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TO GRIGORI MINTS Z”L IN MEMORIAM

Abstract. We sketch an observation that some standard arguments in general topology are
diagram chasing computations with finite preorders (or equivalently, finite topological spaces),

and suggest this observation may be used to implement a problem solver of a kind suggested by
M. Ganesalingam and T. Gowers.

In particular, we observe the lifting property wrt arrows between finite spaces defines several

properties such as dense image, Hausdorff, connected, injective and surjective, and show how to
translate to diagram chasing computations a couple of simple arguments, namely that the image

under a continious map of a connected space is connected, and that the equaliser {x : f(x) = g(x)}
defines a closed subset provided the the image Im f = Im g is Hausdorff.

This is a preliminary publication.

Gde-to est’ ljudi, dlya kotoryh teorema werna

Somewhere there are people for whom
a theorem is true

1. Introduction

The goal of this note is to sketch the observation that some standard arguments and
definitions in general topology directly translate to diagram chasing computations, and
diagram chasing rules, and then offer several speculations and open questions motivated
by this observation; thus this paper is more in the style of a research proposal. We try to
explain how the translation works on several examples, but little if any attempt is made to
suggest a complete and coherent diagram chasing calculus where these computations are
performed. A later note [G1] suggests a formal calculus and a list of axiom based on this
observaton.

Structure of the paper. §1 Introducton provides necessary background. §2 lists several
examples of notions in general topology defined by the lifting property acting as a ”mean-
ingful category-theoretic negation”. §3 and §4.4, in slighly different notation, prove and
reformulate in a diagram chasing proof manner that (roughly) the diagonal in a Hausdorff

The author expresses his deep gratitude to and appreciation of the late Grigori Mints who made this work

possible, in so many senses of these words. I dedicate this work to his memory, though it is not nearly as polished

or finished enough for him to have considered it acceptable. In fact I know he did not, as we discussed extensively
the work and this text (with little changes, mostly in the introduction) during his (last!) visit to St.Petersburg...

A first draft of the note was put online on 1 April 2014. A current draft shall be available as [G0]. Some ideals shall
be developed in [G1].
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space is closed. §4 works out our translation in several examples. §4.1 translates the Haus-
dorff separation property; §4.2 — that limits are unique in Hausdorff spaces, and §4.3 —
that a closed subset of a complete metric space is complete (this example also occures in
[GG,§2.2]).
§4.5 introduces labels and defines compactness. Last but not least, in §5 several specu-

lations and observations are made. Alas, §6 is an unfinished paragraph left the author is
reluctant to modify or remove for personal reasons; it sketches a computer-like syntax to
record diagram chasing computations.

Finite topological spaces and diagram chasing play an important role in this paper, and
the first subsection introduces notation we use and gives a quick overview of the relevant
definitions. More background and examples are provided in the following subsection but
it is not essential for understanding.

An exposition of theory of finite topological spaces may be found in [Br] and [Mc], and
references therein. [Nov, Ch.I] is an excellent exposition of algebraic topology.

1.1. Notation on finite topological spaces and diagram chasing. A finite topological
space defines, and is defined by, a transitive binary relation, or, in another teminology, a
preorder, the specialisation preorder, on its set X of points:

y 6 x iff y lies in the least closed set containing the point x, y ∈ Clx.

Downward closed sets are closed, and upward closed sets are open.

Notation for finite topological spaces and continuous maps. A list of equalities and in-
equalities between symbols denotes the preorder obtained by transitive closure of the in-
equalities and whose elements are equivalence classes generated by the equalities. Thus,
{x = y} and {x < y = z}, {x ≷ y = z < t} denote preorders on 1,2 and 3 ele-
ments. We use o ≷ x to denote that both o > x and o 6 x, yet o and x are not
equal; we use a < b to denote that a 6 b yet not b 6 a. An arrow L1

.−−→ L2, e.g.
{a < b, b ≷ c, c = d, ...} .−−→ {a < b < b ≷ c, c = d, d < e, f = g, ...}, between such lists L1

and L2, denotes the order preserving map from the order corresponding to L1 to the order
corresponding to L1 ∪L2 sending each element into the corresponding element of L1 ∪L2.

For example, {o, x}, {o ≷ x} and {o > x} denote, resp., the 2-point topological space
with the discrete topology (all subsets are open), the antidiscrete topology (only the empty
set and the whole space are open), and the topology with only one open point o and one
closed point x. The spaces {x} and {x = y} have a single point. Spaces {o, x} and
{o, x = y} are homeomorphic. The arrow {y} .−−→ {o > x = y} is the map sending the
point y into the only closed point. The arrow {y} .−−→ {o > x} denotes the same map as
the arrow {y} .−−→ {o > x, y}, namely the map between a one-point and 3-point spaces.

Generalities on diagram chasing. A category < consists of a collection of objectsOb<, a col-
lection of setsMor(X,Y ) = Arr(X,Y ) of morphisms or arrows for each pair X,Y ∈ Ob<
of its objects, a distinguished identity element idX ∈ Mor(X,X) for each X ∈ Ob<, and
a composition operation ◦ : Mor(X,Y ) × Mor(Y,Z) −→ Mor(X,Z) for every triple
of objects, such that (f ◦ g) ◦ h = f ◦ (g ◦ h) and idX ◦ f = f = f ◦ idY for each
f ∈ Mor(X,Y ), g ∈ Mor(Y,Z), h ∈ Mor(Z, T ); latter is usually written as f : X −→ Y ,
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g : Y −→ Z, h : Z −→ T or X
f−→ Y

g−→ Z
h−→ T . A diagram is a directed graph where every

vertex is labelled by an object of the category, and each directed edge between vertices
labelled by objects X and Y is labelled by an arrow in Mor(X,Y ). A diagram commutes
from a vertex x to a vertex y iff the composition of labels along a path between these ver-
tices does not depend on the path taken from x to y. A commutative diagram is a diagram
commuting between any two vertices. A helpful topological way to think of categories is
as of a topological graph, i.e. a topological space consisting of lines (edges) connecting
points (vertices), with surfaces gluing in subgraphs corresponding to commutative dia-
grams; then commutative diagrams then correspond to contractible subgraphs. Diagram
chasing refers to a process of category theoretic reasoning and computation involving rules
for manipulating commutative diagrams.

