
EXTREMALLY DISCONNECTED SPACES AS
{{u→a, b←u} Ð→ {u→a = b←v}}l, AND BEING PROPER AS

({{o} Ð→ {o→ c}}r
<4)lr

Abstract. — We observe that the notions of a topological space being extremally

disconnected, and of a continuous map of compact Hausdorff spaces being proper, can
each be defined in terms of the Quillen lifting property with respect to a surjective

proper morphism of finite topological spaces, i.e. in terms of a monotone map of

finite preorders. This reveals the preorders implicit in the statement of the Gleason
theorem that extremally disconnected spaces are projective in the category of compact

Hausdorff topological spaces, and interprets it as an instance of a weak factorisation

system generated by an explicitly given morphism.

1. Introduction

We observe that the notions of a topological space being extremally disconnected,
having closed points, and a continuous map of compact Hausdorff spaces being proper,
and being surjective proper, can each be defined in terms
of the Quillen lifting property with respect to a surjective
proper morphism of finite topological spaces, i.e. in terms
of a monotone map of finite preorders (see Fig. 1). Based
on this, we introduce a concise, and, in a sense intuitive,
combinatorial notation expressing these notions via simplest
(counter)examples, and often closely following the standard
definitions. We hope our results suggest that this notation
can be used to formalise these properties.

. (a) (b)

. Fig.1. Maps of preorders for

. (a) extr.disconnected

. (b) proper

This allows us to write a couple of facts in general topology mentioned in the
lecture notes on condensed mathematics by P.Scholze in a category-theoretic lan-
guage hopefully closer to the spirit of the notes. The theorem of [Gleason], cf. [Con-
densed,Def.2.4], that extremally disconnected spaces are projective in the category of
compact Hausdorff spaces, can then be seen as saying that there is a weak factorisa-
tion system generated by a certain surjective proper morphism of finite topological
spaces. Our reformulation allows us to see that it is important for this theorem that
the map of preorders implicit in the definition of extremally disconnected, is both sur-
jective and proper. The fact that a surjective proper map is necessarily a quotient in
our notation is expressed as an inclusion of orthogonals of morphisms of finite spaces:

{{u→a, b←v} Ð→ {u→a = b←v},{a↔ b→c↔ d} Ð→ {a↔ b = c = d}}⋌ lr ⊂ {{o→c} Ð→ {o↔ c}}⋌ l
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und Aufzeichnungen. Nach den Handschriften des Goethe- und Schiller-Archivs hg. von Max Hecker, Verlag der
Goethe-Gesellschaft, Weimar 1907, Aus dem Nachlass, Nr. 1005, Uber Natur und Naturwissenschaft.
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This fact is ”the key point” [Analytic, p.7] in the sheaf condition holding for condensed
sets represented by topological spaces.

Lemma 2.1.2 and Lemma 2.1.3 state our reformulations; §2 introduces necessary
notation and reformulations in terms of lifting properties. Appendix A gives a list of
reformulations of elementary notions in general topology in terms of lifting properties.
In an unfinished appendix B we attempt to present a diagram chasing rendering of the
proof of Lemma 1.3 [Analytic] stating that product commutes with filtered colimits in
the category of compact Hausdorff spaces whenever all maps are (closed) inclusions,
to help the reader ponder whether our notation can be used in an efficient theorem
prover for elementary topology.

1.1. Further questions. — Our reformulations reveal combinatorics of finite pre-
orders implicit, perhaps surprisingly, in many standard definitions in elementary gen-
eral topology. It may be interesting to understand this combinatorics or make use of
it.

How much of elementary topology could be developed entirely combinatorially?
Say, could one prove the Gleason theorem entirely by a combinatorial diagram chas-
ing calculation ? Or the combinatorial expression above representing the fact that
surjective proper maps are necessarily quotient.

Could these combinatorial expressions, say for quotients or properness, be inter-
preted in larger categories of spaces, say of condensed sets or the category of simplicial
objects in the category of filters [situs]?

Formalisation of condensed mathematics may perhaps need the notions of ex-
tremally disjoint spaces or proper maps. Could our reformulation suggest an efficient
theorem prover/tactic for elementary claims about these notions? Note that notions
defined by lifting properties behave nicely with respect to limits and colimits.

1.2. Explaining notation in the title. — The notation and necessary definitions
are introduced in the next section. Here we give a brief sketch assuming familiarity
with lifting properties.

1.2.1. Extremally disconnected. — For a class of morphisms P , let P ⋌ r and P ⋌ l

denote the class of morphisms having the left, resp. right, lifting property with respect
to each morphism in P . Let P ⋌ rl ∶= (P ⋌ r)⋌ l, P ⋌ lr = (P ⋌ l)⋌ r. Recall a topology on
a finite set may be regarded as a preorder or, equivalently, as a category with unique
morphisms: x ⩽ y, resp. x↘ y, iff y lies in the closure of x.

Thus {u→a, b←v} denotes the topological space with two open points u and v,
two closed points a and b, split into two connected components {u→a} and {b←v}.
The expression {u→a, b←v} Ð→ {u→a = b←v} denotes the morphism gluing together
points a and b. In terms of categories, we think that this morphism is the functor
“adding an identity morphism between objects a and b”. Hence, {{u→a, b←v} Ð→
{u→a = b←v}}⋌ l denotes the class of morphisms having the left lifting property with
respect to {u→a, b←v} Ð→ {u→a = b←v}. To give a map to {u→a = b←v} is the
same as to give two disjoint open subsets of E (the preimages of u and v). It lifts to
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{u→a, b←v} iff U and V lie in disjoint closed and open subsets. This is one of the
equivalent definitions of E being extremally disconnected.

Note that the morphism {u→a, b←v} Ð→ {u→a = b←v} is surjective, closed and
thereby proper, being a morphism of finite spaces. Also note that being surjec-
tive and proper are right lifting properties, and that this means that each map in
{{u→a, b←v} Ð→ {u→a = b←v}}⋌ lr is surjective and proper. Hence, the existence
of the weak factorisation system generated by this morphism implies that each map

∅ Ð→ E decomposes as ∅ Ð→ X ∈ {{u→a, b←v} Ð→ {u→a = b←v}}
⋌ l

and a surjec-

tive proper map E Ð→ X ∈ {{u→a, b←v} Ð→ {u→a = b←v}}
⋌ lr

. That is, each space
admits a surjection from an extremally disconnected space, and a compact space ad-
mits a surjection from a compact extremally disconnected space. A similar argument
shows that the extremally disconnected space can also be assumed Hausdorff, based
on a reformulation of Axiom T1 (having closed points) as by a right lifting property,
namely with respect to the morphism {o↘ c} Ð→ {o = c} gluing the Sierpinski space
into a single point.

