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Abstract. — The free monoid with two generators acts on classes (=properties) of
morphisms of a category by taking the left or right orthogonal complement with

respect to the lifting property, and we define the Quillen negation monoid of the

category to be its largest quotient which acts faithfully. We consider the category of
topological spaces and show that a number of natural properties of continuous maps

are obtained by applying this action to a single example.

Namely, for the category of topological spaces we show finiteness of the orbit of
the simplest class of morphisms {∅ Ð→ {★}}, and we calculate its Schreier graph.

The orbit consists of 21 classes of morphisms, and most of these classes are ex-

plicitly defined by standard terminology from a typical first year course of topology:
a map having a section or dense image; quotient and induced topology; surjective,

injective; (maps representing) subsets, closed subsets; disjoint union, disjoint union

with a discrete space; each fibre satisfying separation axiom T0 or T1. Also, the
notions of being connected, having a generic point, and being a complete lattice, can

be defined in terms of the classes in the orbit.
In particular, calculating parts of this orbit can be used in an introductory course

as exercises connecting basic definitions in topology and category theory.

Die Mathematiker sind eine Art Franzosen: Redet man zu ihnen, so übersetzen
sie es in ihre Sprache, und dann ist es alsobald ganz etwas anderes.
— Johann Wolfgang von Goethe. Aphorismen und Aufzeichnungen. Nach den
Handschriften des Goethe- und Schiller-Archivs hg. von Max Hecker, Verlag der
Goethe-Gesellschaft, Weimar 1907. Aus dem Nachlass, Nr. 1005, Uber Natur und
Naturwissenschaft. Maximen und Reflexionen.

1. Introduction

We say that a property (=class) P of morphisms in a category C is Quillen definable
in terms of property Q iff the class P can be obtained from the class Q by repeatedly
taking the left and right orthogonal completement with respect to lifting property, a
binary relation on morphisms of a category used in a prominent way by Quillen in an
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2 M.GAVRILOVICH AND M.RABIVOVICH

axiomatic approach to homotopy theory [Quillen67, 1§1, Def.1; 2§2(sSets), Def.1,
p.2.2; 3§3(Top), Lemma 1,2, p.3.2].

A number of standard basic properties of morphisms are Quillen-definable in terms
of (the class consisting of) a single and simple example of a morphism violating or
satisfying the property. And so are standard basic properties of objects, if, somewhat
informally, we say that a property P ′ of objects is Quillen definable in terms of Q
iff it is of form fX ∈ P where P is Quillen definable in terms of Q and fX denotes
a morphism associated with an object X in some way, e.g. the initial or terminal
morphism with (co)domain X.

In this way one can define the properties of a (finite) group being nilpotent, soluble,
p-group [CR, Corollary 3.2]; a module being injective or projective; a metric space
being complete; a topological space being compact, contractible, connected, having
a generic point, totally or extremally disconnected, (hereditary) normal, (in)discrete
[V, Y]. Moreover, for the topological properties listed above the simple examples
can very simple indeed: maps of finite topological spaces of size ⩽ 5. This leads to a
concise combinatorial notation for properties of continuous maps allowing to encode
quite a few of standard topological definitions in 2 or 4 bytes.

In this paper we consider the category of topological spaces and classify the properties
Quillen-definable in terms of the (class consisting of) the single morphism ∅ Ð→ {★};
there are precisely 21 of them and most are explicitly introduced in a first year course
of topology, such as a map having a dense image, having a section, being a (closed)
immersion. More explicitly, we calculate the orbit of {∅ Ð→ {★}} and its Schreier
graph (Fig. 2) under the action of the free monoid with two generators l and r taking
a class of morphisms into its left or right orthogonal complement

P z→ P l P z→ P r

We define the Quillen negation monoid of a category to be the largest quotient such
that this action is faithful; a justification for this definition there are interesting
examples of orbits of its action. We formulate a couple of questions, e.g. whether
the Quillen negation monoid is finite for the category of topological spaces or for the
category of finite groups of a fixed period.

Thus one may “stumble upon” or “generate” these notions with a non-negligible
probability simply by picking an interesting example of a map or a pariculalry simple
class of maps, and applying the trick a few times. This suggests that Quillen negation
can be viewed as a rule of ergologic of Gromov [Ergobrain], see [DMG, Y] for
detailed speculations.

Let us now repeat the above in more detail.

A sketch of our results. — In this note we look at the category of topological spaces
and the notions defined using the lifting property in terms of the simplest morphism
∅ → {●}, namely the map from the empty set to the singleton. We find that most of
them are quite natural and there are only finitely many of them, in a precise sense
we describe now.
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Following [Quillen67, 1§5,Def.1(M6)], see Def. 2.1 below, for a property (=class) P
of morphisms in a category C we define the properties (=classes) P l and P r of having
the left, resp. right, lifting property with respect to each morphism in P . This defines
an action of the free monoid with two generators l and r on properties (=classes) of
morphisms in the category. We say that a property P Quillen defines a property Q
iff Q lies in the orbit of P , i.e. Q = Pw for some word w ∈ {l, r}ℵ0 . We also say that
property P w-defines property Q when Q = Pw. Often we consider P = {f} consisting
of a single map of finite spaces, and then we say that a map f w-defines a property
(=class) Q of morphisms iff Q = {f}w. We also say that a map f w-defines a property
Q of spaces for spaces with property R iff for each space X with property R it holds
X
↓

{●}

∈ {f}w iff X has property Q.

In this paper we classify the properties defined by the map ∅ Ð→ {●}, or, equivalently,
calculate the orbit of P = {∅ Ð→ {●}}. Our main result is Theorem 1.2 saying
that its orbit is finite, and consists of 21 properties. Fig. 1 and Fig. 2 show the
Schreier graph of the orbit. Moreover, 7 of these properties are explicitly defined by
standard terminology introduced in a typical first year course of topology (namely,
quotient, induced topology, subspace, closed subspace, having dense image, having
a section, surjective, injective, disjoint union), and 5 more almost so (disjoint union
with a discrete space, having a section picking a generic point in each fibre, each
fibre satisfies Separation Axiom T0 or T1, the domain is (non)-empty), and the map
π0(f) ∶ π0(X) Ð→ π0(Y ) is surjective (only for those Y where π0(Y ) is finite)). As
each element of the orbit can be coded by a l, r-word of length at most 7, we see that
this action leads to a notation so concise that each of these notions fits into a single
byte.

The main tool is the proof is a concise combinatorial notation for maps of finite
topological spaces using the fact that a finite topological space is the same as a finite
preorder. In particular, 8 of the properties in the orbit are of form {f}l, and 4 of form
{f}r, where f is a map of finite spaces of size ⩽ 4, and in our calculation we specify
these maps explicitly in §3. In fact, we believe it should not be hard to extend our
result and and calculate explicitly the likely finite Schreier graph generated by the
classes of maps of spaces with ≤ 2 elements. Extending this to maps of spaces of size
≥ 3 might be more difficult, as the following examples show. For Hausdorff spaces
compactness is lr-defined by a map from 3 point space to 2 points, and contractibility
for finite CW complexes is lr-defined by a class consisting of two maps from ≤ 5 points
to ≤ 3 points. ([V, Lemma 2.3.1], [Y, Theorem 3.14, Corollary 4.6]).

Conclusion.— Together with the action described above, our notation for mono-
tone maps of finite preorders leads to a concise combinatorial notation for the basic
topological notions mentioned above, but also for topological properties such as com-
pact, contractible, connected, π0(f) being surjective or injective, and, conjecturally,
a proper map, a trivial fibration (among maps of “nice” spaces).

This shows that there is combinatorics of finite preorders implicit in basic definitions
of topology. We explore this further in [V, Y].
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Structure of the paper. — In §1.1 we define the action of a monoid on a category, and
in §1.2 describe the orbit of {∅ Ð→ {●}} in Top. In §1.3 we formulate several open
problems. In §2.1 we define the lifting property, and in §2.2 introduce the notation for
maps of finite topological spaces. In §2.3 we demonstrate our ideas and our notation
describing the “baby” example of the Quillen negation monoid of the category of
Sets. Then in §3 we rewrite several properties in terms of maps of finite topological
spaces (=preorders) of size ⩽ 4, and use them in to calculate the iterated Quillen
negations/orthogonals of {∅ Ð→ {●}} in §4.

Acknowledgements. — We thank Anna Erscher for discussions and remarks on a
preliminary version of the paper, in particular for pointing out that our results are
best formulated in terms of the Quillen negation monoid and its action. We are
grateful to Kobi Peterzil for support and hospitality.

1.1. The Quillen negation monoid of a category. — We introduce a monoid
associated with a category, and formulate our results in terms of its action on classes
of morphisms in the category. As we explain below, this action is generated by two
transformations P z→ P l and P z→ P r sending a class of morphisms into its left or
right orthogonal.

1.1.1. The definition of a Quillen negation monoid of a category. — Fix a category C.
A simple way to define a class of morphisms without a given property P is by taking its
left or right orthogonal or P l or P r with respect to the lifting property (orthogonality
of morphisms, see Def. 2.1), defined as the class of all morphisms which have the
left, respectively right, lifting property with respect to each morphism with property
P . It is convenient to refer to (the property of being in the class) P l and P r as
the left or right Quillen negation of (the property of being in the class) P . Taking
the orthogonal/Quillen negation P ↦ P l and P ↦ P r defines the action of the free
monoid with 2 generators l and r on classes (=properties) of morphisms in a category:
a word w, e.g. w = lrrr, sends a property P into Pw, e.g. P lrrr ∶= (((P l)r)r)r; in this
situation it is convenient to say that property P w-defines property Q = Pw.

The Quillen negation monoid QN(C) is the quotient monoid making this action faith-
ful:

Definition 1.1. — The Quillen negation monoid QN(C) of a category C consists
of words in letters l and r. Two words are considered equal iff they act the same on
each property, i.e.

v =QN(C) w ⇐⇒ for each property P P v = Pw

Fix a property P0 of morphisms in the category C. Two words are equal in the Quillen
negation monoid QN(C, P0) of a property P0 iff they act the same on each property
in the orbit of P0, i.e.

v =QN(C,P ) w ⇐⇒ for each word s P sv0 = P sw0
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An easy calculation (see §2.3 for a picture of the Schreier graph) shows that the
Quillen negation monoid QN(Sets) of the category of sets is finite, and that there
are precisely 8 different properties of maps in Sets defined by Quillen negation (i.e. of
form P l or P r for some class P ); essentially it is the same calculation which shows
that there are precisely 9 model structures on the category of Sets [GW].

1.1.2. Definitions in terms of Quillen negation. — A number of standard basic defi-
nitions can be concisely and uniformly expressed as Pw or fG ∈ Pw where w ∈ QN(C),
the morphism fG is constructed explicitly from an object G, and P is a class of sim-
ple examples of morphisms satisfying or violating a property related to the definition.
This is how Quillen defined (co)fibrations and acyclic (co)fibrations (for w = l, lr) in
several model categories in his axiomatic approach to homotopy theory [Quillen67,
2§2(sSets), Def.1, p.2.2; 3§3(Top), Lemma 1,2, p.3.2]. In the category of (finite)
groups, examples include the definitions of a finite group being nilpotent, solvable,
perfect, torsion-free; p-groups, and prime-to-p groups, perfect core, Fitting subgroup,
and p-core [CR]. In model theory, Shelah’s characterisations of stability, NIP, NOP,
and non-dividing are of this form [Z1, Z2, S].

1.1.3. Topological properties defined by iterated Quillen negation. — In the category
of topological spaces it is often enough to take P to be a finite class of maps of finite
topological spaces, say of size at most 6. This leads to a concise combinatorial notation
for properties such as a topological space being compact, contractible, connected, zero-
dimensional, separation Axioms T0, T1, T4 (normal), and T6 (hereditary normal); a
map having dense image, being a closed inclusion, and having connected fibres, being
proper (for maps of nice enough spaces, e.g. metrisable) [Y, §1.1],[LP2].

1.2. The finite orbit of {∅ Ð→ {●}} in the category of topological spaces. —
In this paper we calculate the orbit of the action of the Quillen negation monoid on
the simplest class, namely the class P ∶= {∅ → {●}} consisting of a single morphism
∅ → {●} from the empty set to the singleton. It turns out this orbit is finite and
consists of 21 rather natural properties of maps, 8 of which are explicitly defined in
a typical introductory course of topology, and about 6 more almost so. For example,
the word rllrrl sends {∅ → {●}} into the class of closed inclusions representing the
notion of a “closed subset”, and the word rllrrll sends it into the class of maps having
the dense image; see §1.2.2 for a list.

Theorem 1.2. — The orbit of {∅ Ð→ {●}} under the action of the Quillen negation
monoid QN(Top) of the category of topological spaces, is finite and has 21 element.

Proof. — The orbit is calculated case by case in §4.

1.2.1. The Schreier graph of the orbit. — Fig. 1 represents the Schreier graph of the
orbit of {∅ Ð→ {●}} under QN(Top,{∅ Ð→ {●}}) action. The label on a vertex rep-
resents (usually the shortest) path from the “root” {∅ Ð→ {●}} to the vertex. Fig. 2
shows the same Schreier graph where we add to each vertex an informal explanation
of the class it represents. Fig. 3 and Fig. 4 shows that the Schreier graph is a bipar-
tie graph with sides represented by words of even and odd length (if we ignore two
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l({}->{o}) lr({}->{o})
r

ll({}->{o})

l

r({}->{o})

lrrrll({}->{o})=rl({}->{o})
l

rr({}->{o})

r

{}->{o}

l

r

r

rll({}->{o})

l

l

rrr({}->{o})

r

l
lrr({}->{o})

r
lll({}->{o})=llr({}->{o})

l

r

l

r

lrrr({}->{o})

r

lrrl({}->{o})
l

l

rlllrrr({}->{o})=rrrr({}->{o})

r

l

rllr({}->{o})
r

lrrrl({}->{o})l

lrrrr({}->{o})
r

r

l

l

rllrr({}->{o})
r

rllrrl({}->{o})l

r

r

rllrrll({}->{o})

l

l

r

l

r

l

lrrrrr({}->{o})r

r

l

r

rrrrl({}->{o})

l

l

r

Figure 1. The orbit of {∅ Ð→ {●}} in Top.

vertices corresponding to the classes of isomorphisms and of all morphisms), and that
each side is ordered by inclusion almost linearly. The graph has 12 cycles of length 2,
and two cycles of length 6 sharing the path rrrr = rllrrr → rrrrl → rl:

llrrrr ∶ rrrr lÐ→ rrrrl
lÐ→ rl

rÐ→ r
rÐ→ rr

rÐ→ rrr
rÐ→ rrrr

lllrrr ∶ rrrr lÐ→ rrrrl
lÐ→ rl

lÐ→ rll
rÐ→ rllr

rÐ→ rllrr
rÐ→ rrrr

Each 2-cycle is formed by the l- and r-arrows going in opposite directions.