1.2. Background: finite topological spaces as categories, preorders, and homo-
topy types. We observe that the following 4 notions are equivalent:

(1) finite topological spaces, and continuous maps
(2) binary transitive reflexive relations on finite sets, and functions respecting the re-

lation
(3) finite partial preorders, and order preserving maps
(4) finite categories such that there is at most one morphisms between any two objects,

and (covariant) functors

A finite partial preorder we define as a binary transitive reflexive relation.

1.2.1. Finite topological spaces as binary transitive relations. A finite topological space
defines, and is defined by, a transitive binary relation, or, in another teminology, a partial
preorder, the specialisation preorder, on its set X of points:

y 6 x iff y lies in the least closed set containing the point x, y ∈ Clx.

A subset Z ⊆ X is closed in the topology iff it is downward closed, i.e. x ∈ Z, y 6 x
implies y ∈ Z. Indeed, a finite union of closed subsets is closed, and this implies a subset
Z is closed iff it is the (necessary finite) union of closures of its points. A subset U ⊆ X
is open iff it is upward closed, i.e. u ∈ U , u 6 v implies v ∈ U . A map f : X −→ Y is
continuous iff the preimage of an open set is open, i.e. iff f preserves the order relation,
i.e. x 6 y implies f(x) 6 f(y). If f(x) 6 g(x) for all x ∈ X, then f and g are homotopic.

1.2.2. Finite topological spaces as categories with unique morphisms. A finite topological
space defines, and is defined by, a category with unique morphisms: its objects are the
points of the topological space, and Mor(x, y) = {•} iff y lies in the least closed set
containing the point x, y ∈ Clx. All diagrams are necessarily commutative. A subset
Z ⊆ X is closed iff there are no arrows going outside of the corresponding full subcategory
Z, i.e. i.e. A ∈ ObZ, A −→ B implies B ∈ ObZ = Z. A subset U ⊆ X is open iff there are
no arrows going into the corresponding full subcategory from outside of it, i.e. A ∈ ObU ,
B −→ A implies B ∈ ObU . A map f : X −→ Y is continuous iff it is a functor, i.e.
A −→ B implies f(A) −→ f(B), and necessary commutativity conditions hold (trivially,
for categories with unique morphisms).
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A natural transformation f =⇒ g, i.e. a collection of morphisms f(A)
εA−→ g(A) for

all A ∈ X with certain commutativity conditions (again trivial for categories with unique
morphisms), is a homotopy between maps f and g, but not every homotopy has such a
form.

1.2.3. Finite topological spaces as homotopy types. Let X =
⋃

0<i<N Di be a simplicial
triangulation of a space X, i.e. X =

⋃
Di, each Di is a homeomorphic copy of a simplex

∆n for some n ∈ N, and for each 0 < i, j < N there is 0 < k < N such that Dk = Di ∩Dj

unless Di∩Dj = ∅. Let D be the inclusion partial order on Di’s where Di 6 Dj iff Di ⊆ Dj .

Then the map X
τ−→ D is a weak homotopy equivalence, i.e. map Sn f−→ X and Sn g−→ X

are homotopy equivalent iff Sn f−→ X
τ−→ D and Sn g−→ X

τ−→ D are homotopy equivalent.
The n-dimentional sphere Sn is homeomorphic to the boundary δ∆n of an n-dimentional

simplex, and thus equivalently, X
τ−→ D is a weak homotopy equivalence iff δ∆n

f−→ X and

δ∆n g−→ X are homotopy equivalent iff δ∆n f−→ X
τ−→ D and δ∆n g−→ X

τ−→ D are homotopy
equivalent.

The observation above allows one to use simplicial triangulations to find finite analogues
of notions in homotopy theory; let us give a couple of examples. Cover a circle by two
intervals intersecting at their endpoints. This gives rise to a weak homotopy equivalence
S1 −→ {x1 < o1, x2 < o1, x1 < o2, x2 < o2} to the 4-point space {x1 < o1, x2 < o1, x1 <
o2, x2 < o2} = {x1 < o1} × {x2 < o2} known as a finite circle.

For a finite topological space X, non-Hausdorff cone CfinX of an order is is the preorder
CX ∪ {? < x : x ∈ X} obtained by adding a point ? at the bottom. The non-Hausdorff
suspension ΣfinX is obtained by adding two incomparable points on top, i.e. is the order
X ∪ {? < x, • < x : x ∈ X}. Both maps come with canonical inclusions X −→ CfinX and
X −→ ΣfinX.

A n-dimensional finite sphere Snfin is

Snfin := { oi < oj , xi < xj , xi < oj , oi < xj : 0 6 i < j 6 n }.

It holds Sn+1 = ΣSn and analogously for finite spheres as Sn+1
fin = ΣfinSnfin.

An order has a greatest or least element implies it is contractible.
The circle S1 is the unique 2nd countable space that splits into two connected spaces after

removing any two points. Kline theorem provides an analogous characterisation exists for
spheres of any dimension. An interval I with endpoints a, b ∈ I is the unique 2nd countable
space that splits into two connected components after removing any point except a and b,
and remains connected after removing either a, b or both.

2. Examples: Lifting properties against counterexamples

In this section we observe that a single categorical construction, the lifting property,
defines uniformly a number of properties such as as being injective, surjective, connected,
separation axioms T0, T1, T2, T4, dense, induced topology; surjective and injective on π0.
Moreover, as the only input data or parameter, it uses a minimal or typical counterexample
to the property, usually a monotone map between spaces of one and two points or less.
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X
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{•} //
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{x = y}

(d) {x, y} //

.

��

X

∴
��

{x = y} //

::

{Y }
(e) X //

∴
��

{x ≷ y}
.