1.2.2. Proper. — The expression {o} Ð→ {o → c} denotes perhaps the simplest ex-
ample of a non-proper (actually, not closed) map: the map sending a point into the
open point of the Sierpinski space. It is easy to check that a map of finite spaces is
in {{o} Ð→ {o → c}}r, i.e. has the right lifting property with respect to this map, iff
it is closed. By {{o} Ð→ {o → c}}r<4 we denote the subclass of {{o} Ð→ {o → c}}r
consisting of maps of spaces with less than 4 points. By [Bourbaki, General Topology,
I§10.2,Th.1(d)] (see Lemma 2.1.3(1)) being proper is a left lifting property, thus lr-
orthogonal of any class of proper morphisms is a class of proper morphisms. Hence,
each morphism in ({{o} Ð→ {o → c}}r<4)lr is proper, and by Engelking-Taimanov
theorem (see Lemma 2.1.3(3))) any morphism of compact Hausdorff spaces is in this
class.

2. Extremally disconnected sets being projective as a weak factorisation
system

2.1. Preliminary lemmas. — A number of definitions in general topology can
be expressed by applying several times the Quillen lifting property to a morphism
of finite topological spaces, thereby leading to a concise notation based on finite
preorders and their maps; Appendix A gives a list of such reformulations. In this
subsection we introduce notations and state facts necessarily to express in this way
the definitions of extremally disconnected and being proper.

2.1.1. Quillen lifting property. — Recall that a morphism i in a category has the left
lifting property with respect to a morphism p, and p also has the right lifting property
with respect to i, iff for each f ∶ A → X and g ∶ B → Y such that p ○ f = g ○ i there
exists h ∶ B →X such that h ○ i = f and p ○ h = g.

For a class P of morphisms in a category, its left orthogonal P ⋌ l with respect to
the lifting property, respectively its right orthogonal P ⋌ r, is the class of all morphisms
which have the left, respectively right, lifting property with respect to each morphism



4 MASHA GAVRILOVICH

in the class P . In notation,

P ⋌ l ∶= {i ∶ ∀p ∈ P i⋌p}, P ⋌ r ∶= {p ∶ ∀i ∈ P i⋌p}, P ⋌ lr ∶= (P ⋌ l)⋌ r, ..

Taking the orthogonal of a class P is a simple way to define a class of morphisms
excluding non-isomorphisms from P , in a way which is useful in a diagram chasing
computation, and is often used to define properties of morphisms starting from an
explicitly given class of (counter)examples. For this reason, it is convenient to refer
to P ⋌ l and P ⋌ r as left, resp. right, Quillen negation of property P .

2.1.2. Notation for finite topological spaces and their morphisms. — A topological
space comes with a specialisation preorder on its points: for points x, y ∈ X, x ≤ y iff
y ∈ clx (y is in the closure of x), or equivalently. The resulting preordered set may be
regarded as a category whose objects are the points of X and where there is a unique
morphism x↘y iff y ∈ clx.

For a finite topological space X, the specialisation preorder or equivalently the
corresponding category uniquely determines the space: a subset of X is closed iff it is
downward closed, or equivalently, there are no morphisms going outside the subset.

The monotone maps (i.e. functors) are the continuous maps for this topology.
We denote a finite topological space by a list of the arrows (morphisms) in the

corresponding category; arrows → and ↘ are interchangable and denote a morphism;
’↔’ denotes an isomorphism and ’=’ denotes the identity morphism. An arrow between
two such lists denotes a continuous map (a functor) which sends each point to the
correspondingly labelled point, but possibly turning some morphisms into identity
morphisms, thus gluing some points. This notation leads to a formal syntax defining
morphisms of finite topological space, and, to emphasize this, we sometimes typeset
these expressions as code: {a<->b} for {a↔ b}, and {a->b} for {a↘ b} etc.

With this notation, we may display continuous functions for instance between the
discrete space on two points, the Sierpinski space, the antidiscrete space and the point
space as follows (where each point is understood to be mapped to the point of the
same name in the next space):

{a, b} Ð→ {a↘b} Ð→ {a↔ b} Ð→ {a = b}
{a,b} --> {a->b} --> {a<->b} --> {a=b}

(discrete space) Ð→ (Sierpinski space) Ð→ (antidiscrete space) Ð→ (single point)

In {a↘b}, the point a is open and point b is closed.

Remark 2.1.1. — In A Ð→ B, each object and each morphism in A necessarily
appears in B as well. We may extend the notation to avoid listing the same object
or morphism twice, to make it more concise and easier to read, although at a cost of
getting used to. For example, we may wish to shorten {u->a,b<-v}-->{u->a=b<-v}

to {u->a,b<-v}-->{a=b} or even {u ↘ a ,= b ↙ v} using red and placing symbols
above each other to indicate morphisms and objects added. Or perhaps to write
{a} Ð→ {a, b} denoting the map from a single point to the discrete space with two
points, as {a} Ð→ {b} or {a, b}.

Tricks like this can be useful in an actual implementation of this notation in a
theorem prover.
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2.1.3. Preliminary results. — We will use the following reformulations of properties
of spaces and continuous maps in terms of lifting properties with respect to morphisms
of finite topological spaces.

Note that each notion is defined with help of a counterexample, often the simplest
or archetypal one. A concise convenient way to express e.g. items 3-5 is to say that
surjectivity, quotient, and injectivity are right Quillen negations of {a}-->{a<->b},
{o->c}-->{o<->c}, and {a<->b}-->{a=b}, resp.

Lemma 2.1.2. — In the category of (all) topological spaces, the following holds.

1. A map X Ð→ Y is surjective iff {}-->{o} /_ X-->Y

2. Points are closed within each fibre of a map X Ð→ Y , i.e. the fibres (as subspaces
with induced topology) satisfy separation axiom T1, iff {o->c}-->{o=c} /_ X-->Y

3. A map X Ð→ Y is surjective iff X-->Y /_ {a}-->{a<->b}

4. A map X Ð→ Y is a quotient iff X-->Y /_ {o->c}-->{o<->c}

5. A map X Ð→ Y is injective iff X-->Y /_ {a<->b}-->{a=b}

6. For every pair of disjoint closed subsets of X, the closures of their images of Y
do not intersect, iff X-->Y /_ {x<-o->y}-->{x=o=y}