The pair ll, lll = llr forms a “sink”: if a path enters either of the two vertices, it starts
forever going back and forth ll ↔ lll = llr. Each word containing l6 or r6 enters the
sink ll ↔ lll, hence for each s there are exactly two distinct words of form sl6... and
of form sr6... (namely, of odd length and of even length).

The graph becomes a tree if we leave only l-edges or only r-edges and remove the
vertex lll.

It is easy to describe the behaviour of a path though this graph. First, we may remove
the lr 2-cycles. A path without lr 2-cycles either ends up in ll(isomorphisms) in < 7
steps, or enters either of the two 6-cycles via rl, rll, or r, and cycles there. It may

leave only though three arrows, two of which lead to ll(isomorphisms) (rll
lÐ→ ll,

rrrr
rÐ→ ll). If it leaves through the remaining arrow, the path ends up in ll in 3 steps

(rllrr
lÐ→ rllrrl

lÐ→ rllrrll
lÐ→ ll).

The longest cycle-free path has 11 vertices.

1.2.2. The meaning of the classes in the orbit.— Several of the classes in the orbit
are Quillen negations of maps of finite topological spaces of size at most 6. Fig. 5 in
§3 below lists these maps and indicates the properties defined by their left and right
Quillen negation. In fact, it appears easy to extend our calculation to also compute
the orbits of a few other morphisms, namely (see §2.2.4 for a definition of the notation)

● ●
⇓
●

●
⇓
● ●

★x ↔ ★y ↔ ★z↘ c
⇓

★x=y ↔ ★z=c
★ ↔ ★
⇓
★

● ↘
⇓
●

★ ↔ ★ ↘
⇓
●

for the last three both their left and right Quillen negation belong to the orbit.
However, for reasons of space this is not done in this paper.
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Figure 2. The orbit of {∅ Ð→ {●}} in Top.
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. rl

A --> A |_| D, D discrete

rl contains: {a}-->{a,b}

== ( {a->b}-->{a<->b}  {a<->b}-->{a=b} )^l

lrrl

A --> A |_| Y

== (all cobase changes of {a}-->{a,b})

rllr

closed subpace & more properties  

contains: A (= B is a closed subset of B equal to the intersection of all clopen subsets containing A

contains: {}-->B

contained in: (closed subsets) == ({a<->b->c}-->{a<->b=c}) ^l

== {a}-->{a,b} ^lr

rllrrl LR

 closed subspace

== {a<->b<->c->d}-->{a=b<->c=d} ^l == {c}-->{o->c} ^lr

contains: {c}-->{o->c} {}-->{o}

rr  LR

subspace

== {u<->o->c}-->{u=o=c} ^l  ==  ( {x<->y}-->{x=y}, {o->c}-->{o=c} ) ^l

lrrr  LR

injective

== {a<->b}->{a=b} ^l == {a,b}->{a=b} ^r

rrr.r

the fibre is T_1

== {o->c}-->{o=c} ^r

contains:  {x}->{x<->y},  {o->c}-->{o<->c}, {a<->b,c<->d}-->{a<->b=c<->d}

{}-->{o} {a,b}-->{a=b} any bijection

lrrr.rr

each fibre is T_0

 == {a<->b}-->{a=b} ^r

contains: {}->{o}, {x}->{x<->y},  {o->c}-->{o<->c},

{a<->b->c<->d}-->{a<->b=c<->d}, {a<-b}-->{a=b}

lr

empty domain or isomorphism

l

non-empty domain or {}-->{}

rll

pi_0(X)-->>pi_0(Y) is surjective, for finite pi_0(Y)

each non-empty clopen subset of B intersects ImA

== {a}-->{a,b} ^l

 contains: {a}-->{a<->b} {a->b}-->{a=b} {a<->b}-->{a=b}

{a<->b<->c->d}-->{a=b->c=d}

any surjection

rllrrll

  dense image

== {c}-->{o->c} ^l

contains {a}-->{a<->b} {a<->b}-->{a=b} {a->b}-->{a=b} surjections  

r  LR

surjective

 == {a<->b}->{a=b} ^l == {}->{o} ^r

lrrrl

quotient

== ( {x}->{x<->y},  {o->c}-->{o<->c} ) ^l

contains: {a<->b->c<->d}-->{a<->b=c<->d}, {a<->b}-->{a=b}, {a->b}-->{a=b}

lrr

has a section

rrr.rl

quotient & no closed equivalence relation on each fibre

contains: {a<->b}-->{a=b}, {o->c}-->{o=c},

 {a<->b->c<->d}-->{a<->b=c<->d}

rllrr

has a section s:Y->X picking a generic point in each fibre

surjective & has a section & is a quotient & more

contains: {o->c}-->{o=c} {a<->b}-->{a=b} {a<->b->c}-->{a<->b=c}

rrr

for poset X,   X-->{o} is in rrr iff X is a complete lattice

each finite fibre is a lattice & more properties

each fibre is a retract of {u<->o->c}^kappa & quotient & has a section & more

contains: {a->b}-->{a=b} {a<->b}-->{a=b}

lrrr.r  LR

surjective & induced topology on A

== ( {x}->{x<->y},  {o->c}-->{o=c} ) ^l  ==  {a<->b}-->{a=b} ^rl  

(isomorphisms)

(isomorphisms)

r

l

Figure 3. The classes in the orbit of {∅ Ð→ {●}} in Top as a bipartie
graph with sides ordered by inclusion. Black arrows represent inclusion,
r-arrows are red, and l-arrows are blue dashed.

Let us now give a list of words defining basic properties of maps or spaces. Complete
statements can be found in §4.

– rr — subspace; rllrrl — closed subspace; rllrrll — having dense image;
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.

rl=rrrrll=rllrrrlll

A --> A |_| D, D discrete

rl contains: {a}-->{a,b}

== ( {a->b}-->{a<->b}  {a<->b}-->{a=b} )^l

lrrl

A --> A |_| Y

== (all cobase changes of {a}-->{a,b})

rllr

closed subpace & more properties  

contains: A (= B is a closed subset of B equal to the intersection of all clopen subsets containing A

contains: {}-->B

contained in: (closed subsets) == ({a<->b->c}-->{a<->b=c}) ^l

== {a}-->{a,b} ^lr

rllrrl LR

 closed subspace

== {a<->b<->c->d}-->{a=b<->c=d} ^l == {c}-->{o->c} ^lr

contains: {c}-->{o->c} {}-->{o}

rr  LR

subspace

== {u<->o->c}-->{u=o=c} ^l  ==  ( {x<->y}-->{x=y}, {o->c}-->{o=c} ) ^l

lrrr  LR

injective

== {a<->b}->{a=b} ^l == {a,b}->{a=b} ^r

rrrr=rllrr

the fibre is T_1

== {o->c}-->{o=c} ^r

contains:  {x}->{x<->y},  {o->c}-->{o<->c}, {a<->b,c<->d}-->{a<->b=c<->d}

{}-->{o} {a,b}-->{a=b} any bijection

lrrr.rr

each fibre is T_0

 == {a<->b}-->{a=b} ^r

contains: {}->{o}, {x}->{x<->y},  {o->c}-->{o<->c}, {a<->b->c<->d}-->{a<->b=c<->d}, {a<-b}-->{a=b}

lr

empty domain or isomorphism

l

non-empty domain or {}-->{}

rll=lrrll

pi_0(X)-->>pi_0(Y) is surjective, for finite pi_0(Y)

each non-empty clopen subset of B intersects ImA

== {a}-->{a,b} ^l

 contains: {a}-->{a<->b} {a->b}-->{a=b} {a<->b}-->{a=b}

{a<->b<->c->d}-->{a=b->c=d}

any surjection

rllrrll

  dense image

== {c}-->{o->c} ^l

contains {a}-->{a<->b} {a<->b}-->{a=b} {a->b}-->{a=b} surjections  

r  LR

surjective

 == {a<->b}->{a=b} ^l == {}->{o} ^r

lrrrl

quotient

== ( {x}->{x<->y},  {o->c}-->{o<->c} ) ^l

contains: {a<->b->c<->d}-->{a<->b=c<->d}, {a<->b}-->{a=b}, {a->b}-->{a=b}

lrr

has a section

rrr.rl

quotient & no closed equivalence relation on each fibre

contains: {a<->b}-->{a=b}, {o->c}-->{o=c}, {a<->b->c<->d}-->{a<->b=c<->d}

rllrr

has a section s:Y->X picking a generic point in each fibre

surjective & has a section & is a quotient & more

contains: {o->c}-->{o=c} {a<->b}-->{a=b} {a<->b->c}-->{a<->b=c}

rrr

for poset X,   X-->{o} is in rrr iff X is a complete lattice

each finite fibre is a lattice & more properties

each fibre is a retract of {u<->o->c}^kappa & quotient & has a section & more

contains: {a->b}-->{a=b} {a<->b}-->{a=b}

lrrr.r  LR

surjective & induced topology on A

== ( {x}->{x<->y},  {o->c}-->{o=c} ) ^l  ==  {a<->b}-->{a=b} ^rl  

rr

(all morphisms)

rl

lr

ll

(isomorphisms) (all morphisms)

(isomorphisms)

Figure 4. The classes in the orbit of {∅ Ð→ {●}} with generators
ll, lr, rl, rr in Top as a bipartie graph with sides ordered by inclusion. Black
arrows represent inclusion; loops are not depicted.

– lrrl — disjoint union; rl — disjoint union with a discrete space;

– rll defines the class of maps f ∶ X Ð→ Y such that π0(f) ∶ π0(X) Ð→ π0(Y ) is
surjective (whenever π0(Y ) is discrete).
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– lrrrl — quotient (i.e. the class of maps f ∶ X Ð→ Y such that the topology on
Y is the quotient topology); lrrrr — the map is surjective and the topology on
its domain is induced from its image.

– rrrr— each fibre satisfies Separation Axiom T1; and lrrrrr— each fibre satisfies
Separation Axiom T0;

– lr — the domain is empty; l — the domain is non-empty;

– r — surjective; lrrr — injective;

– lrr — having a section; rllrr — having a section picking a generic point in each
fibre.

– rrr — a partial order P is a complete lattice iff P Ð→ {●} lies in {∅ → {●}}rrr.

1.3. Open problems. — We formulate a couple of obvious questions one may ask
about the Quillen negation monoid.

1.3.1. Randomly generating a definition of compactness and contractibility. — Our
observations lead to a notation for topological properties of maps or spaces so concise
that the definitions of compactness, contractility, and connectedness fit into two or
four bytes. This notation makes explicit finite preorders implicit in these notions. Let
us explain.

Fix a random distribution on finite preorders. The following problem asks what is
the probability that a map of finite spaces defines connectedness, compactness, and
contractibility.

Problem 1.3. — What is the probability that a map of finite spaces of size ⩽ n
“defines” connectedness, compactness, or contractibility, in the sense that it satisfies
either of the conditions (i),(ii), and (iii), resp.

(i) A space X is connected iff X Ð→ {●} ∈ {g}l, i.e. X Ð→ {●} ⋌ g.

(ii) A Hausdorff space X is compact iff X Ð→ {●} ∈ {g}lr.

(iii) A finite CW complex X is contractible iff X Ð→ {●} ∈ {g}lr.

What is the probability that {f}l or {f}lr lies in the orbit of {∅ Ð→ {●}} ?

Explanation. — A verification shows that a map satisfies (i) iff each of its fibres is

discrete, and at least with one of fibres has at least two points.(1)

By [Y, Corollary 4.4, Corollary 4.2] gives a purely combinatorial condition implying
(ii). Namely, they say that compactness is defined as left-then-right Quillen negation

(1)Indeed, in the lifting property X Ð→ {●} ⋌ g we only need to consider the fibres of g: in the

commutative square the space X has to map to a fibre of g, and thus it holds iff for each fibre F

of g it holds X Ð→ Y ⋌ F Ð→ {●}. This fails if X is a connected subset of F , which exists iff F is
not discrete. [Bourbaki66, I§11.2,Proposition 5] implies for F discrete this lifting property defines

connectedness.
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of any closed (=proper) map of finite topological spaces complicated enough; “com-
plicated enough” here means that the map has as retracts the maps in [Y, Eq. 22].
Similarly, contractibility is defined by any trivial Serre fibration complicated enough
in a similar sense using the maps mentioned in [Y, Theorem 3.11]. Presumably the
proportion of such maps is non-negligible.

1.3.2. A concise notation for topological properties. — A concise and in some way
intuitive notation for basic topological spaces is provided by iterated Quillen nega-
tions/orthogonals of maps of finite spaces: a word in two letters l,r, and a set of maps
of finite topological spaces represents a property (=class) of continuous maps, By con-
sidering the morphism X Ð→ {●} this notation also defines a property of spaces. [Y,
Prop. 2.5,Thm. 3.14,Cor. 4.4] shows that to define connectedness, contractibility, and
compactness, it is enough to consider one or two maps of finite spaces of size ⩽ 5
and ⩽ 3. [LP1] gives a list of 20 topological properties defined in this way using a
single map of spaces with ⩽ 4 and ⩽ 3 points, and this paper lists some 10 properties
defined starting with the single map ∅ Ð→ {●} using up to 7 Quillen negations. In
particular, [Y, Prop. 2.5, Cor. 4.4] shows connectedness can be defined using a single
map of spaces with two points, and compactness using a single map of spaces with 4
and 2 points. A rough count on the number of maps of preorders suggests that the
definitions of these notions fit into two bytes, or perhaps three.(2) It is tempting to
develop a computer algebra system using an extension of our notation. The following
is an example of a concrete goal.

Problem 1.4. — Develop a concise combinatorial notation for topological properties,
and a computer algebra system, which can state and prove that

(
∅
⇓
●
)
rl

= (
∅
⇓
●
)
rrrrll

= (
∅
⇓
●
)
rllrrrll

(
∅
⇓
●
)
rllrrll

=
⎛
⎜
⎝

★x ↔ ★y ↔ ★z↘
c

⇓
★x=y ↔ ★z=c

⎞
⎟
⎠

ll

= ( ⇓
● ↘

)
l

(2)Let us bound the number #Mapsp→q of maps from a preorder with p elements to a preoder with
q elements in terms of the number of labelled preorders with p elements.

