 0 there is a neighbourhood
g € &, (sic) such that for each (ay,...,a,) € € the sequence f(ay),..., f(a,) is
¢-indiscernible with repetitions
In fact I believe in the lemma below (i)<=>(iv)<=>(iv’) and this is shown by a
simple diagram chasing argument, but I am not sure yet.

(22)The condition on indiscernability may vary slightly, as the definition of M, may vary slightly.
For example, here you may rather require that the sequence f(ay), ..., f(a,) is part of an arbi-
trarily long ¢-indiscernible sequence (ignoring the repetitions). Of course, this change should be
made everywhere at the same time.
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Lemma 8.1.2.2. — It holds (i) = (iv’) and that (iv)<=>(iv’) where

(i) My — T € {(C:+,%)e — T} (as above)
(iv) M is stable. and for each (A;§;®) as described above

A5 — A% 4 (C;+, %)y —> T implies AS — A® < My — T

(iv’) M is stable, and for each (A; B;§;®) as described above
if (A;B;§;®) has the (C;+, x)-extension property, then (A;B;§;®)
has the M-extension property

9. Preliminary Unfinished Appendix 9. An attempt to answer
Question on Simplicity (3.5.4.1

This Appendix is not finished yet. Help in proofreading welcome.
We follow the “android” approach of [GH] to transcribe to s® the definition of
the tree property and the simple theory in [Tent-Ziegler|.

9.1. A shorter explanation. — We quote [Tent-Ziegler]:

DErFINITION 7.2.1. 1. A formula ¢(x. y) has the tree property (with re-
spect to k) if there is a tree of parameters (a; | ) # s € <“w) such that:
a) Foralls € <?w, (¢(x,ay) | i < ) is k-inconsistent.
b) Foralle € “w. {p(x.a,) |0 # s C ¢} is consistent.

2. Atheory T is simple if there is no formula o (x. y) with the tree property.

9.1.1. A reformulation in set theoretic language. — We now reformulate item a)
in a form convenient for diagram chasing reformulation. It is easy to see that item
a) can be replaced by either of

al) For each s € <“w there is an infinite set S ¢ ““w of descendants such that s’ 2 s
for each s’ € S and the set (¢(z,as) | s’ €S) is k-inconsistent.

a?) For each s € <“w there is an infinite set S ¢ <“w of descendants such that s’ 2 s
for each s’ € S, the set (¢(z,ay) | s’ € S) is k-inconsistent, and S is linearly
ordered by the lexicographic order.

a3) There is an infinite subset ¢ € <“w such that for each s € o there is an
infinite set S € o of descendants such that s’ 2 s for each s’ € S and the set
(o(x,as) | 8" €S) is k-inconsistent.

a*) There is an infinite subset o € <“w such that for each s € o there is an infinite
set S € o of descendants such that s’ 2 s for each s’ € S, the set (p(x,ay) | s €
S) is k-inconsistent, and S is linearly ordered by the lexicographic order.

a®) There is an infinite subset ¢ € <“w such that for each s € o the set S ¢ o
of immediate descendants of s is infinite and the set (p(x,ay)|s" € S) is
k-inconsistent, and S is linearly ordered by the lexicographic order.

ab) There is a subtree o € <“w isomorphic to <““w satisfying a).

Proof. — Indeed, any of these items implies that there is a subtree of <““w isomor-
phic to <“w itself which satisfies a), and any subtree satisfies b). O

9.1.2. Inconsistent instances of ¢(x,—). — To be able to discuss in s® inconsis-
tency of sets of form (p(z,as) | s € S), equip |[M|* with the filter generated by
the set

en = {(br, ., b)) €M|": M =3z N\ o(z,b;)}

1<i<n
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This turns the simplicial set {— —|M |} represented by the set of elements of M

into a simplicial filter which we denote by M2**™7)  Accordingly, call a tuple

(b1,...,0,) € |M|* small or Fxp(x,-)-small iff the set {p(x,b1),..,o(x,b,)} is con-
sistent, i.e. M &= 3z Ai<icn, (2, b;).

9.1.3. Item b). — Ttem b) just says that the morphism (<“w)s — MEAE) o

fined by the parameters (as), is continuous when (<“w)s is equipped with indiscrete
filters. Recall that

(“w)s(n<) ={(81,---,8i,) 1 81, -, 8n € “w, 81 C...C 8}, n<w

is the set of all weakly increasing tuples in <“w (which we here consider with
the prefix order ), i.e. tuples of elements lying on the same branch in a weakly
increasing order.

9.1.4. Item a). — To talk about consistency of sets occuring in item al)-a%), we
consider the morphism

(<wwlex)f _ M.HCCSO(I,—)

where <“wyq, is the lexicographic partial order on <“w.