��

Y //

;;

{x = y}

(f) {x ≷ y} //

.

��

X

∴
��

{x = y} //

;;

{•}
(g) X //

∴
��

{x < y}
.

��

Y //

;;

{x = y}

(h) {x < y} //

.

��

X

∴
��

{x = y} //

;;

{•}
(i) X //

∴
��

{x}
.

��

Y //

;;

{x < y}

(j) ∅ //

∴
��

{w1 > u1 < x > u2 < w2}
.

��

X //

66

{w1 < u1 = x = u2 > w2}

Figure 1. The definition and some examples of lifting properties. (a) The def-
inition of a lifting property. (b) X −→ Y is surjective (c) X is connected (d)
X −→ Y is injective (e) X −→ Y is injective (f) X satisfies separation axiom T0
(g) topology on X is the pullback topology via the map X −→ Y (h) X satisfies
separation axiom T1 (i) the image of X is dense in Y (j) X satisfies separation
axiom T4

Lifting property also defines Compactness and preusodocompactness (for connected spaces).

Definition 1 (Lifting property). We say that the lifting property holds for morphisms

f : A −→ B and g : X −→ Y or that arrow A
f−→ B lifts against arrow X

g−→ Y , write
f i g or A −→ B i X −→ Y , cf. Fig. 1a, iff for every pair of morphisms i : A −→ X

and j : B −→ Y , if the square A
i−→ X

g−→ Y , A
f−→ B

j−→ Y commutes, i.e. f ◦ j = i ◦ g,

then there exists a morphism j̃ : B −→ X making the total diagram A
i−→ X,B

j−→ Y and

A
f−→ B

j̃−→ X
g−→ Y commute, i.e. f ◦ j̃ = i and j̃ ◦ g = j.

The morphism j̃ : B −→ X is often referred to as the diagonal arrow required to exist
by the lifting property.
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Recall x ≶ y means that both x 6 y and y 6 x.

2.1. Lifting properties involving a single point.

(1) X −→ Y is surjective iff ∅ −→ {•}iX −→ Y
(2) X is non-empty or X = Y = ∅ iff X −→ Y i ∅ −→ {•}

2.2. Injective, surjective, connected, T0, T1, dense, induced topology; surjective
and injective on π0 as lifting properties. Let us list the lifting properties against all
the morphisms involving a non-empty space and a two point space.

(1) {x, y} −→ {x = y}
(a) X −→ Y is injective iff {x, y} −→ {x = y}iX ↪→ Y
(b) X is connected iff X −→ {x = y}i {x, y} −→ {x = y}
(c) π0(X) ↪→ π0(Y ) is injective iff X −→ Y i {x, y} −→ {x = y}

(2) {x} −→ {x, y}
(a) X −→ Y is surjective or X (or Y ) is empty iff {x} −→ {x, y}iX � Y
(b) π0(X) −→ π0(Y ) is surjective iff X −→ Y i {x} −→ {x, y}

(3) {x ≶ y} −→ {x = y}
(a) X −→ Y is injective iff X −→ Y i {x ≶ y} −→ {x = y}
(b) X is T0, i.e. at least one of any two distinct points of X has an open neigh-

bourhood which does not contain the other point iff
{x ≶ y} −→ {x = y}iX −→ {x = y}

(c) the fibres of X −→ Y are T0 iff {x ≶ y} −→ {x = y}iX −→ Y
(4) {x} −→ {x ≶ y}

(a) X −→ Y is surjective iff X −→ Y i {x} −→ {x ≶ y}
(b) if no open set separates every y, y′ ∈ Y , then there exist preimages of y and y′

with the same property
iff {x} −→ {x ≶ y}iX −→ Y

(5) {0 < 1} −→ {0 = 1}
(a) X is T1, i.e. each one of any two distinct points of X has an open neighbourhood

which does not contain the other point iff
{0 < 1} −→ {0 = 1}iX −→ {0 = 1}

(b) X −→ Y is a subspace with induced topology
iff X −→ Y i {0 < 1} −→ {0 = 1} and X −→ Y i {0 ≶ 1} −→ {0 = 1}

(c) the topology on X is the coarsest topology such that X −→ Y is continuous,
i.e. topology on X consists of preimages of open subsets of Y iff
X −→ Y i {0 < 1} −→ {0 = 1}

(d) for X ↪→ Y , the topology on X is induced from the topology on Y
iff X ↪→ Y i {0 < 1} −→ {0 = 1}

(6) {0} −→ {0 < 1}
(a) the image of X is dense iff X −→ Y i {0} −→ {0 < 1}
(b) for every x ∈ X, y ∈ Y , h(x) ∈ Cl(y) implies x ∈ Cl(y′) for some y′, h(y′) = y

iff {0} −→ {0 < 1}iX −→ Y
(7) {1} −→ {0 < 1}
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(a) no proper open subset of Y contains the image of X iff
X −→ Y i {1} −→ {0 < 1}

(b) for every x ∈ X, y ∈ Y , y ∈ ClY (h(x)) implies y′ ∈ ClX(x) for some y′ ∈ X,
h(y′) = y
iff {1} −→ {0 < 1}iX −→ Y

Note that roughly a third of these lifting properties correspond to standard notions
defined and used in a first course in general topology.

2.3. More then three points: Hausdorff and T4. More points are needed to define
Hausdorff and T4 spaces. Note that {a > x < b} and {w1 < u1 = x = u2 > w2} are the
smallest non-Hausdorff and non-T4 but T3 spaces, resp.

(1) T is T2, or Hausdorff, iff
{a, b} ↪→ X i {a > x < b} −→ {a = x = b}

(2) X is normal, or T4, i.e. for every two closed sets W1,W2 ⊆ X there exists non-
intersecting open neighbourhoods U1 ⊇W1 and U2 ⊇W2, such that U1 ∩ U2 = ∅,
iff ∅ −→ X i {w1 > u1 < x > u2 < w2} −→ {w1 < u1 = x = u2 > w2}

We also remark that X is T4 iff for every closed embedding A ↪→ X, it holds A ↪→
X i R −→ {•}.1

2.4. Compactness and pseudocompactness as a lifting property. We observe that
both being pseudocompact and being compact (not necessarily Hausdorff) are lifting prop-
erties with respect to simple counterexamples.