Pick a preorder Q with l elements labelled by 1, ..l. Pick a P be a preorder labelled by 1, .., p. A

subset (=increasing sequence) 1 ≤ i1 ≤ ... ≤ il′ ≤ p with l′ ⩽ l − 1 elements determines a (possibly not
monotone) map P Ð→ Q from P into Q. Each map of unlabelled preorders with p and l elements

can be constructed in this way. Hence, the number of maps from a preorder with p elements to a
preorder with l elements at is most the product of the number of labelled preorders with p elements,
the number of partitions of p into ⩽ l intervals, and the number of (in fact, unlabelled) preorders

with l elements. Using the OEIS library (sequences A001930 and and A000798) for p = 4 and l = 2

we get ⩽ 355∗4∗3 = 4260 ⩽ 213, and for p = 5 and l = 3 we get ⩽ 6942∗15∗9 = 937170 ≈ 1000000 ⩽ 220

Thus, if we include the lr-suffix, the notions of connectedness and compactness fit into 2 bytes, and

contractibility may fit into 3 or 4 bytes.

https://oeis.org/A001930
https://oeis.org/A000798
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Explanation. — We prove both identities in our calculation of the orbit of ( ∅⇓
●
). The

first identity is evident in Fig. 1 and Fig. 2. Theorem 4.20 says that classes mentioned
in the second identity are equal to the class of maps with dense image.

1.3.3. A cognitive experiment. — Arguably, there are finite preorders implicit in basic
notions of topology. Are there preorders processed by our brain [DMG, §3] ?

The following little experiment is perhaps both feasible and informative, once we are
able to reformulate in purely combinatorial terms a topological argument complicated
enough.

Experiment 1.5. — Explain to a 2nd year student a combinatorial construction rep-
resenting a well-known topological definition or argument. What associations will the
student make ? Importantly, the student should not be preconditioned to think about
topology.

1.3.4. Finitetess of orbits of maps of finite spaces?—

Problem 1.6. — Is it true that in QN(Top) the orbit of any map of finite topological
spaces is finite ?

In other words, is it true that for each map f ∶ X Ð→ Y of finite topological spaces
there are only finitely many different classes of form {f}w where w is a word in
alphabet {l, r} ?

In particular, is this true for the trivial Serre fibration
∎A
↙●U↘

∎X
↙●V ↘

∎B

⇓
∎A
↙
●U=X=V ↘∎B

, and the

closed map defining compactness in [Y, §1.1.2-3].

1.3.5. Is the Quillen negation monoid of Top finite ?— In any category and for any
property P it holds P lrl = P and P rlr = P r; this is shown by the same calculation that
shows that for a vector space its dual and its triple-dual coincide, i.e. for any vector
space V V ∗∗∗ = V ∗. Does the Quillen negation monoid satisfy any other relation ?
In fact, is it finite ? We state these questions as a problem.

Problem 1.7. — Is the Quillen negation monoid QN(Top) of the category of topo-
logical spaces finite ?

Does the Quillen negation monoid QN(Top) satisfy any relation in addition to lrl = l
and rlr = r ?

1.3.6. A model structure on Top defined combinatorially?— In a closed model cat-
egory, if a map f ∶ X Ð→ Y is an (acyclic) fibration, then so in any map in {f}lr.
This formally follows from the fact that (acyclic) fibrations are defined by a right
lifting property. It is tempting to ask whether one can find a single map f of finite
topological spaces such that the class {f}lr is in some sense the class of all (acyclic)
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fibrations. A candidate for such an example of an acyclic fibration is discussed in [V],
see also [Y, §3]: it is an acyclic Serre fibration such that for a space X nice enough,
e.g. metrisable separable absolute neighbourhood retract, the map X Ð→ {●} is an
acyclic fibration iff X Ð→ {●} ∈ {f}lr.

The following is a couple of precise questions.

Problem 1.8. — Find two finite classes (C) and (WC) of maps of finite topological
spaces, two words v,w ∈ {l, r}ℵ0 , and a model structure on the category of topological
spaces such that (C)v is its class of fibrations, and (WC)w is its class of acyclic
fibrations.

For a class P , let Pℵ0 denote the subclass of P consisting of maps between finite
spaces. Note that [?, Corollary 4.4] defining compactness gives an example of an
expression of the form used in the problem below.

Problem 1.9. — Find two maps fwc and fc of finite topological spaces, and four
words v1, v2,w1,w2 ∈ {l, r}ℵ0 , such that for each map f ∶ X Ð→ Y of finite CW
complexes X and Y it holds

– f is an acyclic fibration iff f ∈ (({fwc}v1)ℵ0)v2

– f is a fibration iff f ∈ (({fc}w1)ℵ0)w2

1.3.7. A homotopy theory for the category of finite groups of a fixed period ?— The
category of finite groups of a given period N (i.e. finite groups G such that xN = 1
for each x ∈ G) has all finite limits and colimits, as implied by the positive solution

of the Burnside problem [NY, Corollary 3.2].(3) Let us denote this category by
FiniteGroupsmodN .

[CR] gives examples of Quillen negations in the category of finite groups related to
the notions of being nilpotent, solvable, perfect, torsion-free; p-groups and prime-
to-p-groups; Fitting subgroup, perfect core, p-core, and prime-to-p core. Arguably,
calculations there suggest it may be possible to classify all the Quillen negations
and weak factorisation systems in the category of finite groups or in the category
FiniteGroupsmodN which has better category theoretic properties (namely, has finite
limits and colimits).

Problem 1.10. — Calculate the Quillen negation monoid of FiniteGroupsmodN .
Is it finite ?

(3)Indeed, the universality condition on the restricted Burnside group says precisely that it is the

coproduct of cyclic groups with N elements in this category; this is the statement of [NY, Corollary

3.2]. The rest of the claim follows by standard arguments, as follows. An arbitrary colimit is a
quotient of the coproduct. In the category of groups limits of diagrams of finite groups are also

finite.
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For N = 2 this is true for trivial reasons: a group of period 2 is necessarily abelian and
thus is the same as a vector space over the field with two elements. On the category
of vector spaces (of finite dimension or not), there are only 4 Quillen negations:
injections, surjections, isomorphisms, and arbitrary morphisms.

Recall that a model structure on a category consists of two weak factorisation systems
with certain properties [Quillen67, Introduction, p.0.1; I§1,Def.1(Axiom M2),p.1.1].
Thus examining the classification of Quillen negations or weak factorisation systems
on FiniteGroupsmodN can perhaps lead to a definition of a homotopy theory for
finite groups of a fixed exponent.

Problem 1.11. — Find a non-trivial model structure on FiniteGroupsmodN such
that its homotopy category says something non-trivial about finite groups.

2. Preliminaries

2.1. The lifting property. — We define the lifting property and briefly describe
its properties and intuition. Proofs can be found in [H, §3], and more examples in
[LP2].

A
∀t //

f

��

C

g

��

B ∀b //

∃d

??

D

Definition 2.1. — A morphism A
fÐ→ B in a cate-

gory has the left lifting property with respect to a mor-

phism C
gÐ→ D, and C

gÐ→ D also has the right lifting

property with respect to A
fÐ→ B, denoted by f ⋌ g or

A
fÐ→ B ⋌ C gÐ→D, iff for each map A

tÐ→ C and B
bÐ→ D

such that f ○ b = t ○ g, there exists B
dÐ→ C such that

t = f ○ d and b = d ○ g.

For a class C of morphisms in a category, its left orthogonal or left Quillen negation
C⋌ l with respect to the lifting property, respectively its right orthogonal or right
Quillen negation C⋌ r, is the class of all morphisms which have the left, respectively
right, lifting property with respect to each morphism in the class C:

C⋌ l ∶= {f ∣ ∀g ∈ C f ⋌ g}

C⋌ l ∶= {g ∣ ∀f ∈ C f ⋌ g}

It is clear that C⋌ lr ⊃ C, C⋌ rl ⊃ C, C⋌ l = C⋌ lrl, and C⋌ r = C⋌ rlr, and that any
map in C ∩C⋌ l or C ∩C⋌ r is an isomorphism. The class C⋌ r is always closed under
retracts, pullbacks, products (whenever they exist in the category) and composition of
morphisms, and contains all isomorphisms. Meanwhile, C⋌ l is closed under retracts,
pushouts, coproducts and transfinite composition (filtered colimits) of morphisms
(whenever they exist in the category), and also contains all isomorphisms.
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2.1.1. Intuition: lifting property as negation. — Taking the orthogonal (Quillen nega-
tion) of a class C is a simple way to define a class of morphisms excluding non-
isomorphisms from C, in a way which is useful in a diagram chasing computation.
A useful intuition is to think that the property of left-lifting against a class C is a
kind of negation of the property of being in C, and that right-lifting is also a kind of
negation, and for this reason it is convenient to refer to property C⋌ l, resp. C⋌ r, as
the left, resp. right, Quillen negation of property C.

2.1.2. Weak factorisation systems. — Quillen negations are closely related to weak
factorisation systems, defined as a pair L ⋌ R of classes of morphisms (i.e. for each
f ∈ L and each g ∈ R it holds f ⋌ g) such that each morphism f decomposes as
f = fr ○ fl where fl ∈ L and fr ∈ R. Given a weak factorisation system L ⋌ R, so are
Lrl ⋌ Lr and Rl ⋌ Rlr, where L ⊂ Rl ∩ Lrl and R ⊂ Lr ∩Rlr.

A desirable property of a Quillen negation Cl or Cr is that each morphism f decom-
poses as f = fl ○ flr where fl ∈ Cl, resp. flr ∈ Clr, and f = frl ○ fr where frl ∈ Crl and
fr ∈ Cr, i.e. that (Cl,Clr), resp. (Crl,Cr) is a weak factorisation system. The prop-
erty is often proven when C is a set (rather than a class) by a transfinite construction
called the Quillen small object argument. We also verified by hand that this property
holds for most of the examples considered in this paper.

2.1.3. Intuition: Defining by examples.— A number of basic notions from a first year
course in algebra or topology may be expressed using the lifting property starting
from an explicit list of (counter)examples, i.e. as C⋌ l, C⋌ r, C⋌ lr, C⋌ ll, ... where
the class C is an explicitly given list of morphisms. For example, in Sets for the
simplest non-surjections ∅ → {●} and {●} → {●, ●} the Quillen negation the class
{∅ → {●}}r = {{●} → {●, ●}}l is the class of surjections, whereas for the simplest non-
injection {●, ●} → {●} the Quillen negation the class {{●, ●} → {●}}l = {{●, ●} → {●}}r
is the class of injections. In the category R−Mod of modules, a module P is projective
iff 0 → P is in {0 → R}rl, and a module I is injective iff I → 0 is in {R → 0}rr
[LP1]. In the category of finite groups, a finite group H is nilpotent iff the diagonal
map H Ð→ H × H lies in {0 → G ∶ G arbitrary }lr, is soluble iff H → 0 lies in
{A→ 0 ∣ A Abelian }, and of order prime to p/power of p iffH → 0 lies in {Z/pZ→ 0}r,
resp. {Z/pZ→ 0}rr [CR, Corollary 3.2].

2.1.4. Retracts of Cartesian powers as a lifting property. — nWe shall use the fol-
lowing simple Lemma.

Lemma 2.2. — Let C be a category with a terminal object ⊺, arbitrary small prod-
ucts, and small Hom-sets. Let A be an object of C. Then an object X is a retract of
a Cartesian power of A iff

X Ð→ ⊺ ∈ {AÐ→ ⊺}lr

Proof. — Ô⇒ : By [H, Lemma 3.6] the orthogonals are closed under retracts and
by the dual to [H, Lemma 3.4] are closed under products. ⇐Ô : Evidently X Ð→
∏

f ∶XÐ→A
A ⋌ A Ð→ ⊺ (namely, for a map f ∶ X Ð→ A the lifting ∏

f ∶XÐ→A
A Ð→ A is
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the projection on the f -th coordinate), therefore X Ð→ ∏
f ∶XÐ→A

A ⋌ X Ð→ ⊺. The

required retraction is the lifting ∏
f ∶XÐ→A

AÐ→X for the map id ∶X Ð→X.

The following diagrams explain the proof above.

X

(AÐ→⊺)l

��

f
// A

��

∏
f ∶XÐ→A

A //

prf

66

⊺

X id //

(AÐ→⊺)l

��

X

(AÐ→⊺)lr

��

∏
f ∶XÐ→A

A //

66

⊺

A random continuing example is an understanding of finite
topological spaces, an oddball topic that can lend good insight
to a variety of questions but that is generally not worth
developing in any one case because there are standard
circumlocutions that avoid it.

W.P.Thurston. On Proof and Progress in Mathematics.

The formal syntax introduced in §2.2.2 lies at heart of this paper.

2.2. Notation for finite topological spaces. — The formal syntax introduced
in §2.2.2 lies at heart of this paper. We follow [mintsGE, §5.3.1].

2.2.1. Finite topological spaces as preorders and as categories. — A topological space
comes with a specialisation preorder on its points: for points x, y ∈X, x ⩽ y iff y ∈ clx
(y is in the topological closure of x). The resulting preordered set may be regarded as
a category whose objects are the points of X and where there is a unique morphism
x↘y iff y ∈ clx.

For a finite topological space X, the specialisation preorder or equivalently the cor-
responding category uniquely determines the space: a subset of X is closed iff it is
downward closed, or equivalently, is a full subcategory such that there are no mor-
phisms going outside the subcategory.

The monotone maps (i.e. functors) are the continuous maps for this topology.

2.2.2. A syntax to denote finite topological spaces and their maps. — We denote
a finite topological space by a list of the arrows (morphisms) in the corresponding
category; ’↔’ denotes an isomorphism and ’=’ denotes the identity morphism. An
arrow between two such lists denotes a continuous map (a functor) which sends each
point to the correspondingly labelled point, but possibly turning some morphisms
into identity morphisms, thus gluing some points.

With this notation, we may display continuous functions for instance between the
discrete space on two points, the Sierpinski space, the antidiscrete space and the point
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space as follows (where each point is understood to be mapped to the point of the
same name in the next space):

{a, b} Ð→ {a→b} Ð→ {a↔ b} Ð→ {a = b}
{a,b} Ð→ {a->b} Ð→ {a<->b} Ð→ {a=b}

(discrete space) Ð→ (Sierpinski space) Ð→ (antidiscrete space) Ð→ (single point)

The second line represents how this syntax may be typed in a computer algebra
system. We also employ it in the pictures of Schreier graphs.