Recall that

(“w)s(ne) = {(S1, .0, 80) 1 81500y Sn € W, 81 Speg v Stew Sn},N < W
Note that
[(w)(1)] = |(Fwiex) (1) = [l

We have the morphism |(“wiex)s| — |M,| of simplicial sets. Each of items
a?)-a’%) says that the preimage of g5, € |M|*F does not intersect sets of certain form,
namely the set of k-tuples required to be inconsistent in a copy of ““w by the tree
property; equivalently, —a?)--a%) says that the preimage of ¢, ¢ |M|F, necessarily
large under a continuous map, intersects sets of certain form. Thus we “read off”
the definition of a filter on |(<“wie)5(k<)|: a subset is defined to be large iff it
intersects any subset of form described in, say, item a®), i.e. in notation: a subset
0  |(<“wiex)3 (k<)| is large iff

— For any infinite subset ¢ € <“w such that for each s € o the set S € o of

immediate descendants of s is infinite, there is s’ € ¢ and distinct immediate
descendants si, ..., s} such that the tuple (s{,...,s,) € is “d-small”.

9.1.5. The lifting property. — Thus we arrive at the following conjecture.

Conjecture 9.1.5.1. — The formula p(x,y) does not have the tree property in
M iff the following lifting property holds:

(<WW)S - (<WW)S U (<wwle$)f A M.Elxcp(:c,—) — T

Proof(sketch). — Assume p(z,y) has the tree property in M, and let (a4|s € <“w)
be a tree of parameters as in Definition 7.2.1. By b) the induced morphism

(<“w)s — M. #2(*7) s continuous. Consider the induced diagonal morphism
of the underlying simplicial sets. By a) the preimage of the large subset gen-
erating the filter on M* does not intersect the set of non-degenerate simplicies
in (““wpex)s(k<), hence is not large. That is, the induced diagonal map is not
continuous, and thereby the lifting property fails.

Assume the lifting property fails. A morphism (“w)s — M) ig a tree of

parameters (as|s € <“w) satisfying item b) of Definition 7.2.1. It induces a unique
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morphism [(<“w)$ U (“wie )| — [MZ*¥® 7| of simplicial sets. This morphism
fails to be continuous iff for some k the preimage ¢ of the set of ¢(x,—)-consistent
tuples is not large, i.e. there is an isomorphic copy o € <“w of <“w such that any
simplex in e no(n<) is degenerate. That is, each k-tuple with distinct elements in
(01ex)e(n<) 18 (1, —)-inconsistent, i.e. o satisfies item a). Hence, o is a witness to
the tree property. O

9.2. Transcribing the definition. — Now in a verbose manner we step-by-
step follow the “android” approach of [GH| to transcribe to s® the definition of
the tree property in [Tent-Ziegler].
9.2.1. Inconsistent instances of p(x,—). — Equip |[M|* with the filter generated
by the set

{(by,....;b,) e[ M|" : M =3z N\ o(x,b;)}

1<i<n
Motivation: The definition 7.2.1 talks about the formulas 3z A1 <<, (2, b;)
implicitly, or rather tuples satisfying these formulas.

This turns the simplicial set {— — |M |} represented by the set of elements of M

into a simplicial filter which we denote by M2***7)  Accordingly, call a tuple
(by,...,0,) € |M|* small or Fxp(x,-)-small iff the set {p(x,b1),..,o(x,b,)} is con-
sistent, i.e. M & 3z Ai<icn, (2, ;).
Motivation 2 (fixme:remove?): The definition speaks of consistency of
formulas of form ¢(x,as). Which is what we use to express this as the
property of continuity of a morphism in s®.
9.2.2. Item b). —
b) For all o0 € “w {p(x,as) | #sC o} is consistent.
This just says that the morphism (<“w)s — M) defined by the parameters
(as)s is continuous when (<“w)s is equipped with indiscrete filters. Recall that
(Yw)s(ne) ={(s1,---,8i,) : 815,85 € Yw, 81 C...C s}, n<w
is the set of all weakly increasing tuples in <“w (which we here consider with the
prefix order ©).
9.2.3. Item a). —
a) For all s € “w, (p(z,as)|i <w) is k-inconsistent.

Item a) considers consistency of tuples of formulas (¢(x,a4)|i < w), and, im-
plicitly, the linear orders si < sj iff 1 < j, s € <“w. Hence, we consider a simplicial
set containing these tuples:

(“weans )5 (n<) = {(8i1,...,80,):s€ “w, 1< < ... <, <wp,n<w
where ““wy,,s is the fan partial order defined by
agi < agy iff s=5" and i <’
Note that

(*w)i(le) = (Mwrans)S (1<) = *w

We have the morphism [*“wense| —> | M| of simplicial sets. Item a) says that
the tuples with distinct elements (=non-degenerate simplicies) in the image of the
morphism |“wanse (k< )| —> | M, (k<)| = M* lie outside of the large subset generating
the filter on M3#¥(*.-) o (k.), or, equivalently, outside of some large subset of that
filter.
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9.2.4. The lifting property: first attempt. — So we see that a formula p(z,y) with
the tree property provides a counterexample to the following lifting property in a
very strong sense:

(“)F — (“0)3U (Cuope)i < MIFOD — 1

The map |(<“w)s| — M. W(x’_)| of simplicial sets extends uniquely to a map of
simplicial sets [(<“w)s U (“Wgans) 5| — |M.HW($’_)|.