(1) Every continuous function X −→ R is bounded iff
∅ −→ X i

∐
{[−n, n] : n ∈ Z} −→ R

(2) X is compact (not necessarily Hausdorff) iff for every ordinal α,
∅ −→ X i

∐
{β : β ∈ α} −→ α

2.5. Closed subsets of metric spaces as a lifting property. Let N denote the discrete
space with countably many points, and let N∪{∞} denote its one-point compactification,
i.e. a subset of N ∪ {∞} is closed iff it is either finite or contains ∞.

(1) In a metric space X, a subset A ⊆ X is closed iff
N −→ N ∪ {∞}iA ↪→ X

3. Sample proofs carried as diagram chasing computations

3.1. f(x) = g(x) defines a closed subset for f, g : X −→ Y and Y Hausdorff. Now
let us prove that the coincidence set Eqf=g = {x ∈ X|f(x) = g(x)} of two continuous
maps from an arbitrary space to a Hausdorff space is closed.

Claim 1. Y is Hausdorff iff {x, y} ↪→ X i {a > x < b} .−−→ {a = x = b}

1We thank http://math.stackexchange.com/questions/434312/are-there-useful-categorical-characterisations-of-
the-topological-separation-axi for this remark
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(a) {x, y} //

��

(injective)

��

{a > x < b}
.

��

X //

88

{a = x = b}

Figure 2. Lifting properties. X is Hausdorff (the arrow {x, y} ↪→ X is assumed
injective)

Claim 2. Assume Y is Hausdorff and let f, g : X −→ Y be two maps. Then {x ∈ X|f(x) =
g(x)} ⊆ X is closed.

Claim 3. Assume {a, b} ↪→ Y i {a > x < b} −→ {a = x = b}, X f−→ Y , X
g−→ Y . Then

(0)- there is an arrow X
“f(x)=g(x)”−−−−−−−−→ {o > x} such that, for arbitrary (¿new?) arrow

{x} x−→ X, it holds

(0a) {x} x−→ X
f−→ Y and {x} x−→ X

g−→ Y commute at {x} to Y

(0b) {x} x−→ X
“f(x)=g(x)”−−−−−−−−→ {o > x} and {x} −→ {o < x} form a commutative

diagram

Lemma 4 ((1+)). There is an arrow X
“f(x)=g(x)”−−−−−−−−→ {o ≷ x}, such that the following are

equivalent:

(1a) {x} x−→ X
f−→ Y and {x} x−→ X

g−→ Y commute at {x}
(1b′) {x} x−→ X

“f(x)=g(x)”−−−−−−−−→ {o ≷ x} and {x} −→ {o ≷ x} form a commutative diagram

Proof: it is a derivation rule applied to property (1a) as property of arrow {x} x−→ X. �
Claim 2(0)− follows from Lemma 4[(2−)] and Lemma 3[(1+)].

Lemma 5 ((2−)). There is the arrow X
“f(x)=g(x)”−−−−−−−−→ {o > x} such that X

“f(x)=g(x)”−−−−−−−−→
{o > x}, {o > x} −→ {o ≷ x} and X

“f(x)=g(x)”−−−−−−−−→ {o ≷ x} form a commutative triangle.
In notation,

[[X
“f(x)=g(x)”−−−−−−−−→ {o > x} −→ {o ≷ x};X “f(x)=g(x)”−−−−−−−−→ {o ≷ x}]] :: @X < {o ≷ x}

Lemma 6 ((3+)). Let arrows {o} −→ X and {o} −→ {o ≷ x} and {o > x} −→ {o ≷ x} and X
“f(x)=g(x)”−−−−−−−−→

{o ≷ x} be such that the triangle is commutative. In notation,

[[{o} −→ X
“f(x)=g(x)”−−−−−−−−→ {o ≷ x}; {o} −→ {o ≷ x}; {o > x} −→ {o ≷ x}]] :: @X < {o ≷ x}

Then we can find an arrow X −→ {o > x} such that

(3.1−) the diagram of all arrows above commutes at {o}. In notation,

[[{o} −→ X
“f(x)=g(x)”−−−−−−−−→ {o ≷ x}; {o} −→ {o ≷ x}; {o > x} −→ {o ≷ x};X −→ {o > x}]] :: @{o} < {o ≷ x}



POINT-SET TOPOLOGY AS DIAGRAM CHASING COMPUTATIONS A DRAFT OF A RESEARCH PROPOSAL 9

(3.2−) for an arbitrary arrow {o}′ −→ X and the arrow {o}′ −→ {o > x} making the diagram commutative
from {o}′ to {o > x}, it holds that the diagram is commutative from {o}′ to {o ≷ x}. In notation,

[[{o} −→ X
“f(x)=g(x)”−−−−−−−−→ {o ≷ x}; {o} −→ {o ≷ x}; {o > x} −→ {o ≷ x};X −→ {o > x};

{o}′ −→ X; {o}′ −→ {o > x}]] :: @{o}′ < {o > x} =⇒ @{o}′ < {o ≷ x}

The arrows

(5+) {o} −→ X
f−→ Y and {o} −→ X

g−→ Y .

give rise to an injective arrow {of , og} ↪→ Y . By Hausdorff property

{of , og} ↪→ Y i {a > x < b} −→ {a = x = b}

Take a = of and b = og and the ”obvious” map {of , og} −→ {of > x < og} = {a > x <
b}.