In A Ð→ B, each object and each morphism in A necessarily appears in B as well;
sometimes we avoid listing the same object or morphism twice. Thus both

{a} Ð→ {a, b} and {a} Ð→ {b}
denote the same map from a single point to the discrete space with two points.

Each continuous map AÐ→ B between finite spaces may be represented in this way;
in the first list list relations between elements of A, and in the second list put relations
between their images. However, note that this notation does not allow to represent
endomorphisms AÐ→ A. We think of this limitation as a feature and not a bug: in a
diagram chasing computation, endomorphisms under transitive closure lead to infinite
cycles, and thus our notation has better chance to define a computable fragment of
topology.

2.2.3. Various conventions on naming points and depicting arrows. — While effi-
cient, this notation is unconventional and requires some getting used to. For this
reason, sometimes we employ more graphic notation where our notation is moved to
subscripts, so to say: points or objects are denoted by bullets ●, ∎,★, ... with subscripts,
and the reader may think that the subscripts indicate where a point maps to or what
its preimage is. We try to make the shape of the bullet indicate whether the point
is open, closed, or neither: ● stands for open points (which might also be closed), ∎
stands for closed points, and ★ stands for points which are neither open or closed.
As is usual in depicting a preorder, we also try to place ●, ∎,★, ... so that the arrows
usually go downwards. Importantly?, this notation makes visually apparent the shape
of the preorder denoted.

Thus in this graphic notation we would write

{●a, ●b} Ð→ {●a→∎b} Ð→ {★a ↔ ★b} Ð→ {●a=b}
(discrete space) Ð→ (Sierpinski space) Ð→ (antidiscrete space) Ð→ (single point)

2.2.4. Visual conventions. — To picture a map of preorders, it also helps to place its
domain above its codomain so that each point maps to a point below it. We use ⇓ to
connect the codomain and domain, as it reminds us that the preorder is a category,
and a monotone map is a functor of these categories. Whenever it does not lead

to confusion, we try to skip the subscripts from this graphic notation. Thus,
●↘
⇓
★ ↔ ★

denotes the map from the Sierpinski space to the antidiscrete space which in the less
graphic notation shall be denoted by the formula {●a→∎b} Ð→ {★a ↔ ★b}. Fig. 5 lists



18 M.GAVRILOVICH AND M.RABIVOVICH

● ●
⇓
●

★
⇓
★↔★

∅
⇓
●

★↔★
⇓
★

●↘
⇓
●

left: π0 − injective surjective domain non-empty injective induced topology
right: injective − surjective T0 T1

★u ↔ ★v
↓★c ↔ ★d
⇓

★u ↔ ★v=c ↔ ★d

●
⇓
● ●

★ ↔ ★↘
⇓
●

★x ↔ ★y ↔ ★z↘ c
⇓

★x=y ↔ ★z=c

●↘
⇓
★ ↔ ★

⇓
●↘

left: disjoint union
with a discrete space

π0-surjective subspaces closed
subspaces

quotient
union a discrete space

dense
image

Figure 5. The Quillen negations presented as a table. The second and
third lines list the notions defined by the left, resp. right, Quillen negation
of these maps. See §3.3-3.7 for complete statements.

the maps we use in our calculations. The map
● ●
⇓
●

glues together two points of the

discrete space with two points.

★
⇓
★↔★ maps a point into the antidiscrete space with

two points.
●↘
⇓
●

maps glues together the two points of the Sierpinski space. Here, in

the Sierpinski space ● ↘ we have that ∈ cl(●), and ● is the open point, and is the
closed point.

In

★x ↔ ★y ↔ ★z↘
c

⇓
★x=y ↔ ★z=c

, the two points ★x and ★y go to ★x=y, and the two points ★z and

c go to ★z=c. The only non-trivial open subset of the domain ★x ↔ ★y ↔ ★z↘
c
is

{★x,★y,★z}. This map is neither injective nor closed.

⇓
●↘ sends the singleton into the closed point of the Sierpinski space; it is an example

of a map whose image is not dense, and also an example of a closed subset.

2.2.5. Conventions useful in writing up a diagram-chasing computation.— We denote
points by letters a, b, c, .., U, V, ...,0,1.. or by bullets with these subscrips to make
notation reflect the intended meaning, e.g. an arrow X Ð→ { ●U↘∎U′

} reminds us that

the preimage of ●U determines an open subset U of X, and {●x, ●y} Ð→ X reminds
us that the map determines points x, y ∈ X, and {o↘ c} reminds that o is open and
c is closed.

2.3. The Quillen monoid of the category of Sets. — This toy example clarifies
the notion of the Quillen groupoid and, more importantly, our notation for maps of
finite topological spaces. Fig. 6 represents the Quillen monoid of the category of sets.
Let us now explain this picture.

In the category of Sets there are exactly 8 classes (=properties) of maps which have
form of a Quillen negation P l or P r for some class P . Each of these classes can be
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Figure 6. The Quillen negation monoid of the category of sets.

Figure 7. The Quillen negation monoid of the category of sets in the
generators ll, lr, rl, rr. Quillen negations only.

expressed as a Quillen negation of the class consisting of one or two maps of sets of
size ⩽ 2, and 6 of them also lie in the orbit of {∅ Ð→ {●}}. We now list these classes
in the same notation we employ to denote maps of finite topological spaces. The
subscripts indicate where points map to; we also try to make this visually obvious by
placing a point above its image.
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(
∅
⇓
●
)
l

= (domain is not empty)

⎛
⎝
●a
⇓

●a ●b

⎞
⎠

l

= (
∅
⇓
●
)
r

= (
∅
⇓
●
)
lrr

= (surjections)

⎛
⎝
●a ●b
⇓
●a=b

⎞
⎠

l

=
⎛
⎝
●a ●b
⇓
●a=b

⎞
⎠

r

= (
∅
⇓
●
)
rl

= (injections)

⎛
⎜
⎝

●a, ●b
⇓

●a=b, ●c

⎞
⎟
⎠

l

=
⎛
⎝
∅
⇓
∅

⎞
⎠

lr

= (
∅
⇓
●
)
ll

= (isomorphisms)

⎛
⎝
∅
⇓
∅

⎞
⎠

l

=
⎛
⎝
∅
⇓
∅

⎞
⎠

r

= (
∅
⇓
●
)
lll

= (
∅
⇓
●
)
llr

= (all morphisms)

⎛
⎜
⎝

●a, ●b
⇓

●a=b, ●c

⎞
⎟
⎠

r

= (
∅
⇓
●
)
lr

= (the domain is empty or isomorphism)

⎛
⎝
∅
⇓
●
,
●a ●b
⇓
●a=b

⎞
⎠

l

= (injective & the domain is not empty or isomorphism)

⎛
⎝
●a
⇓
●a ●b

⎞
⎠

r

= (surjective or the domain is empty)

3. Calculating the Quillen negations/orthogonals of maps of finite spaces

3.1. Orthogonal classes, of classes consisting of a single morphism of finite
spaces. — A few of the iterated negations of ∅ Ð→ {●} are themselves Quillen
negations of maps of finite spaces of small size, mostly left but sometimes right, which
define notions such as surjective, injective, induced topology, Separation Axioms T0 and
T1, subspaces, and closed subsets.

In this section we calculate those Quillen negations. The proofs amount to spelling
out verbally in the usual language of open and closed subsets the meaning of the
lifting property diagrams: you treat the points in the finite spaces as names of subsets
(namely, their preimages, in a left Quillen negation) or of points (namely, their images,
in a right Quillen negation). Once spelled out, the lifting property usually becomes
equivalent to one of the standard basic definitions in topology.

Let us say the same in more detail. For left Quillen negations, we use that to give a
map to a finite topological space Y is the same as to give names to several open/closed
subsets and specify their properties determined by the shape/combinatorics of Y . For
right Quillen negations, we use that to give a map from a finite topological space A is
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the same as to give names to several points and specify which are required to belong
to the closure of which.

3.2. A summary of results: Definitions by example. — All of the Theorems
in this section follow the same pattern: a property is defined with help of a simple
example not having the property. Let us now briefly state our results in this terms.
The table Fig. 5 gives a summary of our results explained in this section. and §2.2.4
explains our notation for maps of finite spaces we use here, although in most cases
the reader might find it visually apparent.

Surjectivity is both the left and the right Quillen negation of the two simplest non-

surjections

★
⇓
★↔★ and

∅
⇓
●
; by this we mean that

⎛
⎝

★
⇓
★↔★
⎞
⎠

l

= ( ∅⇓
●
)
r

is the class of surjec-

tions. Similarly, injectivity is Quillen negation of the simple non-injections
★↔★
⇓
★

and

● ●
⇓
●
, i.e. (★↔★⇓

★

)
l

= (
● ●
⇓
●
)
r

is the class of injections. Examples {★ ↔ ★} and ● ↘ of

a non-T0 and a non-T1 space lead to the definition of the classes of maps with T0,

resp. T1, fibres, as (
★↔★
⇓
★

)
r

, resp. (
●↘
⇓
●
)
r

.

The class (
●↘
⇓
●
)
l

of maps where the topology on the domain is induced from the

codomain, is defined with help of the simple map failing this property. An example of

a non-closed non-injective map

★x ↔ ★y ↔ ★z↘
c

⇓
★x=y ↔ ★z=c

leads to the definition of the class

⎛
⎜
⎝

★x ↔ ★y ↔ ★z↘ c
⇓

★x=y ↔ ★z=c
⎞
⎟
⎠

l

of closed injections, or, equivalently, closed subspaces.

For the map
●↘
⇓
★ ↔ ★

the codomain fails to be the quotient of the domain, and this

leads to the class (
●↘
⇓
★ ↔ ★

)
l

of maps such that the codomain is the quotient of the

domain disjoint union with a discrete space.

The map ⇓
●↘ is the simplest example of a closed subset, and of a map failing to

have dense image. Accordingly, ( ⇓
●↘ )

l

is the class of maps with dense image, and

( ⇓
● ↘

)
lr

=
⎛
⎜
⎝

★x ↔ ★y ↔ ★z↘ c
⇓

★x=y ↔ ★z=c

⎞
⎟
⎠

l
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is the class of closed subspaces.

The map
●
⇓
● ●

is an example of a map f ∶X Ð→ Y such that π0(f) ∶ π0(X) Ð→ π0(Y )

is not surjective. Accordingly, whenever π0(Y ) is finite, π0(f) ∶ π0(X) Ð→ π0(Y ) is
surjective iff

A
↓ f
B
∈
⎛
⎝
●
⇓
● ●

⎞
⎠

l

3.3. Connected, injective, surjective, separation axiom T0. —

3.3.1. (
● ●
⇓
●
)
l

is the class of maps such that π0(f) ∶ π0(X) Ð→ π0(Y ) is injective, for

π0(X) and π0(Y ) finite.— {●, ●} is perhaps the simplest example of a space failing
to be connected.

Theorem 3.1 (π0-injective). — Let f ∶ X Ð→ Y be such that π0(X) and π0(Y )

are finite. Then f ∈ (
● ●
⇓
●
)
l

iff the induced map π0(f) ∶ π0(X) Ð→ π0(Y ) is injective.

In particular, X is connected iff
X
↓
{●}
∈ (
● ●
⇓
●
)
l

.

Proof. — Each map from a space X to a discrete space factors via π0(X), hence the
commutative square in X Ð→ Y ⋌{●, ●} Ð→ {●} fits into the diagram

X

��

// π0(X)

��

// {●, ●} = π0({●, ●})

��

Y // π0(Y ) // {●}

= π0({●})

Ô⇒ : If π0(f) ∶ π(X) Ð→ π0(Y ) is not injective, pick two x1 ≠ x2 ∈ π0(X) with
π0(f)(x1) = π0(f)(x2). Then there is no lifting Y Ð→ {●} for any map π0(X) Ð→
{●, ●} separating x1 and x2, and such a map exists because we assumed π0(X) to be
finite and therefore discrete. ⇐Ô : If π0(f) ∶ π0(X) Ð→ π0(Y ) is injective, the lifting
π0(Y ) Ð→ {●, ●} gives the required lifting Y Ð→ {●, ●}.

Remark 3.1. — A verification shows that Q≠0 Ð→ Q does not have the left lifting

property with respect to
● ●
⇓
●
, yet the induced map from connected components of Q≠0

into that of Q is injective. This shows that we do need an assumption on π0(X) or
π0(Y ).

3.3.2. (
● ●
⇓
●
)
r

is the class of injections. — Note that the map
● ●
⇓
●

is an archetypal

example of a non-injective map. The proof is a trivial calculation we spell out in
detail to demonstrate our conventions on the notation of commutative diagrams.
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Theorem 3.2. — (
● ●
⇓
●
)
r

is the class of injective maps.

Proof. — Ô⇒ : Let g ∶ A→ B be an arbitrary map in (
● ●
⇓
●
)
r

. Consider the diagram

(1).

Pick two points a, b ∈ B such that g(a) = g(b). As our convention suggests, define f
by f(●a) = a and f(●b) = b. Then the square is commutative, and we have a lifting
h. Therefore a = f(●a) = h(p(●a)) = h(p(●b)) = f(●b) = b. Since we chose a and b
arbitrarily, the map g is injective.

⇐Ô : If g ∶ AÐ→ B is injective then then the commutativity of the diagram requires
that f(●a) = f(●b). In this case define h(●a=b) ∶= f(●a) = f(●b).

(1)

{●a, ●b} A

{●a=b} B

f

p i

g

h

3.3.3.
⎛
⎝

★
⇓
★↔★
⎞
⎠

l

is the class of surjections.— Note that the map

★
⇓
★↔★ is an example of

a non-surjective map. We spell out the proof in detail to demonstrate our convertions
regarding our use of commutative diagrams. Further below similar proofs shall often
be replaced by a hint consisting of a commutative diagram.

Theorem 3.3. — The left orthogonal class
⎛
⎝

★
⇓
★↔★
⎞
⎠

l

is the class of surjections.

Proof. — Let (p ∶ X → Y ) ∈
⎛
⎝

★
⇓
★↔★
⎞
⎠

l

be an arbitrary morphism. Consider the com-

mutative square

X //

⎛
⎜⎜
⎝

★
⇓
★↔★

⎞
⎟⎟
⎠

l

∋p
��

{★X}

i

��

Y g //

h

55

{★Imp ↔ ★Y −Imp}
Recall that by our conventions, superscripts indicate the indented preimages, and in

this case it means that we define g by g−1(i(★Imp)) ∶= Imp. Now, p ∈
⎛
⎝

★
⇓
★↔★
⎞
⎠

l

implies

that the unique map h ∶ Y Ð→ {★X} makes the lower triangle commute, which means
that Im g ⊂ Im i. Hence Y − Imp = ∅ and thus p ∶X Ð→ Y is a surjection, as required.
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Conversely: let p ∶ X Ð→ Y be a surjection. Then for each y ∈ Y there is x ∈ X
such that y = p(x). Hence g(y) = g(p(x)) = i(★X) = ★Imp and the unique map
h ∶ Y Ð→ {★X} makes the diagram commutative.