7. A topological space X is extremally disconnected iff {}--> X /_ {u->a,b<-v}-->{u->a=b<-v}

8. The topology on X is induced from Y along the map X Ð→ Y iff X-->Y /_ {o->c}-->{o=c}

9. The map X Ð→ Y has dense image iff X-->Y /_ {c}-->{o->c}

10. The topology on X is induced from Y along the map X Ð→ Y and this map is
open iff X-->Y /_ {a<->b<-c}-->{a<->b=c}

11. The topology on X is induced from Y along the map X Ð→ Y and this map is
closed iff X-->Y /_ {a<->b->c}-->{a<->b=c}

Proof. — Verification is a matter of expanding the definitions. We do only a few
of the items. 1. This lifting property says that each point of Y (the image of o in
\{o}-->Y) has a preimage. 2. Let x, y ∈X be arbitrary. The map sending o to x and
c to y, is continuous iff the closure of x contains y. The commutativity of the square
means x and y lie in the same fibre. The commutativity of the triangles means x = y.
3. This lifting property says that each decomposition of X = A∪B (the preimages of
points a and b in X-->{a<->b}) induces a decomposition Y = p(A)∪p(B) of Y where
we denote p ∶ X Ð→ Y . This is evidently equivalent to injectivity. 6. Recall that
a topological space X is extremally disconnected iff the closure of an open subset is
closed. This lifting property says for every two disjoint open subsets U and V of X
(the preimages of u and v in X-->{u->a=b<-v}) there is a decomposition of X into
two closed and open subsets U ′ and V ′ (the preimages of subspaces {u->a} and b<-v

in X-->{u->a,b<-v}) such that U ⊂ U ′ and V ⊂ V ′. If X is extremally disconnected,
then taking U ′ to be the closure of U gives the decomposition.

Alternatively but equivalently, the lifting property says that each U ⊂ A ⊂X where
U is open and A is closed (the preimages of subspaces u and u->a in X-->{u->a,b<-v})
is separated by a closed and open subset A′ such that U ⊂ A′ ⊂ A. Take A ∶= Ū to be
the closure of U ; then necessarily A′ = A. Hence, the lifting property implies that the
the closure of an open subset is open, i.e. X is extremally disconnected. The rest are
analogous.
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Following [Bourbaki, I§6.5, Definition 5, Example], given an ultrafilter U on the set
of points of a space B, define B ⊔U {∞} to be the space B adjoined with a new closed
point ∞ such that a subset is open iff it is either an open subset of B, or a union of
{∞} and a U-big open subset of B.

Lemma 2.1.3. — In the category of (all) topological spaces, the following holds.

1. A map X Ð→ Y is proper iff for each set A viewed as a discrete topological
space, each ultrafilter U on A it holds

B Ð→ B ⊔U {∞}⋌X → Y

2. The class {{u->a,b<-v}-->{u->a=b<-v}}⋌ lr is contained in the class of sur-
jective proper morphisms, and, moreover,

– ∅ Ð→ E ∈ {{u->a,b<-v}-->{u->a=b<-v}}⋌ l iff E is extremally discon-
nected

– if X Ð→ Y ∈ {{u->a,b<-v}-->{u->a=b<-v}}⋌ lr and X is compact Haus-
dorff, so is Y

3. Let P be the set of all proper morphisms of finite topological spaces mentioned
in the right lifting properties of Lemma 2.1.2 (i.e. items 5-10), with or without
item 7 (extremally disjoint). The class (P )⋌ lr consists of proper morphisms,
and contains each proper morphism of compact Hausdorff spaces.

4. Let P ′ be the set of surjective proper morphisms of finite topological spaces men-
tioned in the right lifting properties of Lemma 2.1.2 (i.e. items 5-8), with or
without item 6 (disjoint closures) or item 10 (open map and induced topology).
The class (P ′)⋌ lr consists of surjective proper morphisms, and contains each
surjective proper morphism of compact Hausdorff spaces.

Proof. — 1. [Bourbaki, General Topology, I§10.2,Th.1(d)] almost states this lifting
property: they take A = ∣X ∣ to be the the set of points of X with discrete topology,
and the horizontal map A Ð→ X in the square to be identity on points. An elemen-
tary argument shows that only the image in X would matter, and thus shows the
equivalence of the statement by Bourbaki and this lifting property. See [mintsGE,
§2.2.2] for details.

2. The map {u->a,b<-v}-->{u->a=b<-v} is both surjective and closed, which is
the same as proper for maps of finite topological spaces. By Lemma 2.1.2 both being
surjective and being proper are right Quillen negations. Hence, each map in (P0)⋌ lr

is both surjective and proper, where P0 ∶= {{u->a,b<-v}-->{u->a=b<-v}} is the
class consisting of a single morphism {u->a,b<-v}-->{u->a=b<-v}. Lemma 2.1.2(6)
states that the lifting property defines extremally disconnectedness. Moreover, note
{o->c}-->{o=c} /_ {u->a,b<-v}-->{u->a=b<-v}. By Lemma 2.1.2(2) this implies
that if each point Y is closed (i.e. Y satisfies separation axiom T1) and X Ð→ Y is
in (P0)⋌ lr, then each point of X is closed. For compact spaces, axiom T1 implies T2
(being Hausdorff). Hence, if X Ð→ Y is in (P0)⋌ lr and if Y is compact Hausdorff, so
is X.

3. Each morphism in P is proper, hence the morphisms mentioned in item 1 are
in P ⋌ l, hence, again by item 1, each morphism in P ⋌ lr is proper. Lemma 2.1.2(5-9)
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imply that P ⋌ l consists of inclusions A Ð→ B where A is a dense subset of B. A
classic theorem in topology known as Engelking or Taimanov theorem says that a
map to a compact Hausdorff space K always extends from a dense subset A to the
whole domain B, i.e. A Ð→ B ⋌K → {o}; in fact the proof of this theorem also gives
that A Ð→ B ⋌K1 Ð→ K2 holds for any proper map K1 Ð→ K2 of normal Hausdorff
spaces. See [mintsGE,§2.2] for a discussion.

4. Each map in (P ) is both surjective and proper, and both being surjective and
being proper are defined by right lifting properties. This implies that each map in
(P ) is both surjective and proper.

Now let X Ð→ Y be a surjective proper map of compact Hausdorff spaces. We
need to show that it is in (P )⋌ lr, i.e. that for each A Ð→ B ∈ (P )⋌ l it holds A Ð→
B ⋌X Ð→ Y .

We know that AÐ→ B lifts with respect to each map in P , hence by Lemma 2.1.2
we may assume that A is an open subset of B, and the map is the inclusion.

Let Ā = Cl ImB(A) be the closure of A in B.
Now consider the lifting property A-->B /_ {u->a,b<-v}-->{u->a=b<-v} defin-

ing extremally disconnected. Take A-->{u->a,b<-v} taking A to u, and B-->{u->a=b<-v}

sending A to u, and Ā∖A to a=b, and B ∖ Ā to v. If A is non-empty, the lifting prop-
erty implies that Ā is open. Hence, both Ā and B ∖ Ā are closed open subsets, and to
construct the diagonal map, it is enough to construct it separately on Ā and B ∖ Ā.
As A is dense in Ā, by Lemma above A → Ā lifts with respect to any proper map of
compact Hausdorff spaces; this implies the former.