Then by the lifting property there is an arrow Y −→ {of > ? < og} such that

(6+) the following arrows form commutative triangles

{of , og} ↪→ Y −→ {of > ? < og}; {of , og} −→ {of > ? < og}

In notation,

[[{of , og} ↪→ Y −→ {of > ? < og}; {of , og} −→ {of > ? < og}]] :: @{of , og} < {of > ? < og}

Finally, consider the arrows

(7+)

X
f−→ Y −→ {of > ? < og} × {of > ? < og};X

g−→ Y −→ {of > ? < og}

Take the product arrow

X −→ {of > ? < og} × {of > ? < og}

Take the arrow

{of > ? < og} × {of > ? < og}
(of ,og)7→o
−−−−−−→ {o > x}.

Take the composition arrow

X −→ {of > ? < og} × {of > ? < og}
(of ,og) 7→o
−−−−−−→ {o > x}.

A diagram chasing argument shows it satisfies (3.2−) and (3.1−) of Lemma 5. Therefore
Lemma 5 is proved and the claim is proved as well.

4. Extracting diagrammatic “meaning”

We observe that several basic definitions in a first course of topology correspond to
diagram chasing (computational) rules; here we use two examples to explain our naive
and straightforward approach how to extract a commutative diagram out of a definition in
point-set topology.
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4.1. Diagram chasing reformulation of Hausdorff separation property. Recall the
definition of a Hausdorff space: a topological space T is Hausdorff, or T2, iff for every two
different points x, y ∈ T there exist open neighbourhoods Ux 3 x and Uy 3 y which do not
intersect, Ux ∩ Uy = ∅. Now we need to figure out a way to draw arrows corresponding to
the x, y, Ux, Uy and their relationships.

A point x ∈ T gives us an arrow, meaning a (necessarily continuous) map(morphism),
from a single point space {x} −→ T . A pair of points x 6= y ∈ T gives us an injective arrow
{x, y} ↪→ T in the category of topological spaces.

Non-intersecting subsets Ux, Uy ⊆ T give us a set-theoretic single arrow T −→ {x, y, ?}
defined by Ux = f−1(x), Uy = f−1(y). A map is continuous iff the preimage of every open
set is open, and we want to say that Ux and Uy are open: thus we define the topology on a
space of three points x, y, ? where the open subsets are singleton sets {x} and {y}, as well
as the empty set ∅ and the whole space {x, y, ?}. Thus, in notation explained above, we
get an arrow T −→ {x > ? < y}.

Finally, we need to say that x ∈ Ux and y ∈ Uy: this means that the two arrows
{x, y} −→ T and T −→ {x > ? < y} above and the arrow {x, y} −→ {x > ? < y} form a
commutative triangle.

Now we are able to rewrite the definition: T is Hausdorff iff

T2(i) for every injective arrow {x, y} −→ T there is an arrow T −→ {x > ? < y} making a
commutative triangle {x, y} −→ T and T −→ {x > ? < y}, {x, y} −→ {x > ? < y}
commute.

We can reformulate this:

T2(ii) the arrow {x, y} −→ {x > ? < y} factors through every injective arrow {x, y} −→ T
T2(iii)+ given arrows {x} −→ T , {y} −→ T , {x} −→ {x > ? < y}, {y} −→ {x > ? < y}

add either of
T2(iii′)− {x} −→ {y}
T2(iii′′)− {x} −→ {x > ? < y}, {y} −→ {x > ? < y}, and T −→ {x > ? < y}

and mark the diagram of all these arrows as commutative

In fact, one may reformulate this as a lifting property; the proof requires a combinatorial
check.

T2(iv) {x, y} ↪→ T i {x > ? < y} −→ {x = y = ?}.

4.2. Limits are unique in Hausdorff spaces. Now let us explain how to read diagrams
and diagram chasing rules from the theorem that in a Hausdorff space any sequence has
at most one limit, to reformulate it in our diagram chasing way.

4.2.1. Limits are unique in Hausdorff spaces: rewriting the statement. Let {an}n∈N be a
sequence of points of a topological space T . A point x ∈ X is a limit of the sequence if for
any neighborhood U 3 x of x there exists a number N such that an ∈ U for every n > N .

Recall we treat a point of a space as an arrow from a singleton. Here we see arrows

{an}n∈N −→ T and arrow {x} −→ T , or rather more correctly N {an}n∈N−−−−−→ T and {•} x−→ T .

However, we choose to denote there arrows as {an”}n∈N
{an}n∈N−−−−−→ T and {“x”} x−→ T , or
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even {“an”}n∈N −→ T and {“x”} −→ T : quotation marks ‘“”’ ensure that {an”}n∈N and N
are isomorphic. This notation enables one to guess what the arrow is only from knowing
its ends, and makes the diagram we build closer to the text we analyse.

Now we start to read a definition of topology from the definition of limit above: a subset
U 3 “x” of {“an”}n∈N ∪ {“x”} is open iff “x” ∈ U and there exist a number N such that
“an” ∈ U for every n > N . The definition places no restriction on preimages of open
subsets of T not containing x (except that they do not contain the preimage of x), and we
read that off as every subset U 63 “x” not containing “x” is open.

With help of this topology, the definition is reformulated as follows: x is the limit of se-

quence {an}n∈N ⊆ T iff the (”obvious” from notation) map {“an”}n∈N∪{“x”} {an}n∈N∪{x}−−−−−−−−→
T is continuous, in this topology. There is also an “obvious” arrow {“an”}n∈N −→
{“an”}n∈N ∪ {“x”} where every point goes into itself.