3.3.4.
⎛
⎝

★
⇓
★↔★
⎞
⎠

r

is related to Axiom T0.— Although the map
⎛
⎝

★
⇓
★↔★
⎞
⎠
is used in our

main calculation, its right Quillen negation is not. We include it for completeness.

Define an equivalence relation on a topological space as follows: two points x, y ∈ X
are equivalent iff the induced topology on {x, y} ⊂ X is antidiscrete, i.e. there is a
continuous map g ∶ {★x ↔ ★y} Ð→ X such that x = g(★x) and y = g(★y). Call the
equivalence classes of this relation topologically indistinguishable components of X.

Theorem 3.4. — The right orthogonal class
⎛
⎝

★
⇓
★↔★
⎞
⎠

r

is the class of maps p ∶X Ð→

Y such that for each topologically indistinguishable component of X, its image is a
topologically indistinguishable component of Y .

Proof. — Consider the diagram

{★a} X

{★a ↔ ★b} Y

i p

g

h

3.3.5. ( ∅⇓
●
)
l

is the class with empty domain.— Note that
∅
⇓
●

is an archetypal example

of a map with the empty domain.

Theorem 3.5 (non-empty domain). — The left orthogonal class ( ∅⇓
●
)
l

defines

the class of maps A→ B such that A ≠ ∅ or A = B = ∅.

Proof. — There is no map from a non-empty set to the empty set, hence the com-
mutative square exists iff A = ∅.

3.3.6. ( ∅⇓
●
)
r

is the class of surjections.— Note that
∅
⇓
●

is an archetypal example of

a non-surjective map.

Theorem 3.6 (surjective). — ( ∅⇓
●
)
r

is the class of surjective maps.
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Proof. — A point b ∈ B is the same as an arrow {●} Ð→ B, and it has to lift.

(2)

∅ A

{●a0b0 } B

p

g

h

3.4. Induced topology, subspace, injective, separation axiom T0 and T1. —

3.4.1. (
●↘
⇓
●
)
l

is the class of maps A Ð→ B such that the topology on A is induced

from B.— The map
●↘
⇓
●

is perhaps the simplest map such that the topology on the

domain is not induced from the codomain.

Theorem 3.7 (induced). — (
●↘
⇓
●
)
l

is the class of maps p ∶ X → Y such that the

topology on X is induced from Y .

Proof. — An open subset U ⊂X is the same as an arrow X Ð→ {● ↘ }, and and the
lifting arrow Y Ð→ {● ↘ } is the same as a subset V ⊂ Y such that U = V ∩X.

(3)

X {●UV → ∎X−UY −V }

Y {●}

f

p

g

h

3.4.2. (
●↘
⇓
●
)
r

is the class of maps with T1 fibres.— Note that ● ↘ is the simplest

example of a space not satisfying Separation Axiom T1, i.e. such that not each point
is closed.

Theorem 3.8 (T1). — (
●↘
⇓
●
)
r

is the class of maps such that each fibre is a T1 space.

Proof. — To give a pair of points x ∈ cl y in a space X is the same as to give a map
{● ↘ } Ð→X.

{●x0 ↘ x1
} X

●y0 Y

f

π
p

g

h
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3.4.3. (★↔★⇓
★

)
l

is the class of injective maps.— The map
★↔★
⇓
★

is not injective.

Theorem 3.9 (injective). — (★↔★⇓
★

)
l

is the class of injective maps.

Proof. — To give a pair of points x, y ∈ X is the same as to give a map {●, ●} Ð→
X.

3.4.4. (
●↘
⇓
●
,
★↔★
⇓
★

)
l

is the class of maps of form A ⊂ B.—

Theorem 3.10 (subspaces). —

⎛
⎝

● ↘
⇓
●

,
★ ↔ ★
⇓
★

⎞
⎠

l

=
⎛
⎝

★ ↔ ★ ↘
⇓
●

⎞
⎠

l

=
⎛
⎝

● ↘ ★ ↔ ★
⇓
●

⎞
⎠

l

is the class of subspaces, i.e. the class of injective maps AÐ→ B such that the topology
on A is induced from B.

Proof. — By Theorems 3.7(induced) and 3.9(injective)

⎛
⎝

● ↘
⇓
●

,
★ ↔ ★
⇓
★

⎞
⎠

l

=
⎛
⎝

● ↘
⇓
●

⎞
⎠

l

⋂(
★ ↔ ★
⇓
★
)
l

= (induced topology)⋂ (injection) = (subspaces).

Because orthogonals are closed under retracts, the equalities

⎛
⎝

● ↘
⇓
●

,
★ ↔ ★
⇓
★

⎞
⎠

l

=
⎛
⎝

★ ↔ ★ ↘
⇓
●

⎞
⎠

l

=
⎛
⎝

● ↘ ★ ↔ ★
⇓
●

⎞
⎠

follow from the fact that both morphisms
●↘
⇓
●

and
★↔★
⇓
★

are retracts of
★ ↔ ★↘
⇓
●

and

●↘★ ↔ ★
⇓
●

, and, conversely, both
★ ↔ ★↘
⇓
●

and
●↘★ ↔ ★
⇓
●

are retracts of the product

●↘
⇓
●
× ★↔★⇓

★

.

3.4.5. (★↔★⇓
★

)
r

is the class of maps with T0 fibres.— Note that {★ ↔ ★} is the sim-

plest example of a space failing to have Separation Axiom T0, i.e. having distinct
topologically indistinguishable points.

Theorem 3.11 (T0). — (★↔★⇓
★

)
r

is the class of maps with T0 fibres.
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Proof. — The proof is similar to the proof of Theorem 3.8(T1).

(4)

{★ ↔ ★} X

{★} Y

f

p

g

h

3.5. Discrete, quotient, and disjoint union. —

3.5.1.
⎛
⎝

★ ↔ ★↓★ ↔ ★
⇓

★ ↔ ★ ↔ ★

⎞
⎠

l

is the class of maps of form A ⊂ ImA⊔D where D is discrete

and the topology on A is induced from the codomain. —

Theorem 3.12 (discrete). — An injective map f ∶X Ð→ Y is in
⎛
⎝

★ ↔ ★↓★ ↔ ★
⇓

★ ↔ ★ ↔ ★

⎞
⎠

l

iff it is form f ∶X →X ⊔D where D is discrete space.

More generally,
⎛
⎝

★ ↔ ★↓★ ↔ ★
⇓

★ ↔ ★ ↔ ★

⎞
⎠

l

is the class of maps of form A ⊂ ImA⊔D where D

is discrete and the topology on A is induced from its image ImA in the codomain.

Proof. — Ô⇒ : Note that map of Theorem 3.7(induced) is a retract of the morphism

under consideration, therefore
⎛
⎝

★ ↔ ★↓★ ↔ ★
⇓

★ ↔ ★ ↔ ★

⎞
⎠

l

⊂ (induced topology).

Take an arbitrary map i ∶ A → B in
⎛
⎝

★ ↔ ★↓★ ↔ ★
⇓

★ ↔ ★ ↔ ★

⎞
⎠

l

⋂ (injections). For a point

b ∈ B ∖A, consider the following diagram where b is the preimage of ★b:

A

i

��

//{ ★b ↔ ★↓
★ ↔ ★AB∖b

}

��

B //

77

{★b ↔ ★↔ ★B∖b}

Then b has to be the preimage of ●b and therefore is open. ⇐Ô : Note that A→ A⊔D
is a cobase change of ∅ → D along ∅ Ð→ A. As right orthogonals are closed under
base change, it is enough for us to find the lifting only for the second map. We do

so using that D is discrete and the map

★ ↔ ★↓★ ↔ ★
⇓

★ ↔ ★ ↔ ★
is surjective. The verification

that the lifting property holds for surjective maps such that the topology is induced,
is similar to the proof of Theorem 3.7(induced).
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3.5.2. (
●↘
⇓
★↔★

) is the class of quotients disjoint union with a discrete space.—

Theorem 3.13 (quotient disjoint union with a discrete space)

A surjective map f ∶ X Ð→ Y is in (
●↘
⇓
★ ↔ ★

)
l

iff the topology on Y is the quotient

topology.

An injective map f ∶X Ð→ Y is in (
●↘
⇓
★ ↔ ★

)
l

iff it is form f ∶X →X ⊔D where D is

a discrete space.

More generally, (
●↘
⇓
★ ↔ ★

)
l

is the class of maps of form form X → X/ ≈ ⊔D where D

is a discrete space and X/ ≈ is a quotient of X.

Proof. — Ponder the following diagrams (5). The first diagram says that a subset
V ⊂ Y (the preimage of one of the points in {★ ↔ ★}) is open iff its preimage is
open, which for a surjective map f ∶ X Ð→ Y is precisely the definition of a quotient
topology on Y induced by f ∶X Ð→ Y .

The second diagram implies that each point not in the image is open. For an injective
map f ∶X Ð→ Y this means that that Y =X ⊔D for a discrete space D and the map
f ∶X Ð→ Y is an inclusion X Ð→X ⊔D. A verification shows that X Ð→X ⊔D does
have the required lifting property.

(5) X //

f

��

{●f
−1(V )
V ↘ X∖f−1(V )

V
}

��

Y //

88

{★V ↔ ★Y ∖V }

X //

f

��

{●{y}{y} ↘ X
Y ∖{y}

}

y∉ImX

��

Y //

99

{★{y} ↔ ★Y ∖{y}}

3.6. π0-surjective, and surjective or empty. —

3.6.1. (●⇓
● ●
)
l

is the class of maps f such that π0(f) ∶ π0(X) Ð→ π0(Y ) is surjective,

for π0(Y ) finite. —

Theorem 3.14 (π0-surjective.). — The left orthogonal class (
●
⇓
● ●
)
l

is the class of

maps p ∶ X Ð→ Y such that the image Imp intersects each non-empty clopen subset
of Y .

In particular, if π0(Y ) is finite, this means precisely that the induced map π0(p) ∶
π0(X) Ð→ π0(Y ) is surjective.
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Proof. — A non-empty clopen subset disjoint from the image of p ∶ X Ð→ Y gives
rise to the diagram below.

(6)

X {●X}

Y {●XY ′′ ●∅Y ′}

f

p i

g

h

To see that the first claim implies the second one, it is enough to note that if π0(Y )
is finite, then any point of π0(Y ) not in the image corresponds to a clopen subset not
intersection the image of f ∶X Ð→ Y .

Remark 3.2. — The following example shows that it is necessary to assume that
π0(Y ) is finite, or at least discrete. Consider the inclusion i ∶ Q>0 Ð→ Q⩾0. of positive
rationals into non-negative rationals. Evidently Q>0

iÐ→ Q⩾0 ⋌{●} Ð→ {●, ●}, yet 0 is
a connected component of Q⩾0 which is not in the image.

3.6.2. A
↓

B
∈ (●⇓
● ●
)
r

iff either A = ∅ or A Ð→ B is surjective.— Note that
●
⇓
● ●

is

perhaps the simplest example of a non-surjective map with a non-empty domain.

Theorem 3.15 (surjective or empty domain). — (
●
⇓
● ●
)
r

is the class of surjec-

tive maps, and maps of form ∅ → Y . In other words, a map is in (
●
⇓
● ●
)
r

iff it is

surjective or its domain is empty.

Proof. — The proof is a trivial calculation, see diagram (7).

(7)

{●x0} X

{●x0
y0 ●

x1
y1} Y

f

i p

g

h

3.7. Closed subsets, and dense image. —

3.7.1.
⎛
⎜
⎝

★x ↔ ★y ↔ ★z↘
c

⇓
★x=y ↔ ★z=c

⎞
⎟
⎠

l

is the class of closed inclusions (i.e. closed subsets). —

Theorem 3.16 (closed subspaces). —
⎛
⎜
⎝

★x ↔ ★y ↔ ★z↘ c
⇓

★x=y ↔ ★z=c
⎞
⎟
⎠

l

= ( ⇓
●↘ )

lr

is the class

of closed subspaces, i.e. of closed injective maps.
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Proof. — By Theorem 3.18 ( ⇓
●↘ )

l

is the class of maps with dense image. Consider

the lifting diagrams. In the first diagram evidently π(B) = π(clB(A)) ⊂ cl(α(A)) ⊂
clY X = X, hence the lifting exist. In the second diagram, existance of the lifting
implies that X is a closed subset of Y .

A α //

(dense image)

��

X

(X⊂Y closed)
��

B π //

66

Y

X id //

��

X

��

clY X //

66

Y

It is only left to consider the first orthogonal class. Note that maps
●↘
⇓
●

and
★↔★
⇓
★

are

retracts of

★x ↔ ★y ↔ ★z↘
c

⇓
★x=y ↔ ★z=c

, hence therefore by Theorems 3.7(induced) and 3.9(in-

jective)

⎛
⎜
⎝

★x ↔ ★y ↔ ★z↘
c

⇓
★x=y ↔ ★z=c

⎞
⎟
⎠

l

⊂ (induced topology) ∩ (injections) = (subspaces).

Now let A ⊂ B be a subspace in
⎛
⎜
⎝

★x ↔ ★y ↔ ★z↘
c

⇓
★x=y ↔ ★z=c

⎞
⎟
⎠

l

. To see that A = clBA is closed,

consider the diagram

A

��

// {★∅ ↔ ★∅B∖A ↔ ★∅ ↘ A
clB A
}

��

B //

66

{★ = ★B∖A ↔ ★ = ∎A}

where the preimage of is A for both horizontal arrows. Then the lifting has to send
clBA to , hence clBA ∩ (B ∖A) = ∅, i.e. clBA = A as required.

Now let A ⊂ B be closed. The following diagram shows how to find the lifting.

A

��

// {★XX ↔ ★
Y =A∖(Z∪X)
B∖(Z∪X) ↔ ★Z′=A∩Z∖Z′′Z∖Z′′ ↘ Z′′

clB(Z′′)=Z′′
}

��

B ξ //

44

{★B∖Z ↔ ★ = ∎Z}
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We need the following lemma to prove Theorems 4.17(rllrr) and 4.18(rllrrr). The
condition on the map in the Lemma implies that in each fibre there is a point contained
in each non-empty open subset of the fibre.