Note that A-->B /_ {u->a,b<-v}-->{u->a=b<-v} implies that

∅ Ð→ B ∖ Ā⋌{u->a,b<-v}-->{u->a=b<-v}

i.e. that B ∖ Ā is extremally disconnected. Finally, the theorem of Gleason that ex-
tremally disconnected sets are projective in the subcategory of compact Hausdorff
spaces with proper maps, says precisely that this lifting property holds for each sur-
jective proper map of compact Hausdorff spaces.

Remark 2.1.4. — We rely on the Gleason theorem rather than reproduce its proof.
Probably a careful reformulation of Lemmas 2.1 and 2.4 of [Gleason] shall turn the
proof there into a diagram chasing calculation with finite preorders.

2.2. Being a surjective image of a compact extremally disconnected space. —
We start with the observation that the map {u->a,b<-v}-->{u->a=b<-v} appear-
ing in the definition of extremally disconnected, is surjective and proper, and that
being surjective and being proper are right Quillen negations. Hence, each map in
(P0)⋌ lr is both surjective and proper, where P0 ∶= {{u->a,b<-v}-->{u->a=b<-v}} is
the class consisting of a single morphism {u->a,b<-v}-->{u->a=b<-v}. Moreover,
note {o->c}-->{o=c} /_ {u->a,b<-v}-->{u->a=b<-v}. This implies that if each
point of Y is closed (i.e. Y satisfies separation axiom T1) and X Ð→ Y is in (P0)⋌ lr,
then each point of X is closed. For compact spaces, axiom T1 implies T2 (being
Hausdorff). Hence, if X Ð→ Y is in (P0)⋌ lr and if Y is compact Hausdorff, so is X.

Hence:
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Observation 2.2.1. — The fact that each topological space admits a surjection from
an extremally disconnected space, and, moreover, each compact Hausdorff topological
space admits a surjection from an compact Hausdorff extremally disconnected space,
is implied by the following.

Each morphism ∅ Ð→ X decomposes as ∅ (P0)⋌ l

ÐÐÐ→ E
(P0)⋌ lr

ÐÐÐÐ→ X where P0 ∶=
{{u->a,b<-v}-->{u->a=b<-v}} is a class of morphisms consisting of a single mor-
phism which is both surjective and proper (and hence so is any map in (P0)⋌ lr).

In fact, this decomposition (weak factorisation system) implies that the extremally
disconnected subspaces are projective in the (not full!) subcategory of topological
spaces with morphisms in (P0)⋌ lr, and that subcategory has enough projectives.

Unfortunately, not each surjective proper map of compact Hausdorff spaces is in
(P0)⋌ lr. Indeed, if the domain is connected, then it maps to one of the connected
components {u->a} or {b<-v}, and by surjectivity the codomain does as well. Hence,
any surjective map from a connected space is in (P0)⋌ l and thus not in (P0)⋌ lr unless
is an isomorphism.

2.3. Extremally disconnected spaces being projective. — Let P ′ denote the
class of all the closed (necessarily proper) surjective maps mentioned in right lifting
properties in Lemma 2.1.2 (we give the list of morphisms in various notations):

{u→a ,=b←u} {a↔= b} {a→= b} {a↔ b
=→c}

{u→a, b←u} Ð→ {u→a = b←v} {a↔ b} Ð→ {a = b} {o↘ c} Ð→ {o = c} {a↔ b↘ c} Ð→ {a↔ b = c}
{u->a,b<-v}-->{u->a=b<-v} {a<->b}-->{a=b} {o->c}-->{o=c} {a<->b->c}-->{a<->b=c}

(extremally disconnected) (injective) (pullback topology) (closed map and pullback topology)

We can combine together the latter three morphisms and take instead e.g.

P ′′ ∶= { {u->a,b<-v}-->{u->a=b<-v}, {a<->b->c<->d}-->{a<->b=c=d} }

We summarise the considerations above as

Observation 2.3.1. — The fact that extremally disconnected space are projective
in the category of compact Hausdorff spaces with proper maps, and this category has
enough projectives, is implied by the decomposition above and the following.

Each morphism ∅ Ð→X decomposes as ∅ (P ′)⋌ l

ÐÐÐ→ E
(P ′)⋌ lr

ÐÐÐÐ→X where

P ′ ∶= {{u->a,b<-v}-->{u->a=b<-v}, {a<->b}-->{a=b}, {a<->b->c}-->{a<->b=c}}

is a class of morphisms consisting of surjective proper morphisms.

Proof. — Use Lemma 2.1.3(3). Use the observation above to construct a compact
Hausdorff E fitting the decomposition. We may omit {o->c}-->{o=c} because the
map gluing together a and b in {a<->b->c}-->{a<->b=c} gives {o->c}-->{o=c}.

Remark 2.3.2. — [Analytic,p7] writes “for part (2) [the sheaf condition on con-
densed sets represented by topological spaces] the key point is that any surjective
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map of profinite sets is a quotient”. In fact any surjective proper map is a quotient,
and Lemma 2.1.2 and 2.1.3 allows to express this as:

P ′⋌ lr ⊂ {{o->c}-->{o<->c}}⋌ l

Explicitly,

{{u->a,b<-v}-->{u->a=b<-v}, {a<->b}-->{a=b}, {a<->b->c}-->{a<->b=c}}⋌ lr ⊂ {{o->c}-->{o<->c}}⋌ l

{{u→a, b←v} Ð→ {u→a = b←v},{a↔ b→c↔ d} Ð→ {a↔ b = c = d}}⋌ lr ⊂ {{o→c} Ð→ {o↔ c}}⋌ l

3. Appendix A. A list of reformulations of topological definitions

Here we give a list of examples of iterated lifting properties (negations) written in
our notation. Sometimes we skip ⋌ for readability. Most of the list below is taken
from [mintsGE, §5.2].

3.1. Examples of iterated orthogonals obtained from maps between finite
topological spaces. — Here we give a list of examples of iterated orthogonals
starting from maps between finite topological spaces defining well-known properties
of topological spaces.