Item b) says the map (<“w)s — M2 is continuous when the source is
equipped with the indiscrete filter.

Item a) says the map (<“w)s(ke) U (“wians)5(ke) — ME"™ ) (k) is not con-
tinuous if we equip with any filter which contains a large set extending (<“w)zs (k<)
by a non-degenerate simplex (=tuple with distinct elements).

9.2.5. The filter appropriate to express item a). — Thus we’d like to equip the
source of the latter map with the finest filter containing (<“w)s(k<) defined by a
property which can be “read off” from Definition 7.2.1. If item a) is satisfied not
by all the vertices but still by enough vertices to form a isomorphic copy o € <“w of
<ww, then the tree property still fails, and there is no harm in a large set intersecting
(0tans ) 5 (k<) non-trivially. This suggests the following definition: we define a subset
to be large iff it contains a tuple with distinct elements in (ops)s (k<) for each
isomorphic copy ¢ € “w of “w in “w.

Finally, note that ¢ ¢ <“w does not imply that (opans)s(k<) S (“Wrans)s (k<)
unless the immediate children in ¢ are necessarily immediate children in <“w, and
there is no reason to assume this.

Hence, we modify the definition of (<“wgys)s (k<) so that it talks about arbitrary
descendants rather than the si’s:

|(““Wantichains )3 (M) = {(S1, o, Sn) # 8 pew $;¥1<i<j<n, and s; $ s;V1<i#j<n},n<w

where <., is the lexicographic order on “w.

A subset £ € (““Wantichains ) s (n<) is large iff for each isomorphic copy o € <“w of
<ww the set €N (Tantichains )« (1<) contains a non-degenerate simplex, i.e. a tuple with
all elements distinct.

9.2.6. The lifting property. — Thus we arrive at the following conjecture.

Conjecture 9.2.6.1. — The formula p(x,y) does not have the tree property in
M iff the following lifting property holds:

(<ww)£ — (<w

< < M?w(x,—)

w): U (<wwantichains): A — T

Proof(sketch). — Assume p(z,y) has the tree property in M, and let (a4|s € <“w)
be a tree of parameters as in Definition 7.2.1. By b) the induced morphism
(<“w)s — M. ##(®7) s continuous. Consider the induced diagonal morphism of
the underlying simplicial sets. By a) the preimage of the large subset generating
the filter on M* intersects (<“Wantichains )3 (k<) only by degenerate simplicies, hence
is not large. That is, the induced diagonal map is not continuous, and thereby the
lifting property fails.

Assume the lifting property fails. A morphism (“w)s — M) ig a tree of
parameters (as|s € <“w) satisfying item a) of Definition 7.2.1. It induces a unique
morphism |(<“w)$U(*“Wantichains ) 5| — |M.3 W(x’_)| of simplicial sets. This morphism
fails to be continuous iff for some & the preimage ¢ of set of ¢(x, —)-consistent tuples
is not large, i.e. there is an isomorphic copy o € <“w of <“w such that € n o(n)
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consists only of degenerate tuples. That is, each k-tuple in (Gantichains)e (7<) 1S
¢(x, —)-inconsistent, i.e. o satisfies item a). Hence, o is a witness to the tree
property. O

9.2.7. The lifting property of stability. — Notice that the lifting property Propo-
sition |3.3.2.1 iv) of stability holds trivially for M. #(*2) __, 7 for any model M

We — |wle « MESED g
Also check whether it holds that

(<ww)f - (<ww)£ U (<wwantichains)f A M.{Sﬁ} —> T

where M, is defined as in Proposition [3.3.2.1]

9.2.8. The homotopy intuition S¥ — D* and A — A x I. — Recall our mo-
tivation in transcribing the tree property was to get a clue towards homotopy
theory for model theory and s®. The formal analogy is to the lifting properties of
topological spaces

S —DF x X —>Tand A— AxT x X — T.

The first says that each sphere S* can be “filled in” with a disk D*¥ and thus is
contractible, suggests an intuition that “(<“wantichains)$ fills in in a hole in (“w)s”

and that M2"?7 has trivial m Oor M) 1 is an acyclic fibration. The
second is a path lifting property and homotopy extension property, and suggest
an intuition that (<“wantichains)s 18 @ homotopy (of branches?) of (<“w)s, and that
MF®7) ., 1 s a fibration.

We feel that making sense of this intuition is one of the most pressing needs in

our approach to model theory.
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