Recall that a point of a topological space is called generic iff it lies in each non-empty
open subset, or, equivalently, its closure is the whole space.

Theorem 3.17. — Let f ∶ X Ð→ Y be a map with a section s ∶ Y Ð→ X such that
Y s(y) is generic in the fibre f−1(y) with induced topology for each y ∈ Y , i.e.

s(y) ∈ ⋂
U∩f−1(y)≠∅
U is open

U.

Then f ∈
⎛
⎜
⎝

★x ↔ ★y ↔ ★z↘ c
⇓

★x=y ↔ ★z=c
⎞
⎟
⎠

lr

, i.e. for each space B and its closed subset A it holds

(A ⊂closed B) ⋌ f .

Proof. — Let A ⊂ B be a closed subset of A. Define a lifting h ∶ B Ð→ X by h∣A = τ
and h∣B∖A = s○β∣B∖A. Then both upper and lower triangles commute by construction
of h, and we only need to show that h is continuous.

Let U ⊂ X be open. By the assumption on s we have that s−1(U) = {y ∈ Y ∶
f−1(y) ∩ U ≠ ∅} = f(U) is open, and hence h−1(U) = τ−1(U) ∪ β−1(s−1(U)) ∖ A) =
β−1(s−1(U)) ∖ (A ∖ τ−1(U)) is an open set without a closed set, hence open. This
shows that the lifting is continuous.

3.7.2.
⎛
⎜
⎝

★x ↔ ★y ↔ ★z↘ c
⇓

★x=y ↔ ★z=c
⎞
⎟
⎠

ll

= ( ⇓●↘ )
l

is the class of maps with dense image.— Re-

call that by Theorem 3.16
⎛
⎜
⎝

★x ↔ ★y ↔ ★z↘ c
⇓

★x=y ↔ ★z=c
⎞
⎟
⎠

ll

is the class of closed subspaces and

therefore ( ⇓
●↘ ) ∈

⎛
⎜
⎝

★x ↔ ★y ↔ ★z↘ c
⇓

★x=y ↔ ★z=c
⎞
⎟
⎠

ll

.

Theorem 3.18 (dense image). —
⎛
⎜
⎝

★x ↔ ★y ↔ ★z↘ c
⇓

★x=y ↔ ★z=c
⎞
⎟
⎠

ll

= ( ⇓●↘ )
l

is the class of

maps with dense image.
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Proof. — ⇐Ô : Consider the diagram where the square on the right is a pull-back.

A α //

(dense image)

��

X

(X⊂Y closed)
��

// { }

��

B π //

77 22

Y // {●Y ∖X→
X
}

If the image ImA of A is dense in B, then π(B) = clY(α(A)) ⊂ clY(X) = X, and the
lifting exists.

Ô⇒ : Consider the diagram

A //

��

clB Im(AÐ→ B)

��

// { }

��

B //

55
11

B // {●B∖clB ImA→
clB ImA

}

If the image ImA of A is dense in B, then π(B) = clY(α(A) ⊂ clY(X) = X, and
the lifting exists. The lifting exists iff B ⊂ clB Im(A Ð→ B), i.e. in other words
Im(AÐ→ B) is dense in B.

4. Calculating all the Quillen negations of
∅
⇓
●

Below we calculate case by case the orbit of
∅
⇓
●

shown in Fig. 1. The labels in Fig. 1

sketch the statements of all the theorems in our calculation below, and many readers
may find it more efficient to start by looking at Fig. 1 and refer to our calculation
only if necessary.

4.1. Discrete, subspace, section. — Recall that by Theorem 3.6 ( ∅⇓
●
)
r

is the

class of surjective maps.

4.1.1. rl( ∅⇓
●
) = (

●↘
⇓
★↔★

,
★↔★
⇓
★

)
l

: disjoint union with a discrete set.—

Theorem 4.1 (rl( ∅⇓
●
): discrete). —

(
∅
⇓
●
)
rl

=
⎛
⎝

● ↘
⇓
★↔★

,
★ ↔ ★
⇓
★

⎞
⎠

l

=
⎛
⎝

★ ↔ ★↓★ ↔ ★
⇓

★ ↔ ★ ↔ ★
,
★ ↔ ★
⇓
★

⎞
⎠

r

=

is the class of maps i ∶ A→ A⊔D where D is discrete space.
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Proof. — Ô⇒ : Note that maps
●↘
⇓
★ ↔ ★

, (★↔★⇓
★

) and

★ ↔ ★↓★ ↔ ★
⇓

★ ↔ ★ ↔ ★
are surjective,

hence Theorems 3.13(quotient), 3.9(injective) and 3.12(discrete) imply that

(
∅
⇓
●
)
rl

⊂ (
★ ↔ ★
⇓
★
)
l

∩
⎛
⎝

★ ↔ ★↓★ ↔ ★
⇓

★ ↔ ★ ↔ ★

⎞
⎠

l

⋂(
★ ↔ ★
⇓
★
)
l

= {A→ A ⊔D ∶ D discrete}

⇐Ô : A verification shows that maps of this form lift with respect to surjections.

Remark 4.1. — ( ∅⇓
●
)
rl

is the the closure of ( ∅⇓
●
) under cobase changes and coprod-

ucts. Indeed, a map AÐ→ A⊔D is a cobase change (push forward) of ∅ Ð→D along
∅ Ð→ A, and ∅ Ð→D is ∅ Ð→ ∐

d∈D
{●} if D is discrete.

Note that each right Quillen negation is closed under cobase changes and coproducts
by [H, Lemma 3.4].

4.1.2. rr=(
●↘
⇓
●
,
★↔★
⇓
★

)
l

: subspace.— Recall that by Theorem 3.6 ( ∅⇓
●
)
r

is the class

of surjective maps, and that by Lemma 3.10 (
●↘
⇓
●
,
★↔★
⇓
★

)
l

is the class of subspaces.

Theorem 4.2 (rr: subspaces). — ( ∅⇓
●
)
rr

= (
●↘
⇓
●
,
★↔★
⇓
★

)
l

is the class of subspaces.

Proof. — Ô⇒ : Note that the map in Theorem 3.2(injective) is surjective, i.e. in

( ∅⇓
●
)
r

, hence ( ∅⇓
●
)
rr

⊂ (
● ●
⇓
●
)
r

= (injections). Following notation of [Bourbaki66,

I§5], each injective map f ∶ X Ð→ Y has a canonical decomposition X
gÐ→ f(X) ψÐ→ Y

where ψ is the canonical injection of the subspace f(X) into Y , and g is the bijection
associated with f . Now consider the diagram

X X

f(X) Y

Id

g f

ψ

Id

The continuity of the unique lifting means that the topology on X is induced and g
is an isomorphism.
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⇐Ô : Let i ∶X ⊂ Y be a subspace, and consider a diagram

A X

B Y

u

p i

d

h

If the square commutes, then Imd ⊂X and we may define the lifting by h ∶= d∣X .

4.1.3. lr=( ∅⇓
●
)
lr

: ∅ Ð→ B.— Recall that by Theorem 3.5 ( ∅⇓
●
)
l

defines the class of

maps AÐ→ B where A ≠ ∅.

Theorem 4.3 (lr: ∅ Ð→ B). — ( ∅⇓
●
)
lr

is the class of maps of form ∅ → B.

Proof. — Ô⇒ : For arbitrary f ∶ A → B in ( ∅⇓
●
)
lr

such that A ≠ ∅ it holds that f ∈

( ∅⇓
●
)
l

, i.e. AÐ→ B ⋌ ∅ Ð→ Y for each Y . Hence f ∈ ( ∅⇓
●
)
lr

∩( ∅⇓
●
)
l

= (isomorphisms).

⇐Ô : For A = ∅ there is no commutative square with sides f and ∅ Ð→ {●}, hence
the lifting property holds vacuously.

4.1.4. ll: isomorphisms.—

Theorem 4.4 (ll: isomorphisms). — ( ∅⇓
●
)
ll

is the class of isomorphisms.

Proof. — Note that maps

★
⇓
★↔★ ,

●↘
⇓
●

and
★↔★
⇓
★

are in ( ∅⇓
●
)
l

, therefore by Theorems

3.6(surjective), 3.7(induced) and 3.9(injective))

(
∅
⇓
●
)
ll

⊂ (surjections) ∩ (induced topology) ∩ (surjection) = (Isomorphisms).

As any isomorphism is contained in any left or right orthogonal class, and this implies
the equality and completes the proof.

4.1.5. lrr is the class of maps having a section.— Recall that ( ∅⇓
●
)
lr

defines the class

of maps with empty domain. The following theorem is immediate.

Theorem 4.5 (lrr: section). — ( ∅⇓
●
)
lrr

is the class of maps having a section.
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4.1.6. rrrl=rr. — Recall that by Theorem 4.2 ( ∅⇓
●
)
rr

is the class of subspaces.

Theorem 4.6 (rrrl=rr: subspaces). — ( ∅⇓
●
)
rrrl

= ( ∅⇓
●
)
rr

is the class of subspaces.

Proof. — By Theorem 3.10 the class of subsets is a left Quillen negation P l, namely

(
∅
⇓
●
)
rr

=
⎛
⎝

● ↘
⇓
●

,
★ ↔ ★
⇓
★

⎞
⎠

l

.

Applying rl to both sides of the equation using the identity lrl = l we get

(
∅
⇓
●
)
rrrl

=
⎛
⎝

● ↘
⇓
●

,
★ ↔ ★
⇓
★

⎞
⎠

lrl

=
⎛
⎝

● ↘
⇓
●

,
★ ↔ ★
⇓
★

⎞
⎠

l

= (
∅
⇓
●
)
rr

4.2. Complete lattice, separation axiom T1. —

4.2.1. rrr is related to the class of complete lattices. — Unfortunately, we were unable

to give a nice description of the class ( ∅⇓
●
)
rrr

. However, the following is sufficient to

calculate its orthogonals.

Theorem 4.7 (rrr: lattice). — Each map in ( ∅⇓
●
)
rrr

is a quotient map admitting

a section. Moreover, each fibre is a retract of a Cartesian power of {● ↘ }×{★ ↔ ★}.

A map X Ð→ {●} is in ( ∅⇓
●
)
rrr

iff X is a retract of a Cartesian power of {● ↘

} × {★ ↔ ★}.

In particular, a partial order P is a complete lattice iff P Ð→ {●} is in ( ∅⇓
●
)
rrr

.

Proof. — By Lemma 4.2 below a partial order P is a complete lattice iff it is a
a retract of a Cartesian power of ● ↘ in the category of partial orders. As the
category of partial orders is a full subcategory of the category of topological spaces,
this shows that the last claim follows from the previous ones.

Let X
gÐ→ Y denote an arbitrary map in ( ∅⇓

●
)
rrr

. Each map ∅ Ð→ Y is in ( ∅⇓
●
)
rr

,

hence ∅

⎛
⎝
∅

⇓
●
⎞
⎠

rr

ÐÐÐÐ→ Y ⋌ X gÐ→ Y and thus g has a section s ∶ Y Ð→ X. A standard
argument shows that each map admitting a section is necessarily a quotient map. By
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Theorem 3.10 ( ∅⇓
●
)
rr

= (F Ð→ {●})l for a space F = {★ ↔ ★ → }, and therefore

by Lemma 2.2 X Ð→ {●} belongs to ( ∅⇓
●
)
rrr

= (F Ð→ {●})lr iff X is a retract of a

(possibly infinite) Cartesian power of F .

The following fact is well-known, e.g. [RW81, p.203] and [PR84, p.295] mention this
fact as standard.

Lemma 4.2. — In the category of partial orders and monotone maps, the following
are equivalent for a partial order P :

1. Partial order P is a complete lattice.

2. Partial order P is a retract of a product of ● ↘ .

3. P
↓

{●}

∈ (
●↘
⇓
●
)
lr

4.2.2. rrrr=(
●↘
⇓
●
)
r

: the fibre is T1.—

Theorem 4.8 (rrrr=(
●↘
⇓
●
)
r

: the fibre is T1). — ( ∅⇓
●
)
rrrr

= (
●↘
⇓
●
)
r

is the class

of maps f ∶X Ð→ Y such that each fibre f−1(y), y ∈ Y , satisfies separation axiom T1.

Proof. — Ô⇒ : By Theorem 4.7
●↘
⇓
●
∈ ( ∅⇓
●
)
rrr

, and thus by Theorem 3.8(T1) each

fibre of any map in ( ∅⇓
●
)
rrrr

satisfies separation Axiom T1.

⇐Ô : In the commutative square each fibre has to go to a single point because each
fibre of f is T1, hence the map lifts by the universal property of quotient maps.

4.2.3. rrr.rr: isomorphisms.—

Theorem 4.9 (rrr.rr: isomorphisms). — ( ∅⇓
●
)
rrr.rr

is the class of isomorphisms.

Proof. — By Theorem 4.8(rrr.r:T1)
∅
⇓
●
,
● ●
⇓
●
∈ ( ∅⇓
●
)
rrr.r

, hence by Theorems 3.6(sur-

jections) and 3.9(injection)

(
∅
⇓
●
)
rrrrr

⊂ (
∅
⇓
●
)
r

∩ (
● ●
⇓
●
)
r

= (surjection) ∩ (injection) = (bijections)
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and thus each map in ( ∅⇓
●
)
rrr.rr

is a bijection. On the other hand, by Theorem 4.8(T1)

each bijection belongs to ( ∅⇓
●
)
rrrr

, hence each map in ( ∅⇓
●
)
rrr.rr

lifts against itself

and thus is an isomorphism.

4.2.4. rrr.rl. — Unfortunately, we do not have a good description of ( ∅⇓
●
)
rrr.rl

. The

following suffices to calculate further Quillen negations.

Theorem 4.10 (rrr.rl). — ( ∅⇓
●
)
rrrrl

is contained in the class of quotient maps.

( ∅⇓
●
)
rrrrl

contains each quotient map such that no fibre has a non-trivial closed equiv-

alence relation.

In particular, the class ( ∅⇓
●
)
rrrrl

contains

★ ↔ ★↓★ ↔ ★
⇓

★ ↔ ★ ↔ ★
.