In the category of topological spaces,

1. (∅ Ð→ {o})r is the class of surjections
2. (∅ Ð→ {o})r is the class of maps AÐ→ B where A ≠ ∅ or A = B
3. (∅ Ð→ {o})rr is the class of subsets, i.e. injective maps A ↪ B where the

topology on A is induced from B
4. (∅ Ð→ {o})lr is the class of maps ∅ Ð→ B, B arbitrary
5. (∅ Ð→ {o})lrr is the class of maps AÐ→ B which admit a section
6. (∅ Ð→ {o})l consists of maps f ∶ AÐ→ B such that either A ≠ ∅ or A = B = ∅
7. (∅ Ð→ {o})rl is the class of maps of form AÐ→ A ⊔D where D is discrete
8. {{z ↔ x↔ y ↘ c} Ð→ {z = x↔ y = c}}⋌ l = {{c} Ð→ {o ↘ c}}⋌ lr is the class of

closed inclusions A ⊂ B where A is closed
9. {{z ↔ x↔ y ↙ c} Ð→ {z = x↔ y = c}}⋌ l is the class of open inclusions A ⊂ B

where A is open
10. {{x↔ y ↘ c} Ð→ {x↔ y = c}}⋌ l is the class of closed maps AÐ→ B where the

topology on A is pulled back from B
11. {{x↔ y ↙ c} Ð→ {x↔ y = c}}⋌ l is the class of open maps A Ð→ B where the

topology on A is pulled back from B
12. ({b} Ð→ {a↘b})l is the class of maps with dense image
13. ({b} Ð→ {a↘b})lr is the class of closed subsets A ⊂X, A a closed subset of X
14. ({a} Ð→ {a↘b})lr is the class of subsets A ⊂ X such that A is the intersection

of open subsets containing A
15. ({a↘b} Ð→ {a = b})l is the class of injections
16. (({a} Ð→ {a↘b})r<5)lr is roughly the class of proper maps
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3.2. Examples of properties of topological spaces expressed as iterated
orthogonals of maps between finite topological spaces. — Here give a list
of examples of well-known properties defined by iterated orthogonals starting from
maps between finite topological spaces, often with less than 5 elements.

1. {●} Ð→ A is in (∅ Ð→ {o})rll iff A is connected

2. Y is totally disconnected iff {●} yÐ→ Y is in (∅ Ð→ {o})rllr for each map {●} yÐ→ Y
(or, in other words, each point y ∈ Y ).

3. a Hausdorff space K is compact iff K Ð→ {o} is in (({o} Ð→ {o↘c})r<5)lr
4. a Hausdorff space K is compact iff K Ð→ {o} is in

{{a↔ b} Ð→ {a = b}, {o↘c} Ð→ {o = c}, {c} Ð→ {o↘c}, {a↙o↘b} Ð→ {a = o = b} }lr

5. a space D is discrete iff ∅ Ð→D is in (∅ Ð→ {o})rl
6. a space D is antidiscrete iff D Ð→ {o} is in ({a, b} Ð→ {a = b})rr = ({a↔ b} Ð→

{a = b})lr
7. a space K is connected or empty iff K Ð→ {o} is in ({a, b} Ð→ {a = b})l
8. a space K is totally disconnected and non-empty iff K Ð→ {o} is in ({a, b} Ð→

{a = b})lr
9. a space K is connected and non-empty iff for some arrow {o} Ð→K

{o} Ð→K is in (∅ Ð→ {o})rll = ({a} Ð→ {a, b})l
10. a space K is non-empty iff K Ð→ {o} is in (∅ Ð→ {o})l
11. a space K is empty iff K Ð→ {o} is in (∅ Ð→ {o})ll
12. a space K is T0 iff K Ð→ {o} is in ({a↔ b} Ð→ {a = b})r
13. a space K is T1 iff K Ð→ {o} is in ({a↘b} Ð→ {a = b})r
14. a space X is Hausdorff iff for each injective map {x, y} ↪ X it holds {x, y} ↪

X ⋌ {x↘o↙y} Ð→ {x = o = y}
15. a non-empty space X is regular (T3) iff for each arrow {x} Ð→ X it holds

{x} Ð→X ⋌ {x↘X↙U↘F} Ð→ {x =X = U↘F}
16. a space X is normal (T4) iff ∅ Ð→X ⋌ {a↙U↘x↙V↘b} Ð→ {a↙U = x = V↘b}
17. a space X is completely normal iff ∅ Ð→ X ⋌ [0,1] Ð→ {0↙x↘1} where the

map [0,1] Ð→ {0↙x↘1} sends 0 to 0, 1 to 1, and the rest (0,1) to x
18. a space X is hereditary normal iff ∅ →X ⋌ {x↙ au↔ u′ ↙ u↙ uv ↘ v ↘ v′ ↔

bv ↘ x} Ð→ {x↙ au↔ u′ = u↙ uv ↘ v = v′ ↔ bv ↘ x}
19. a space X is path-connected iff {0,1} Ð→ [0,1] ⋌ X Ð→ {o}
20. a space X is path-connected iff for each Hausdorff compact space K and each

injective map {x, y} ↪K it holds {x, y} ↪K ⋌ X Ð→ {o}

3.3. A sample of a computer syntax. — Here we rewrite some of the examples
above in a computer syntax. ASCII art on the right attempts to represent graphically
the maps of preorders involved.

compactness: { {o}-->{o->c} }^r_{<5}^lr ; {o}-->{o->c} is a non-proper map

dense image: { {c}-->{o->c} }^l ; the image of {c}-->{o->c} is not dense

injection: { {x,y}-->{x=y} }^r == { {x<->y}-->{x=y} }^l ’~’(’ == .-.).

surjection: { {}-->{o} }^r == { {}-->{o} }^rrl simplest non-surjection {}-->{o}

connected: { {}-->{o} }^rll { {x,y}-->{x=y} }^l simplest non-connected space {x,y}
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discrete: { {}-->{o} }^rl )(.

subset: { {}-->{o} }^rr == {{x<->y->c}-->{x=y=c}}^l )). == ~\(.

closed subset: { {z<->x<->y->c}-->{z=x<->y=c} }^l == {{c}-->{o->c}}^lr ’~’~‘\.(’~’ == ‘()‘\.

open subset: { {z<->x<->y<-c}-->{z=x<->y=c} }^l ’~’~’\ ( ’=’~’=.

intersection of open subsets: { {o}-->{o->c} }^lr ’()’\.

normal (T4): { {a<-b->c<-d->e}-->{b=c=d} }^l /V\(/\

Tietze lemma (not quite) : R-->{o} (- { {a<-b->c<-d->e}-->{b=c=d},{a<-b->c}-->{a=b=c} }^lr

Urysohn lemma (not quite): R-->{a<-b->c} (- { {a<-b->c<-d->e}-->{b=c=d} }^lr

Hausdorff: {u,v}--(inj)-->X /_ {u->x<-v}-->{u=x=v}

i.e. any injection {a,b}-->X lifts wrt {u->x<-v}-->{u=x=v}

Avoiding repetitions. — The reader would notice that the syntax above repeats al-
most everyting twice: indeed, almost the same preorder appears on both sides of -->
arrow. Below we give a sample of possible notations avoiding this repeation, hence
the notation below is intentionally not consistent.