Now, the uniqueness of limits theorem says that if x ∈ T and y ∈ T both are limits
of the sequence {an}n∈N, then x = y. We read off that we have arrows {“an”}n∈N ∪
{“x”} {an}n∈N∪{x}−−−−−−−−→ T and {“an”}n∈N∪{“y”} {an}n∈N∪{y}−−−−−−−−→ T . To formulate that an’s in both
arrows are the same, we require that the composition arrows {“an”}n∈N −→ {“an”}n∈N ∪
{“x”} {an}n∈N∪{y}−−−−−−−−→ T and {“an”}n∈N −→ {“an”}n∈N ∪ {“y”} {an}n∈N∪{x}−−−−−−−−→ T coincide. We
also have “obvious” arrows {“x”} −→ {“an”}n∈N ∪ {“x”} and {“y”} −→ {“an”}n∈N ∪ {“y”}
and composition arrows {“x”} x−→ T and {“y”} y−→ T . By definition of “obvious”ness, all
the “obvious” arrows defined above form a commutative diagram: namely the arrows

(Lhyp) the following arrows form a commutative diagram:

{“x”} x−→ T, {“y”} y−→ T, {“an”}n∈N
{an}n∈N−−−−−→ T

{“x”}n∈N −→ {“an”}n∈N ∪ {“x”} {an}n∈N∪{x}−−−−−−−−→ T

{“y”}n∈N −→ {“an”}n∈N ∪ {“y”} {an}n∈N∪{y}−−−−−−−−→ T

{“an”}n∈N −→ {“an”}n∈N ∪ {“x”} {an}n∈N∪{x}−−−−−−−−→ T

{“an”}n∈N −→ {“an”}n∈N ∪ {“y”} {an}n∈N∪{y}−−−−−−−−→ T

That is the hypothesis of our theorem.
Now the conclusion is that x = y. A point being a morphism, this means the arrows

{“x”} x−→ T and {“y”} b−→ T coincide. In the words, the arrows {“x”} x−→ T , {“y”} y−→ T
and {“x”} −→ {“y”} form a commutative diagram. In fact, that means that all the arrows
mentioned above form a commutative diagram.

Finally, we see that our theorem says that adding the (isomorphism) arrow {“x”} −→
{“y”} preserves the commutativity of the diagram (Lhyp). That is, it became the following
diagram chasing rule:

(Lrule) given commutative diagram (Lhyp), add the (isomorphism) arrow {“x”} −→ {“y”}
and mark the total diagram commutative
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We remark that this reformulation is not purely diagrammatic: it is still extra knowledge
what the topology on the space {“an”}n∈N ∪ {“x”} is.

4.2.2. Limits are unique in a Hausdorff space: writing the proof. By assumption we have a
commutative diagram (Lhyp). Apply the Hausdorff property rule T2(iii): in (Lhyp) we have
arrows {x} −→ T , and {y} −→ T , so either T2(iii′) we may add {x} −→ {y} or T2(iii′′)
we may add {x} −→ {x > ? < y}, {y} −→ {x > ? < y}, and T −→ {x > ? < y}. In case
T2(iii′), the theorem is proved. In T2(iii′′), as a subdiagram, we obtain a commutative
diagram (Lhyp) with T replaced by {x > ? < y}, while {x} −→ T and {y} −→ T become
{x} −→ {x > ? < y}, {y} −→ {x > ? < y}. Thus we only need to check that (Lhyp)
does not hold for that particular choice of T = {x > ? < y} and maps {x} −→ T , and
{y} −→ T . To do so we need to know the topology on the infinite space {“an”}n∈N∪{“x”},
and thus we use the usual argument and not diagram chasing.

Let us remark that the arrow {“an”}n∈N −→ {“an”}n∈N ∪ {“x”} is one-point compact-
ification of the discrete topological space {“an”}n∈N, and this construction is functorial.
In particular, an automorphism of {“an”}n∈N extends uniquely to an automorphism of
{“an”}n∈N ∪ {“x”}.

4.3. A closed subset of a complete metric space is complete. Consider the problem
that a closed subset of a complete metric space is complete. [GG,§2.2] considers it as
example of “a routine problem and examine[s] how a human mathematician would typically
solve it”. Let us now translate it to diagram chasing; the reader may find it helpful to have
a look at the diagrams on page 22 first.

More formally the problem is stated as follows. Let X be a complete metric space and
let A be a closed subset of X. Prove that A is complete. A metric space is complete
iff every Cauchy sequence {an} ⊆ X converges to a point b ∈ X. A subset A ⊆ X is
closed iff for each sequence {an} ⊆ A converges to b ∈ X, then b ∈ A. Let us introduce a
label (Cauchy) to talk about Cauchy sequences, and let us introduce (lim) label for the

arrows {“an”}n∈N
(lim)−−−→ {“an”}n∈N ∪ {“b”} for the limit arrows described in the previous

subsection. In that notation, the definition of completeness translates to each arrow X is

complete iff each {“an”}n∈N
(Cauchy)−−−−−−→ X factors via {“an”}n∈N

(lim)−−−→ {“an”}n∈N ∪ {“b”},
i.e.

{“an”}n∈N
(Cauchy)−−−−−−→ X always factors as {“an”}n∈N

(lim)−−−→ {“an”}n∈N∪{“b”} −→ X.

A is complete iff each {“an”}n∈N
(Cauchy)−−−−−−→ A factors via {“an”}n∈N

(lim)−−−→ {“an”}n∈N∪{“b”},
i.e.

{“an”}n∈N
(Cauchy)−−−−−−→ A always factors as {“an”}n∈N

(lim)−−−→ {“an”}n∈N ∪ {“b”} −→ A.

A ⊆ X is closed iff {“an”}n∈N
(lim)−−−→ {“an”}n∈N ∪ {“b”}iA ↪→ X, or, in different notation,

N (lim)−−−→ N ∪ {∞} i A ↪→ X. Finally, we need to say that A is a subset of X. Above we

identified a subset A of X with its characteristic function X
A−→ {0 ≶ 1}. Here a more

complicated approach is necessary: for a subset A ⊆ X, the arrow A −→ X is the pullback
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of its characteristic function X
A−→ {0 ≶ 1} ←− {0}. That is, to give an arrow Z −→ A

into A is equivalent to giving an arrow Z −→ X making the diagram into the diagram

Z −→ X
A−→ {0 ≶ 1} ←− {0} ←− Z commute.

Now the proof reduces to diagram chasing.

4.4. f(x) = g(x) defines a closed subset for f, g : X −→ Y and Y Hausdorff. Now
let us prove that the coincidence set Eqf=g = {x ∈ X|f(x) = g(x)} of two continuous
maps from an arbitrary space to a Hausdorff space is closed.