Proof. — Ô⇒ : By Theorem 3.13 and Theorem 3.9 the class of quotient maps is a

left orthogonal (
●↘
⇓
★ ↔ ★

,
★↔★
⇓
★

)
l

, and by Theorem 4.7 ( ∅⇓
●
)
rrr

⊂ (quotients). Hence

(
∅
⇓
●
)
rrrrl

⊂ (quotients)rl =
⎛
⎝

● ↘
⇓
★ ↔ ★

,
★ ↔ ★
⇓
★

⎞
⎠

lrl

=
⎛
⎝

● ↘
⇓
★ ↔ ★

,
★ ↔ ★
⇓
★

⎞
⎠

l

= (quotients)

⇐Ô : Now assume that f ∶ A Ð→ B is a quotient map such that no fibre has a
non-trivial closed equivalence relation. A space F has a non-trivial closed equivalence
relation iff there is a non-trivial map F Ð→ F ′ to some space F ′ satisfying Axiom
T1. Hence the argument in the proof of Theorem 4.8 using the universal property
of quotient maps applies, namely in each commutative square with sides f and g ∈

( ∅⇓
●
)
rrrr

each fibre of f goes to a single point, and the lifting exists by the universal

property of the quotient maps.

4.2.5. rrr.rll=rl. —

Theorem 4.11 (rrr.rll=rl). — ( ∅⇓
●
)
rrr.rll

= ( ∅⇓
●
)
rl

=
⎛
⎝

★ ↔ ★↓★ ↔ ★
⇓

★ ↔ ★ ↔ ★

⎞
⎠

l

is the class

of maps of form AÐ→ A ⊔D where D is a discrete space.
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Proof. — By Theorem 3.12
⎛
⎝

★ ↔ ★↓★ ↔ ★
⇓

★ ↔ ★ ↔ ★

⎞
⎠

l

is the class of maps of form A Ð→

A ⊔ D where D is a discrete space. By Theorem 4.10

★ ↔ ★↓★ ↔ ★
⇓

★ ↔ ★ ↔ ★
∈ ( ∅⇓
●
)
rrr.rl

,

hence ( ∅⇓
●
)
rrr.rll

⊂
⎛
⎝

★ ↔ ★↓★ ↔ ★
⇓

★ ↔ ★ ↔ ★

⎞
⎠

l

. On the other hand, by Theorem 4.1 A Ð→

A ⊔D left-lifts with respect to any surjection, hence to each element of ( ∅⇓
●
)
rrr.rl

⊂

(surjections).

4.2.6. rrl=r: surjections.— The following theorem is immediate using that that
P lrl = P l for each P , and that surjections are defined by a left Quillen negation.

Theorem 4.12. — ( ∅⇓
●
)
rrl

= ( ∅⇓
●
)
r

is the class of surjection.

4.3. Connectivity, injectivity.—

4.3.1. rll=(●⇓
● ●
)
l

: π0(X) Ð→ π0(Y ) is surjective.— Recall that by Theorem 4.1(rl)

( ∅⇓
●
)
rl

is the class of maps i ∶ A → A ⊔D where D is discrete space. The following

theorem is immediate from Theorem 3.14 and the fact that each map in this class is

a pull-back of the map
●
⇓
● ●

.

Theorem 4.13 (rll: surjective π0). — ( ∅⇓
●
)
rll

= (
●
⇓
● ●
)
l

is the class of maps such

that the image intersects any non-empty clopen subset. In particular, if π0(Y ) is
finite, this means that the induced map π0(X) Ð→ π0(Y ) is surjective.

4.3.2. rlll=ll: isomorphisms. — Recall that by Theorem 4.13[rll] ( ∅⇓
●
)
rll

= (
●
⇓
● ●
)
l

.

Theorem 4.14 (rlll: isomorphisms). — ( ∅⇓
●
)
rlll

is the class of isomorphisms.
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Proof. — A verification shows that the maps

★
⇓
★↔★ ,

★↔★
⇓
★

, and
●↘
⇓
●

have the left lift-

ing property with respect to
●
⇓
● ●

, i.e. belong to ( ∅⇓
●
)
rll

= (
●
⇓
● ●
)
l

, hence by Theo-

rems 3.3(surjective), 3.9(injective), and 3.7(induced)

(
∅
⇓
●
)
rlll

⊂
⎛
⎜
⎝

★
⇓
★ ↔ ★

⎞
⎟
⎠

l

∩ (
★ ↔ ★
⇓
★
)
l

∩
⎛
⎝

● ↘
⇓
●

⎞
⎠

l

= (surjective) ∩ (injective) ∩ (induced)

is the class of isomorphisms.

4.3.3. lrrr=(★↔★⇓
★

)
l

= (
● ●
⇓
●
)
r

is the class of injections. — Recall that ( ∅⇓
●
)
lrr

is the

class of maps admitting a section.

Theorem 4.15 (lrrr: injective). — ( ∅⇓
●
)
lrrr

= (
● ●
⇓
●
)
r

= (★↔★⇓
★

)
l

is the class of

injections.

Proof. — Ô⇒ : By Lemma 3.2 and 3.9 (
● ●
⇓
●
)
r

= (★↔★⇓
★

)
l

is the class of injections.

The map from Lemma 3.2(injective) belongs to ( ∅⇓
●
)
lrr

, hence ( ∅⇓
●
)
lrrr

⊂ (
● ●
⇓
●
)
r

=

(injections).

⇐Ô : Consider the commutative diagram (8) where i ∶ X Ð→ Y is injective and

p ∶ A Ð→ B in ( ∅⇓
●
)
lrr

has a section s ∶ B Ð→ A such that p ○ s = idB . Define the

lifting by h ∶= s○f . Then the lower triangle commutes, and by injectivity this implies
that the upper triangle commutes.

(8)

A X

B Y

f

p i

g

g

4.3.4. rllr=(
●
⇓
● ●
)
lr

. — Unfortunately, we do not have a complete description of this

item. The following is sufficient to calculate further orthogonals.
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Recall that by Theorem 4.13 ( ∅⇓
●
)
rll

= (
●
⇓
● ●
)
l

and that by Theorem 3.16(closed

subspaces)
⎛
⎜
⎝

★x ↔ ★y ↔ ★z↘ c
⇓

★x=y ↔ ★z=c
⎞
⎟
⎠

l

is the class of closed subspaces.

Theorem 4.16 (rllr). — ( ∅⇓
●
)
rllr

= (
●
⇓
● ●
)
lr

contains all closed subspace inclusions

X Ð→ Y such that

– X is the intersection of all clopen subsets containing it: X = ⋂
X⊂U⊂clopenY

U

and is contained in the class of closed inclusions (equivalently, closed subspaces).

(
∅
⇓
●
)
rllr

=
⎛
⎝
●
⇓
● ●

⎞
⎠

lr

⊂
⎛
⎜
⎝

★x ↔ ★y ↔ ★z↘ c
⇓

★x=y ↔ ★z=c

⎞
⎟
⎠

l

= (closed subsets)

In particular, it contains maps of form X Ð→X ⊔Y .

Proof. — ⇐Ô : Consider the diagram

A //

⎛
⎜
⎝

●
⇓
● ●

⎞
⎟
⎠

l

��

X

i

��

// {●X}

��

B //

77 33

Y // {●XU , ●Y ∖U}

Let X Ð→ Y be a closed inclusion satisfying the condition of the theorem. Since
X ⊂ Y is a subspace, the lifting B Ð→ X exists if Im(B Ð→ Y ) ⊂ X. Any clopen
subset U ⊃ X defines a commutative subdiagram of solid arrows such the square

on the right is a pullback. By assumption A Ð→ B is in (
●
⇓
● ●
)
l

, hence there is a

lifting B Ð→ {●} (i.e. the unique map B Ð→ {●} is a lifting). The commutativity
of the lower triangle for the lifting B Ð→ {●} means precisely that X ⊂ U . Hence,
Im(B Ð→X) ⊂ U . As U was chosen to be an arbitrary clopen subset of Y containing
X, we see that Im(B Ð→ X) ⊂ ⋂

X⊂U⊂clopenY
= A, and thus the lifting B Ð→ X exists.

Hence, the map X Ð→ Y is in ( ∅⇓
●
)
rllr

as required.

Ô⇒ : By Theorem 4.13 (surjections) ⊂ ( ∅⇓
●
)
rll

and therefore

(
∅
⇓
●
)
rllr

⊂ (surjections)r = (subspace)
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Now let X ⊂ Y be a subspace. and let i ∶ X Ð→ Y be the corresponding inclusion

map in (
●
⇓
● ●
)
lr

= ( ∅⇓
●
)
rllr

. Let clY X ⊂ Y be the closure of X in Y . Evidently

X Ð→ clY X ⋌{●, ●} Ð→ {●}, hence X Ð→ clY X ⋌ X Ð→ Y and therefore X = clY X
as required.

4.3.5. rllrr: has a section picking a generic point in each fibre. — The proof of this
theorem uses a set-theoretic cofinality argument which likely fails in many subcate-
gories of topological spaces considered in algebraic topology or homotopy theory.

Recall that a point of a topological space is called generic iff it lies in each open
subset, or, equivalently, its closure is the whole space.

Recall that by Theorem 4.13 ( ∅⇓
●
)
rllr

= (
●
⇓
● ●
)
lr

.

Theorem 4.17 (rllrr). — A map X
fÐ→ Y ∈ ( ∅⇓

●
)
rllrr

iff there is a section s ∶ Y Ð→

X of f ∶ X Ð→ Y such that s(y) is a generic point of the fibre f−1(y) with induced
topology, i.e.

s(y) ∈ ⋂
U∩f−1(y)≠∅
U is open

U.

In particular, each map ( ∅⇓
●
)
rllrr

has a section, is a quotient map, and each fibre has

a generic point, and

● ↘
⇓
●

,
★ ↔ ★
⇓
★

,

★x ↔ ★y ↔ ★z↘ c
⇓

★x=y ↔ ★z=c
∈ (
∅
⇓
●
)
rllrr

⊂ (
∅
⇓
●
)
rrrrl

Proof. — The last three conditions on the map are immediately implied by existence
of such a section, and in turn imply the inclusion by Theorem 4.10(rrrrl).

⇐Ô : By Theorem 3.17 existence of such a section implies the right lifting property
with respect to closed inclusions, i.e. f ∈ (closed subspaces)r. By Theorem 4.16

( ∅⇓
●
)
rllr

⊂ (closed subspaces) hence f ∈ (closed subspaces)r ⊂ ( ∅⇓
●
)
rllrr

as required.

Ô⇒ : Let us first show the implication for maps of form F Ð→ {●}. The general case
is the same but needs slightly more cumbersome notation.

Let F be a space such that F Ð→ {●} is in ( ∅⇓
●
)
rllrr

. Let κ be a cardinal of large

enough cofinality. Equip F ∪κ with a topology generated by (i) open subsets U ⊔{β ∈
κ ∶ α < β < κ} and (ii) {β ∈ κ ∶ β < α}, where U ranges among open subsets of F , and
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α ∈ κ. By construction the subsets F ⊔ {β ∈ κ ∶ α < β < κ} are clopen, and thus F is
the intersection of all clopen subsets of F ∪κ containing F , and thus by Theorem 4.16

F Ð→ F ∪ κ is in ( ∅⇓
●
)
rllr

. Now consider the diagram

F id //

⎛
⎝
∅

⇓
●
⎞
⎠

rllr

��

F

⎛
⎝
∅

⇓
●
⎞
⎠

rllrr

��

F ∪ κ //

h

66

{●}

Assume the lifting h ∶ F ∪ κ Ð→ F exists. Then the preimage of a non-empty open
subset of F is an open subset of form (i) and thus contains a final segment {β ∈ κ ∶ β >
α} for some α < κ. In particular, each cofinal subset of κ intersects the preimage of
each non-empty open subset of F . If we choose the cofinality of κ to be large enough,
e.g. cof κ > cardF , then there is a point x0 ∈ F such that its preimage h−1(x0) ∖ F
is cofinal in κ. Therefore its preimage intersects the preimage of each non-empty
open subset, and therefore x0 is contained in each non-empty open subset of F . Thus
s ∶ ● ↦ x0 is the required section, and this completes the proof for F Ð→ {●}.

Now we do the general case. Let X Ð→ Y be in ( ∅⇓
●
)
rllrr

. Let κ be a cardinal of

large enough cofinality. Equip X ∪ κ × Y with a topology generated by open subsets
U ⊔ {β ∈ κ ∶ α < β < κ} × V and {β ∈ κ ∶ β < α} × Y , where U ⊂ X, resp. V ⊂ Y , ranges
among open subsets of X, resp. Y , such that f(U) ⊂ V , and α ∈ κ. Note that the
induced topology on each fibre of f ∶ X Ð→ Y coincides with the topology defined
above. Same as before, by construction X is the intersection of all clopen subsets of

X ∪ κ × Y containing X, and thus by Theorem 4.16 X Ð→ X ∪ κ × Y is in ( ∅⇓
●
)
rllr

.

Now consider the diagram

X id //

⎛
⎝
∅

⇓
●
⎞
⎠

rllr

��

X
⎛
⎝
∅

⇓
●
⎞
⎠

rllrr

��

X ∪ κ × Y //

h

55

Y

Assume the lifting h ∶X ∪ κ × Y Ð→X exists.

Then the preimage of a non-empty open subset U of X contains a subset of form
U ∪ {β ∈ κ ∶ β > α} × V for some α < κ and f(U) ⊂ V both open.

If cof κ > cardXY then there is a cofinal subset S ⊂ κ such that h(α, y) = h(β, y) for
each α,β ∈ S and y ∈ Y .

Because the induced topology on each fibre F = f−1(y) of f ∶X Ð→ Y coincides with
the topology defined on F defined above, the argument above implies h(α, y) lies in
each open subset of X intersecting f−1(y), for each y ∈ Y and α ∈ S.
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Hence, for α ∈ S we have that s ∶= h(α,−) ∶ Y Ð→ X is a section of f ∶ X Ð→ Y such
that for each y ∈ Y

s(y) ∈ ⋂
U∩f−1(y)≠∅
U is open

U.

4.3.6. rll.rrr=rrrr: each fibre is T1. — Recall that by Theorem 4.8(T1) (
∅
⇓
●
)
rrrr

is

the class of maps with T1 fibres.

Theorem 4.18 (rll.rrr: the fibre is T1). — ( ∅⇓
●
)
rll.rrr

= ( ∅⇓
●
)
rrr.r

is the class of

maps such that each fibre satisfies separation axiom T1.

Proof. — Ô⇒ : By Theorem 4.17[rllrr]
●↘
⇓
●
∈ ( ∅⇓
●
)
rllrr

, hence ( ∅⇓
●
)
rllrr.r

⊂ (
●↘
⇓
●
)
r

=

(each fibre is T1).