compactness: { {o.->c.} }^r_{<5}^lr ; {o}-->{o->c} is a non-proper map

dense image: { {.o->.c} }^l ; the image of {c}-->{o->c} is not dense

injection: { {x,.=.y} }^r == { {x<->y}-->{x=y} }^l ’~’(’ == .-.).

surjection: { {.o.} }^r == { {}-->{o} }^rrl simplest non-surjection {}-->{o}
connected: { {.o.} }^rll { {x,.=.y} }^l simplest non-connected space {x,y}
discrete: { {.o.} }^)( )(.

subset: { {.o.} }^)) == {{x<=>y=>c}}^( )). == ~\(.

closed subset: { {z<=>x<->y=>c} }^l == {{o.->c.}}^lr ’~’~‘\.(’~’ == ‘()‘\.

open subset: { {z<=>x<->y<=c} }^l ’~’~’\ ( ’=’~’=.

intersection of open subsets: { {o.->c.} }^lr ’()’\.

dense image: { {.o->.c} }^l ; the image of {c}-->{o->c} is not dense

normal (T4): { {a<-b=>c<=d->e} }^l /V\(/\

Tietze lemma (not quite) : R-->{o} (- { {a<-b=>c<=d->e}, {a<=b=>c} }^()
Urysohn lemma (not quite): R-->{a<-b->c} (- { {a<-b=>c<=d->e} }^lr
Hausdorff: {u,v}--(inj)-->X /_ {u=>x<=v}

i.e. any injection {a,b}-->X lifts wrt {u.=.>x<.=.v}

4. Appendix B (unfinished)

In this appendix (not indented for publication) we experiment with notation for
diagram chasing calculations. We present an incomplete(!) diagram chasing calculat-
ing representing the proof of Lemma 1.3 [Analytic]. We hope our calculations give
some evidence that it may be possible to use diagram chasing with preorders in an
efficient formalisation of general topology.

4.1. Statement and proof of Lemma 1.3. — We quote [Analytic]:

Lemma 1.3. Let X0 Ð→ X1... and Y0 Ð→ Y1 Ð→ ... be two sequences
of compact Hausdorff spaces with closed immersions. Then, inside the
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category of topological spaces, the natural map

⋃
n

Xn × Yn Ð→ (⋃
n

Xn) × (⋃Yn)

is a homeomorphism; i.e. the product on the right is equipped with its
compactly generated topology.

Proof. — The map is clearly a continuous bijection. In general, for a
union like ∪nXn, open subsets U are the subsets of the form ∪nUn where
each Un ⊂ Xn is open. Thus, let U ⊂ ∪nXn × Yn be any open subset,
written as a union of open subset Un ⊂ Xn × Yn, and pick any point
(x, y) ∈ U . Then for any large enough n (so that (x, y) ∈ Xn × Yn), we
can find open neighborhoods Vn ⊆Xn of x in Xn and Wn ⊆ Yn of y in Yn,
such that Vn ×Wn ⊆ Un. In fact, we can ensure that even V̄n ×W̄n ⊆ Un by
shrinking Vn and Wn. Constructing the Vn and Wn inductively, we may
then moreover ensure Vn ⊆ Vn+1 and Wn ⊆Wn+1. Then V = ⋃n Vn ⊆ ⋃nXn

and W = ⋃nWn ⊆ ⋃n Yn are open, and V ×W = ⋃n Vn ×Wn ⊆ U contains
(x, y), showing that U is open in the product topology.

4.1.1. Partially commutative diagrams: @{o}. — In a computation it is useful to
consider partially commutative diagrams and we extend our lifting property notation
accordingly. Given a diagram, and a letter o, possibly occurring in notation of one
of the finite preorders (topological spaces), and an arrow X Ð→ Y in the diagram,

we label it by @{o} as X
@{o}ÐÐÐ→ Y to indicate that we only care about commutativity

requirements with respect to elements denoted by o. In notation, we say that two

paths X = X1
f1Ð→ ...

fk−1ÐÐ→ Xk
@{o}ÐÐÐ→
fk

Xk+1
fl+1ÐÐ→ Xk+2

fk+ÐÐ→ ...
fk′Ð→ Xk′+1 = Y and

Y = Y1
g1Ð→ ...

gl−1ÐÐ→ Yk
glÐ→ Yl+1

gl+1ÐÐ→ Yl+2
fl+3ÐÐ→ ...

fl′Ð→ Yl′+1 = Y commute iff both
fk′(fk′−1(..f1(o)...) = gl′(gl′−1(...g1(o)...)) whenever X has a point denoted by o, and
fk′(fk′−1(..f1(x)...) = gl′(gl′−1(...g1(x)...)) = o whenever Y has a point denoted by o
and fk′(fk′−1(..f1(x)...) = o.

4.2. Expanding the colimits. — The first step in the proof is to “expand” the
colimits and get a diagram without colimits. (1) We need to show that the topology
on ⋃nXn × Yn is induced from (⋃nXn) × (⋃n Yn), i.e. the lifting property

⋃
n

Xn × Yn Ð→ (⋃
n

Xn) × (⋃
n

Yn)⋌ {o->c}-->{o=c}

(2) Being open and being commutative is defined pointwise, hence it is enough to

construct the following diagram for each point {o} (x,y)ÐÐÐ→ ⋃nXn × Yn

{o}
(x,y)

// ⋃nXn × Yn
//

��

{o↘ c}

��

(⋃nXn) × (⋃n Yn) //

@{o}

66

{o = c}
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(3) Expanding the definition of product topology we see it is enough to construct
the following diagram

{o}
(x,y)

// ⋃nXn × Yn U //

f

��

{vw = o↘ c = vw′ = v′w = v′w′}

g

��

(⋃nXn) × (⋃n Yn)

ss ,,

��

j //

@{o}

22

{o = c}

(⋃nXn)

��

(⋃n Yn)

��

{v ↘ v′}

++

{w ↘ w′}

rr

{v ↘ v′} × {w ↘ w′} = {vw ↘ vw′ ↘ v′w′, vw ↘ v′w ↘ v′w′}

@{o}

::

(4) To construct an arrow from the union/colimit one needs to construct compatible
arrows from each Xn and Yn. In a diagram chasing computation, we may do so by
showing the inductive step that given an arrow from Xn, you can always add an arrow
from Xn+1 fitting into the same diagram, and the same for the Y ’s. In fact we may
label the arrows from Xn and Yn by @{o}: in natural language this means we are
constructing an increasing sequence of open subsets. We may assume (x, y) ∈Xn×Yn.

It is sufficient to construct the following diagram.