The property translates to the following diagram chasing rule:

(0+) add a rule T2(Y ) saying that Y is Hausdorff, and add arrows f, g : X −→ Y

(0−) construct an arrow X
“f(x)=g(x)”−−−−−−−−→ {o > x}, and derive, for that arrow, the rule that

(0a) is equivalent to (0b) where:

(0a) {x} x−→ X
f−→ Y and {x} x−→ X

g−→ Y commute at {x}
(0b) {x} x−→ X

“f(x)=g(x)”−−−−−−−−→ {o > x} and {x} −→ {o < x} form a commutative
diagram

We consider the subset Eqf=g = {x ∈ X|f(x) = g(x)}. That is, by a form of extension-

ality we add the arrow X
“f(x)=g(x)”−−−−−−−−→ {o ≷ x} and the rule:

(1+) add arrow X
“f(x)=g(x)”−−−−−−−−→ {o ≷ x}, and the rule that either of (1a) or (1b′) implies

the other:

(1a) {x} x−→ X
f−→ Y and {x} x−→ X

g−→ Y commute at {x}
(1b′) {x} x−→ X

“f(x)=g(x)”−−−−−−−−→ {o ≷ x} and {x} −→ {o ≷ x} form a commutative
diagram

We need to prove that Eqf=g is closed. That is, we need to factor the arrow {x} x−→
X

“f(x)=g(x)”−−−−−−−−→ {o ≷ x} via the arrow {o > x} −→ {o ≷ x}. In the diagram chasing way,
we

(2+) add the arrow {o > x} −→ {o ≷ x} to X
“f(x)=g(x)”−−−−−−−−→ {o ≷ x} we have already

(2−) construct the arrow X
“f(x)=g(x)”−−−−−−−−→ {o > x} such that the these arrows form a

commutative triangle.

To prove the set is closed, we prove its complement X \ Eqf=g is open. To prove that,
it is enough to pick an arbitrary point o ∈ X \ Eqf=g such that f(o) 6= g(o), and find an
open neighbourhood o ⊆ Uo ⊆ X \ Eqf=g. That is,

(3+) add new arrows {o} −→ X and {o} −→ {o ≷ x} to the arrows {o > x} −→ {o ≷ x}
and X

“f(x)=g(x)”−−−−−−−−→ {o ≷ x} marking the triangle commutative
(3−) construct an arrow X −→ {o > x} such that

(3.1−) the diagram commutes at {o}
(3.2−) add a new arrow {o}′ −→ X and {o}′ −→ {o > x}, mark the diagram commu-

tative from {o}′ to {o > x}, and derive that the diagram is commutative from
{o}′ to {o ≷ x}
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(3.3+) fulfill goal (2−) above by adding the? arrow X
“f(x)=g(x)”−−−−−−−−→ {o > x} and marking

the required diagram commutative

We need to use the assumption that Y is Hausdorff. Note f(o) 6= g(o) and thus there
exist open neighbourhoods f(o) ∈ Uf ⊆ Y and g(o) ∈ Ug ⊆ Y such that Uf ∩Ug = ∅. That
is,

(4+) add arrows X
f−→ Y and X

g−→ Y

In the diagram so far, there are only two arrows from a point to Y :

(5+) {o} −→ X
f−→ Y and {o} −→ X

g−→ Y .

Apply Y is Hausdorff: we have either T2(iii′) or T2(iii′′). However, T2(iii′) contradicts
commutativity of the diagram; thus T2(iii′′). That is,

(6+) add the following arrows marking the appropriate triangles commute

{o}
o 7→of−−−→ {of > ? < og}, {o}

o 7→og−−−→ {of > ? < og}, Y −→ {of > ? < og}
Finally, note that for every point in f−1(Uf ) ∩ g−1(Ug), f(z) 6= g(z). That is, do:

(7+) add X −→ {of > ? < og} × {of > ? < og}
(of ,og) 7→o
−−−−−−→ {o > x}

where the first arrow is the product X −→ {of > ? < og} × {of > ? < og} of the arrows

X
f−→ Y −→ {of > ? < og} and X

g−→ Y −→ {of > ? < og} to finite spaces.

(8+) fulfill the goal (3.2−) and (3.1−) by a diagram chasing argument

To show (8+) is admissible, apply the rule added in (1+): check that (1a) fails by
considering cases where {o} might map in the finite topological spaces {of > ? < og},
{of > ? < og} and {o > x} using that we know explicitly the maps between them. Then,
by (1b′) in the diagram {o} may not go into x ∈ {o > x}, and thus the diagram commutes
at {o}. The theorem is proven.

4.5. A diagram chasing definition of compactness. Recall a space X is compact iff
for an arbitrary directed covering S of X by open subsets, X is an element of S.

A teacher sometimes chooses to informally phrase compactness as a rule: given a compact
space X, to prove that (top+) X has a certain property, first prove that (dir−) open subsets
of X with this property form a directed open covering of X, i.e. for every U ,V open in X
with the property, there is U ,V ⊆ W open in X satisfying the property, and that (cov−)
for every point x of X, there is an open neighbourhood x ∈ Ux ⊆ X satisfying the property.

Let us translate that. We know an open subset of X is an arrow X −→ {o > x}. How
do we talk about subsets having a certain property? We allow ourselves to write labels on
arrows, and allow diagram chasing rules to manipulating these labels.

With that in mind, the following is a literal rendering of the teacher’s explanation above.
The primes in {o > x}′ and {o > x}′′ indicate that these are different vertices in the diagram
we construct, although the spaces are canonically isomorphic.

Thus, X is compact iff the following rule is admissible.