⇐Ô : Theorem 4.17[rllrr] implies that any map in ( ∅⇓
●
)
rllrr

is a quotient map

such that there is no non-trivial closed equivalence relation on each fibre, hence by

Theorem 4.10(rrr.rl) ( ∅⇓
●
)
rllrr

⊂ ( ∅⇓
●
)
rrr.rl

and therefore applying the right Quillen

negation to the inclusion ( ∅⇓
●
)
rllrr

⊂ ( ∅⇓
●
)
rrr.rl

gives

(
∅
⇓
●
)
rllrrr

⊃ (
∅
⇓
●
)
rrr.rlr

= (
∅
⇓
●
)
rrrr

= (each fibre is T1).

4.3.7. rll.rrl=
⎛
⎜
⎝

★x ↔ ★y ↔ ★z↘ c
⇓

★x=y ↔ ★z=c
⎞
⎟
⎠

l

: is the class of closed inclusions.—

Theorem 4.19 (rll.rrl: closed subsets). — ( ∅⇓
●
)
rll.rrl

=
⎛
⎜
⎝

★x ↔ ★y ↔ ★z↘ c
⇓

★x=y ↔ ★z=c
⎞
⎟
⎠

l

=

( ⇓
●↘ )

lr

is the class of closed subspaces.

Proof. — The second equality follows from Theorem 3.16.
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The map

★x ↔ ★y ↔ ★z↘ c
⇓

★x=y ↔ ★z=c
satisfies the condition of Theorem 4.17(rllrr) and thus

★x ↔ ★y ↔ ★z↘
c

⇓
★x=y ↔ ★z=c

∈ ( ∅⇓
●
)
rllrr

, hence by Theorem 3.16(closed subspaces)

(
∅
⇓
●
)
rllrrl

⊂
⎛
⎜
⎝

★x ↔ ★y ↔ ★z↘ c
⇓

★x=y ↔ ★z=c

⎞
⎟
⎠

l

= (closed subspaces).

By Theorem 3.17 closed subspaces have the left lifting property with respect to maps
having a generic section, and thus

(
∅
⇓
●
)
rllrr

⊂
⎛
⎜
⎝

★x ↔ ★y ↔ ★z↘
c

⇓
★x=y ↔ ★z=c

⎞
⎟
⎠

lr

= (closed subspaces)r

hence applying the left Quillen negation gives

(
∅
⇓
●
)
rllrrl

⊃
⎛
⎜
⎝

★x ↔ ★y ↔ ★z↘ c
⇓

★x=y ↔ ★z=c

⎞
⎟
⎠

lrl

=
⎛
⎜
⎝

★x ↔ ★y ↔ ★z↘ c
⇓

★x=y ↔ ★z=c

⎞
⎟
⎠

l

= (closed subspaces).

4.3.8. rll.rrll=
⎛
⎜
⎝

★x ↔ ★y ↔ ★z↘
c

⇓
★x=y ↔ ★z=c

⎞
⎟
⎠

ll

= ( ⇓●↘ )
l

is the call of maps having dense image.—

Recall that by Theorem 4.19 ( ∅⇓
●
)
rllrrl

is the class of closed subsets.

Theorem 4.20 (rll.rrll: dense image). — ( ∅⇓
●
)
rll.rrll

=
⎛
⎜
⎝

★x ↔ ★y ↔ ★z↘
c

⇓
★x=y ↔ ★z=c

⎞
⎟
⎠

ll

=

( ⇓
●↘ )

l

is the class of maps with dense image.

Proof. — Theorem 4.19(rllrrl) implies the first equality. Theorem 3.18 implies the
second equality, as well as the fact that this is the class of maps with dense image.

4.3.9. rll.rrlll=ll: isomorphisms.—

Theorem 4.21 (rll.rrlll: isomorphisms). — ( ∅⇓
●
)
rll.rrlll

= (dense image)l is the

class of isomorphisms.
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Proof. — Note that maps
⎛
⎝

★
⇓
★↔★
⎞
⎠
,
●↘
⇓
●

and (★↔★⇓
★

) have dense image and thus are in

( ∅⇓
●
)
rllrrll

by Theorem 4.20(rllrrll). By Theorems 3.6(surjective), 3.7(induced) and

3.9(injective)

(
∅
⇓
●
)
rllrrlll

⊂ (surjections) ∩ (induced topology) ∩ (injections) = (Isomorphisms).

4.3.10. rllrrllr=rllrrl: closed subspace. — Recall that by Theorem 4.19 ( ∅⇓
●
)
rllrrl

is

a right orthogonal, hence the required equality is implied by the identity rlr = r.

4.4. Disjoint union, quotient, induced topology, the fibre is T0. —

4.4.1. lrrl: disjoint union. — Recall that by Theorem 4.5 ( ∅⇓
●
)
lrr

is the class of maps

having a section.

Theorem 4.22 (lrrl: disjoint union). — ( ∅⇓
●
)
lrrl

is the class of maps of form

AÐ→ A⊔B.

Proof. — ⇐Ô : Consider a commutative square

A X

A⊔B Y

f

i p

g1⊔g2

h∶=g1⊔g2○s
s

and define the lifting as h ∶= f ⊔ g2 ○ s ∶ A⊔B Ð→ X. It is continuous by definition
of the disjoint union. Alternatively, a more category-theoretic approach is as follows.
Notice that A Ð→ A ⊔B is a cobase change of ∅ Ð→ B along ∅ Ð→ A, hence by [H,

Lemma 3.2] it belongs to ( ∅⇓
●
)
lrrl

whenever ∅ Ð→ A does. By Theorem 4.3 ∅ Ð→ A

belongs to ( ∅⇓
●
)
lr

⊂
⎛
⎝
( ∅⇓
●
)
lr⎞
⎠

rl

= ( ∅⇓
●
)
lrrl

.

Ô⇒ : Let p ∶ X Ð→ Y be in ( ∅⇓
●
)
lrrl

. Consider the obvious map p′ ∶ X ⊔ Y Ð→ Y .

It has a section Y Ð→ X ⊔ Y and therefore there is a lifting h ∶ Y Ð→ X ⊔ Y in
diagram (9). Then Y = h−1(X) ⊔ h−1(Y ) is the disjoint union of the preimages of
clopen subsets X and Y of X ⊔ Y . Commutativity of the upper triangle implies that
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the topology on h−1(X) ⊂ Y is induced from X ⊂ X ⊔ Y , and commutativity of the
lower triangle implies that the topology on h−1(Y ) ⊂ Y is induced also.

(9)

X X ⊔Y

Y Y

idX

p p′

idY

h

Remark 4.3. — ( ∅⇓
●
)
lrrl

is the class of maps obtained from
●
⇓
● ●

from by base

change. Indeed, to give a map B Ð→ {●, ●} is the same as to give a disjoint union
A ⊔ B′, and the base change along this map is A Ð→ A ⊔ B′. It is also obtained

from the class ( ∅⇓
●
)
lr

of maps with empty domain by cobase change. The following

diagram illustrates this.

∅ //

��

A

��

B // A ⊔B

A //

��

{●}

��

A ⊔B // {●, ●}

4.4.2. lrrrl=(
● ●
⇓
●
)
rl

=
⎛
⎝

★
⇓
★↔★ ,

●↘
⇓
★↔★

⎞
⎠

l

: quotient. — This calculation is a standard uni-

versal property of quotient map with respect to injective maps.

Recall that by Theorem 4.15 ( ∅⇓
●
)
lrrr

is the class of injective maps.

Theorem 4.23 (lrrrl: quotient). — ( ∅⇓
●
)
lrrrl

=
⎛
⎝

★
⇓
★↔★ ,

●↘
⇓
★↔★

⎞
⎠

l

= (
● ●
⇓
●
)
rl

is the class

of quotient maps, i.e. surjective map p ∶ AÐ→ B such that the topology on B is pushed
forward from A.

Proof. — Ô⇒ : The maps

★
⇓
★↔★ and

●↘
⇓
★ ↔ ★

are injective, hence by Theorem 3.3(sur-

jective) and Theorem 3.13(quotient) ( ∅⇓
●
)
lrrrl

⊂
⎛
⎝

★
⇓
★↔★
⎞
⎠

l

∩ (
●↘
⇓
★ ↔ ★

)
l

= (surjective) ∩

(quotient), as required.
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⇐Ô : Consider the diagram

A X

B Y

f

p i

g

h

A possibly non-continuous lifting h ∶ B Ð→ X exists because p ∶ A Ð→ B is surjective
and i ∶X Ð→ Y is injective. It is continuous due to the universal property of quotient
topology: h is continuous if and only if p○h = f is continuous, which we do know.

4.4.3. lrrrll=rl: disjoint union with a discrete space. — Recall that by Theorem 4.23(quo-

tients) ( ∅⇓
●
)
lrrrl

is the class of quotient maps, and that by Theorem 4.1(rl) ( ∅⇓
●
)
rl

is

the class of maps of form AÐ→ A ⊔D where D is discrete.

Theorem 4.24 (lrrrll=rl). — ( ∅⇓
●
)
lrrrll

= ( ∅⇓
●
)
rl

is the class of maps of form

AÐ→ A ⊔D where D is discrete.

Proof. — ⇐Ô : A verification shows that any such map lift with respect to any

surjection. Alternatively, by Theorems 4.23(quotient) and 3.6(surjective) ( ∅⇓
●
)
lrrrl

⊂

( ∅⇓
●
)
r

and therefore ( ∅⇓
●
)
lrrrll

⊃ ( ∅⇓
●
)
rl

. Ô⇒ : The maps (
● ●
⇓
●
) and

★ ↔ ★↓★ ↔ ★
⇓

★ ↔ ★ ↔ ★

are quotient maps and therefore belong to ( ∅⇓
●
)
lrrrl

, hence by Theorem 3.2(injective)

and 3.12

(
∅
⇓
●
)
lrrrll

⊂ (
★ ↔ ★
⇓
★
)
l

∩
⎛
⎝

★ ↔ ★↓★ ↔ ★
⇓

★ ↔ ★ ↔ ★

⎞
⎠

l

= (injective)∩(quotient disjoint union with discrete)

as required.

4.4.4. lrrrr=(★↔★⇓
★

)
lr

=
⎛
⎝

★
⇓
★↔★ ,

●↘
⇓
●

⎞
⎠

l

: induced topology. — This calculation is a stan-

dard universal property of induced topology with respect to injective maps. Recall

that by Theorem 4.15(injective) ( ∅⇓
●
)
lrrr

is the class of injective maps.

Theorem 4.25 (lrrrr: induced topology and surjective)

( ∅⇓
●
)
lrrrr

=
⎛
⎝

★
⇓
★↔★ ,

●↘
⇓
●

⎞
⎠

l

= (★↔★⇓
★

)
lr

is the class surjective map p ∶ A Ð→ B such that

the topology on A is induced from B.
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Proof. — Ô⇒ : The maps
∅
⇓
●

is injective and thus
∅
⇓
●
∈ ( ∅⇓
●
)
lrrr

by Theorem 4.15(in-

jective), hence by Theorem 3.6(surjective) ( ∅⇓
●
)
lrrrr

⊂ ( ∅⇓
●
)
r

= (surjective). Now let

f ∶ X Ð→ Y be a surjective map in ( ∅⇓
●
)
lrrrr

. Let XY be the set of points of X

equipped with the topology induced from Y , and let X Ð→ XY be the obvious map.
It is injective (in fact, bijective), hence X Ð→XY ⋌ X Ð→ Y (see the diagram below).
The lifting XY Ð→ X is necessarily an identity on points, and its continuity means
precisely that the topology on X is induced from Y .

X X

XY Y

id

i
h

⇐Ô : Consider the diagram

A X

B Y

f

p i

g

h A possibly non-continuous lifting h ∶ B Ð→

X exists because p ∶ AÐ→ B is surjective and i ∶X Ð→ Y is injective. It is continuous
due to the universal property of quotient topology: h is continuous if and only if
p ○ h = f is continuous, which we do know.

4.4.5. lrrrrr=(★↔★⇓
★

)
r

: the fibre is T0.— Recall that by Theorem 4.25 ( ∅⇓
●
)
lrrrr

is

the class of surjective maps such that the topology on the codomain is induced.

Theorem 4.26 (lrrrrr=(★↔★⇓
★

)
r

: the fibre is T0). — ( ∅⇓
●
)
lrrrrr

= (★↔★⇓
★

)
r

is the

class of maps f ∶ X Ð→ Y such that each fibre f−1(y), y ∈ Y , satisfies separation
axiom T0.

Proof. — Ô⇒ : By Theorem 4.25
★↔★
⇓
★

∈ ( ∅⇓
●
)
lrrrr

, and thus by Theorem 3.11(T0)

each fibre of any map in ( ∅⇓
●
)
lrrrrr

satisfies separation Axiom T0.
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⇐Ô : Consider a diagram where f ∈ ( ∅⇓
●
)
lrrrr

and g ∈ ( ∅⇓
●
)
lrrrrr

:

A t //

f

��

X

g

��

B //

66

Y

Each fibre ofA
fÐ→ B is antidiscrete because the topology onA is induced fromB, hence

it maps into a single point of Y by the assumption that each fibre of X
gÐ→ Y satisfies

Axiom T0. This defines a possibly not continuous lifting h ∶ B Ð→ X. Howewer, it
is continuous by the universal property of induced topology. The lower triangle is

commutative because the map A
fÐ→ B is surjective.

4.4.6. lrrrr.rl=lrrrr. — By Theorem 4.25(induced topology) the class ( ∅⇓
●
)
lrrrr

is

also a left orthogonal, hence the identity lrl = l applies.

4.4.7. lrrrrr.r=ll: isomorphisms. — Recall that by Theorem 4.27(T0) the class (
∅
⇓
●
)
lrrrrr

is the class of maps with T0 fibres.

Theorem 4.27. — The class ( ∅⇓
●
)
lrrrrrr

is the class of isomorphisms.

Proof. — The maps ( ∅⇓
●
) and (

● ●
⇓
●
) have T0-fibres, hence

(
∅
⇓
●
)
lrrrrrr

⊂ (
∅
⇓
●
)
r

∩ (
● ●
⇓
●
)
r

= (surjective) ∩ (injective) = (bijections)

Now, any bijection also T0 fibres, hence any map in ( ∅⇓
●
)
lrrrrrr

lifts with respect to

any bijection, hence it lifts with respect to itself, and thus is an isomorphism.

4.4.8. The computation is complete.— A verification shows that we have finished

classification of all the iterated Quillen negations of ( ∅⇓
●
) in the category of (all)

topological spaces.
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