{o}
(x,y)

//

��
--

⋃nXn × Yn
//

��

{vw = o↘ c = vw′ = v′w = v′w′}

...←ÐXn+1

''

��

oo Xn

��

@{o}

zz

(⋃nXn) × (⋃n Yn)

tt ++

��

33

Yn

��

//

@{o}

$$

Yn+1 Ð→ ...

tt

yy

(⋃nXn) (⋃n Yn)

{o = v ↘ v′}
jj

{o = w ↘ w′}
33

{v ↘ v′} × {w ↘ w′} = {o = vw ↘ ...}

@{o}

==
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(4) We now add to the diagram the products Xn×Yn and Xn+1×Yn+1, and remove
the product of colimits.

{o}
(x,y)

//

�� ))
,,

⋃nXn × Yn
//

OO
{vw = o↘ c = vw′ = v′w = v′w′}

...←ÐXn+1

''

��

oo Xn

��

@{o}

zz

Xn × Yn
// //oooo

uu ++��

33

Yn

��

//

@{o}

$$

Yn+1 Ð→ ...

tt

yy

(⋃nXn) Xn+1 × Yn+1

��

ll 11

88

(⋃n Yn)

{o = v ↘ v′}
ii

{o = w ↘ w′}
44

{v ↘ v′} × {w ↘ w′}

@{o}

AA

(6) Now remove more vertices no longer needed:

{o}
(x,y)

//

�� ))
,,

{vw = o↘ c = vw′
= v′w = v′w′

}

...←ÐXn+1

  

oo Xn

@{o}

yy

Xn × Yn
////oooo

��

44

Yn
//

@{o}

%%

Yn+1 Ð→ ...

yy

Xn+1 × Yn+1

��

ll 11

88

{o = v ↘ v′}
hh

{o = w ↘ w′
}

44

{v ↘ v′} × {w ↘ w′
}

@{o}

AA

4.2.1. Preliminary lemmas. — Recall that a topological space X is normal (T4) if
any two disjoint closed subsets of X are separated by neighbourhoods, or, equivalently
by Urysohn lemma, by a continuous function to R.

Recall that a topological space X is regular (T3) if, given any point x ∈X and closed
set B in X such that x does not belong to B, they are separated by neighbourhoods,
or, equivalently, by closed neighbourhoods.

We do use the next Lemma and give it only for context.

Lemma 4.2.1. — A topological space X is normal (T4) iff either of the following
equivalent conditions holds:

– ∅ Ð→X ⋌{a<-v->x<-w->b}-->{a<-v=x=w->b}
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– ∅ Ð→X ⋌{a<-v->v’<-x->w’<-w->b}-->{a<-v=v’=x=w’=w->b}
A topological space X is regular (T3) iff {v}Ð→X ⋌{v->a<-w->b}-->{v=a=w->b}

Proof. — The preimages of a and b are disjoint closed subsets of X; the preimages
of {a<-v} and {w->b} are open neighbourhoods separating A and B.

Let us consider the only interesting case is when v maps to v in {v=a=w->b} by the
top horizontal arrow. The image of v is a point v ∈ X; the preimage of b is a closed
subset B ∋ v of X not containing v, or, equivalently, the preimage of v=a=w is an open
neighbourhood of v. The preimage V of v ∈ {v->a<-w->b} is an open neighbourhood
of v in X disjoint from B.

Recall that a neighbourhood of a point is a set containing an open subset containing
the point.

Lemma 4.2.2. — In a compact Hausdorff space, a neighbourhood of a point contains
a closed neighbourhood of the point, and this is expressed by the following lifting
property:

– {o}--> X /_ {o->a<-u->c}-->{o=a=u->c}

Proof. — Indeed, the lifting property holds trivially if the top horizontal arrow maps
o into u or a, so consider the case it maps to o. The preimage of o=a=u is an open
neighbourhood U of o ∈ X. The preimage of o->a by the diagonal arrow is a closed
neighbourhood of o contained in U .

Lemma 4.2.3. — A map X Ð→ Y is a closed inclusion iff it can be obtained as a
basechange from {c}-->{o->c} along some map Y Ð→ {o->c}.

Proof. — Obvious.

4.2.2. Diagram chasing proof continued. — (7) Use that Yn is a closed subset of Yn+1
by representing it as a pullback of yn in {y′n ↘ yn}.

{o}
(x,y)

//

�� ))
,,

{vw = o↘ c = vw′
= v′w = v′w′

}

...←ÐXn+1

��

oo Xn

@{o}

zz

Xn × Yn
////oooo

��

44

Yn

��

//

@{o}

$$

Yn+1 Ð→ ...

zz

��

Xn+1 × Yn+1

��

kk 11

88

{yn} //
{y′n ↘ yn}

{o = v ↘ v′}
hh

{o = w ↘ w′
}

44

{v ↘ v′} × {w ↘ w′
}

@{o}

AA

(8) By normality of Yn construct Yn Ð→ {o ↘ w ↙ w ↘ w′}, i.e. an closed subset
y ∈ W̄n ⊂ Wn containing an open neighbourhood (the preimage of o) of y. Here the
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subset Wn (open in Yn) is the preimage of {o↘ w ↙ w}, and the closed subset W̄n is
the preimage of {o↘ w}.

{o}
(x,y)

//

�� ))
,,

{vw = o↘ c = vw′
= v′w = v′w′

}

...←ÐXn+1

��

oo Xn

@{o}

zz

Xn × Yn
////oooo

��

44

Yn

��

//

@{o}

$$

&&

Yn+1 Ð→ ...

zz

��

Xn+1 × Yn+1

��

kk 11

88

{yn} //
{y′n ↘ yn}

{o = v ↘ v′}
hh

{o = w = w ↘ w′
}

44

{v ↘ v′} × {w ↘ w′
}

@{o}

AA

{o↘ w ↙ w ↘ w′
}

OO

(9) Use that Yn is a closed subset to construct a map Yn+1 Ð→ {y′n ↘ o ↘ w ↙ w ↘
w′, y′n ↘ w}, i.e. consider W̄n ⊂Wn as subsets of Yn+1; here Yn+1 ∖Yn is the preimage
of y′n.

{o}
(x,y)

//

�� ))
,,

{vw = o↘ c = vw′
= v′w = v′w′

}

...←ÐXn+1

��

oo Xn

@{o}

zz

Xn × Yn
////oooo

��

44

Yn

��

//

@{o}

$$ ''

&&

Yn+1 Ð→ ...

ww

��

zz

Xn+1 × Yn+1

��

kk 11

88

{yn} //
{y′n ↘ yn = w = w

′
= o}

{o = v ↘ v′}
hh

{o = w = w ↘ w′
}

44
{y′n ↘ o↘ w ↙ w ↘ w′, y′n ↘ w}

OO

{v ↘ v′} × {w ↘ w′
}

@{o}

AA

{o↘ w ↙ w ↘ w′
}

OO 33
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(10) By symmetry do the same for Xn+1, i.e. find a closed subset x ∈ W̄n ⊂Wn of Xn

containing an open neighbourhood of x, and consider it as a subset of Xn+1.

{o}
(x,y)

//

�� (( ,,

{vw = o ↘ c = vw′
= v′w = v′w′

}

...←ÐXn+1

��

%% $$

oo Xn

ww

��

zz

@{o}

yy

Xn × Yn
// //oooo

��

44

Yn

��

//

@{o}

%% %%

''

Yn+1 Ð→ ...

yy

��

yy

{x′n ↘ xn = v = v′ = o} {xn}
oo Xn+1 × Yn+1

��

ll 22

99

{yn}
// {y′n ↘ yn = w = w′

= o}

{x′n ↘ o ↘ v ↙ v ↘ v′, , x′n ↘ v}

OO

{o = v = v ↘ v′}
hh

{o = w = w ↘ w′
}

44
{y′n ↘ o ↘ w ↙ w ↘ w′

}

{o ↘ v ↙ v ↘ v′}

OOii

{v ↘ v′} × {w ↘ w′
}

@{o}

CC

{o ↘ w ↙ w ↘ w′
}

OO 44

(11) Finally, we constructed (x, y) ∈ Vn ×Wn ⊂ V̄n × W̄n ⊂ Xn × Yn ⊂ Xn+1 × Yn+1 and
W̄n ×W̄n ⊂ U where Vn is open in Xn, and Wn is open in Yn, and V̄n is closed in both
Xn and Xn+1, and so is W̄n in Yn and Yn+1.

{o}
(x,y)

//

�� (( ,,

{vw = o ↘ c = vw′
= v′w = v′w′

}

...←ÐXn+1

%% ""

oo

��

Xn

ww

��

||

@{o}

yy

Xn × Yn
////oooo

��

55

Yn

��

//

@{o}

%% %%

''

Yn+1 Ð→ ...

yy

��

yy

{x′n ↘ xn = v = v′ = o} {xn}
oo Xn+1 × Yn+1

��

ll 22

::

{yn}
// {y′n ↘ yn = w = w′

= o}

{x′n ↘ o ↘ v ↙ v ↘ v′, x′n ↘ v}

OO

{o = v = v ↘ v′}
gg

{o = w = w ↘ w′
}

55
{y′n ↘ o ↘ w ↙ w ↘ w′, y′n ↘ w}

{o ↘ v ↙ v ↘ v′}

OOii

{v ↘ v′} × {w ↘ w′
}

@{o}

DD

{o ↘ w ↙ w ↘ w′
}

OO 44

(12) Now we shall use that Xn+1 × Yn+1 Ð→ Yn+1 is closed. We have a closed subset
W̄n ⊂ Xn+1, and an open subset of U ⊂ Xn+1 × Yn+1, and we know that V̄n × W̄n ⊂ U .
Using that the projection Xn+1 × Yn+1 Ð→ Yn+1 is closed, we find an open subset
W̄n ⊂Wn+1 ⊂ Yn+1 (the preimage of o in Yn+1 Ð→ {o = ∗o = x′nc = vc = v′c↘ oc = vc})
such that V̄n × W̄n+1 ⊂ U . In this diagram, we use yet another extension of our
notation: @{o} above the arrow means (in this picture) that it relates only to the
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triangle above and not below.

{o}
(x,y)

//

�� ** ,,

{vw = o ↘ c = vw′
= v′w = v′w′

}

...←ÐXn+1

%% &&

oo

��

Xn

ww

��

xx

@{o}

yy

Xn × Yn
////oooo

��

55

Yn

��

//

@{o}

%% %%

''

Yn+1 Ð→ ...

yy

��

yy

{x′n ↘ xn = v = v′ = o} {xn}
oo Xn+1 × Yn+1

��

mm 22

::

{yn}
// {y′n ↘ yn = w = w′

= o}

{x′n ↘ o ↘ v ↙ v ↘ v′, x′n ↘ v}

OO

{o = v = v ↘ v′}
jj

{o = w = w ↘ w′
}

55
{y′n ↘ o ↘ w ↙ w ↘ w′, y′n ↘ w}

{o ↘ v ↙ v ↘ v′}

OOjj

{v ↘ v′} × {w ↘ w′
}

@{o}

DD

{o ↘ w ↙ w ↘ w′
}

OO 44

{x′n ↘ o ↘ v ↙ v ↘ v′, x′n ↘ v} × {o ↘ c}

bb

??

��

��

{o = w↔ w = w′
= y′}

}}

{o = ∗o = x′nc = vc = v′c ↘ oc = vc}

��

@{o}

22

ss

@{o}

(13) Unfortunately, the last step is somewhat vague, as it requires a careful handling
of the inductive step, which we are not able to do. Neither do we carefully specify
the commutativity conditions, unfortunately.

Finally, by normality of Yn+1 add an arrow {o = ∗o = x′nc = vc = v′c↘ oc = vc} @{o}ÐÐÐ→
{o ↘ w ↙ w ↘ w′}. We now see that our calculation shows how to add an arrow

Yn+1
@{o}ÐÐÐ→ {o↘ w ↙ w ↘ w′} given an arrow Yn

@{o}ÐÐÐ→ {o↘ w ↙ w ↘ w′}, fitting the
same diagram. By symmetry we may do the same for Xn and Xn+1, and this would
complete the inductive step, and thereby the argument. Note that we modified the
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inductive step assumption from (7).

{o}
(x,y)

//

�� ** ,,

{vw = o ↘ c = vw′
= v′w = v′w′

}

...←ÐXn+1

%% &&

oo

��

Xn

ww

��

xx

@{o}

yy

Xn × Yn
////oooo

��

55

Yn

��

//

@{o}

%% %%

''

Yn+1 Ð→ ...

yy

��

yy

{x′n ↘ xn = v = v′ = o} {xn}
oo Xn+1 × Yn+1

��

mm 22

::

{yn}
// {y′n ↘ yn = w = w′

= o}

{x′n ↘ o ↘ v ↙ v ↘ v′, x′n ↘ v}

OO

{o = v = v ↘ v′}
jj

{o = w = w ↘ w′
}

55
{y′n ↘ o ↘ w ↙ w ↘ w′, y′n ↘ w}

{o ↘ v ↙ v ↘ v′}

OOjj

{v ↘ v′} × {w ↘ w′
}

@{o}

DD

{o ↘ w ↙ w ↘ w′
}

OO 44

{x′n ↘ o ↘ v ↙ v ↘ v′, x′n ↘ v} × {o ↘ c}

bb

??

��

��

{o = w↔ w = w′
= y′}

}}

{o = ∗o = x′nc = vc = v′c ↘ oc = vc}

��

@{o}

22

ww

o=w=w

ss

@{o}
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