(K) given a label (s)
(K+) add a rule that
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rule (cov−) and rule (dir−) imply rule (top+)
where

(cov−) given arrows {o > x} ←− {o} −→ X, construct an arrow X
(s)−−→ {o > x}

making the triangle commutative

(dir−) given arrows X
(s)−−→ {o > x}′ and X

(s)−−→ {o > x}′′, add an arrow X
(s)−−→ {o > x}

and rules

(dir)′ {o} −→ X
(s)−−→ {o > x}′ and {o} −→ {o > x}′ commute at {o} to

{o > x}′ implies the same and {o} −→ X
(s)−−→ {o > x} ←− {o > x}′

commute at {o} to {o > x}
(dir)′′ {o} −→ X

(s)−−→ {o > x}′′ and {o} −→ {o > x}′′ commute at {o} to

{o > x}′′ implies the same and {o} −→ X
(s)−−→ {o > x} ←− {o > x}′′

commute at {o} to {o > x}
(top+) add a commutative diagram X

(s)−−→ {o > x} ←− {o} and X −→ {o}
We may omit “to {o > x}”, as it is the only vertex where paths from {o} may converge.
Note that (top+) immediately implies (cov−) and (dir−) by a diagram chasing argument

whether {o} might go to o or x in {o > x} and using the commutativity of the triangle in
(top+).

To use that X is compact, we consider the compound rule (K) above admissible, i.e. we
allow ourselves to use it in derivations. To prove that X is compact, we pick a new label
(s) which does not occur elsewhere in the proof, and add rules (cov−) and (dir−) to the
list of admissible rules, and try to derive (top+). We then consider the compound rule (K)
admissible if we are able to derive (top+).

5. Algorithmic aspects

We make a couple of remarks and speculations about our proofs.

5.1. Category of finite degenerate categories. Our diagrams fit into the category
of finite categories with unique arrows (aka preorders); some would say 1-category of 0-
categories. Yet we choose to intepret them in the category in the whole category of topo-
logical spaces, and thus some properties thougt of as topological are in fact properties of
the category of finite degenerate categories aka preorders.

. Can we also interpret our diagrams elsewhere; should we?

5.2. Structure of a proof: list of goals and derivation rules. These proofs go as
follows: add vertices(objects), arrows between objects, add a vertex(object), an arrow
between objects, mark a pair of vertices and a subcollection of arrows as commutative
from one vertex to another, add new derivation rules to the list of admissible derivation
rules. Add and remove goals from a list of goals we maintain; sometimes we have to
consider options and create branches. To apply an admissible derivation rule, one checks
its hypothesis using a special kind of pattern matching.
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A goal may be either to add an arrow of a particular kind, to mark a certain collection
of arrows commutative from one vertex to another, or any other rule.

An application of a derivation rule consists of adding an arrow, marking a diagram
commutative from a vertex to a vertex, or adding a new derivation rule to the list of
admissible derivation rules, adding goals to or removing goals from the list of goals.

A theorem becomes proved when the list of goals becomes empty.

5.3. Goals and subgoals. Often, a rule introduces more assumptions, e.g. by adding
arrows and objects, or relaxing commutativity conditions, e.g. to only require commuta-
tivity of arrows to or from finite spaces. A goal is replaced by subgoals easily implied by
it. Importantly, the arrows to construct may remain the same, and the new and the old
diagrams are reducts of each other in some sense.

5.4. Reinterpreting arrows. Arrows between finite spaces. Let us see how the
property that a subset is open iff each point has an open neighbourhood, provides an
example of both phenomena. A subset V is open iff every point u ∈ V has an open
neighbourhood u ∈ U ⊆ V where U is open.

(V ) given (i) X
V−→ {o ≷ x} ←− {o > x}, add (ii) X

V−→ {o > x} such that the triangle
commutes

(U) given (i) and X ←− {o} −→ {o > x}, add (ii) such that the diagram commutes
from {o} to {o > x}

Note that the arrow X −→ {o > x} is interpreted differently in (V )(ii) and (U)(ii),
namely (V )(ii) means “V is open” while (U)(ii) means “there is an open neighbourhood
in V of an arbitrary point u ∈ V ”.

Note also that the commutativity conditions now concern only arrows between finite
spaces.

In the proof in §4.4, the arrow X −→ {o > x} gets reinterpreted 3 times: rule (0−) as

X
“f(x)=g(x)”−−−−−−−−→ {o > x} as the subset {x : f(x) = g(x)}, rule (2−) as the open neighbour-

hood Uo inside of {x : f(x) = g(x)}, and rule (7−) as f−1(U) ∩ g−1(V ).
Similar reinterpretations occur in the the definition of compactness of §4.5, and the com-

mutativity conditions in the introduced subgoals (cov−) and (dir−) concern only arrows
between finite spaces {o} and {o > x}.

5.5. No loops or automorphisms: a decidable fragment. There are no loops or
automorphisms in the examples we saw; this leads to the following observation.

Call a collection of diagrams, or, more generally, a collection of rules, stratifiable iff
the following relation on the (names of) variables occurring in the collection defines an
anti-reflexive partial order X � Y

X � Y iff there is an occurrence of an arrow from X to Y

This means that the formal transitive closure under composition of all the arrows is neces-
sarily finite; in particular, there is no loop f : X −→ X giving rise to the infinitely many
automorphisms f, f ◦ f, f ◦ f ◦ f, ....
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Moreover, according to an observation of N.Durov, in a similar manner one may formally
generate from a stratified collection of arrows and a collection of commutativity conditions
on these arrows, a category with finitely many objects and arrows that satisfies those
commutativity conditions. This should allow to define a decidable fragment of category
theory, to be published in a forthcoming paper.

5.6. Reading a natural-language proof to assist proof searching. Our diagram-
matic rendering follows a (simple) proof or definition as it is written line by line. Moreover,
our diagrams seems to be well-suited for brute force proof search. This raises the question
whether the (natural language) text of a proof can guide the proof search, by limiting
brute force searching only to those branches that share some combinatorial patterns with
the natural language text. For example, by looking at what variables occur close to each
other, and choosing rules that involve those variables. Arguably, this is how a human skims
proofs of simple statements - just by looking for keywords to guide their own attempt at a
proof.

In fact, one may hope that our diagram chasing is just complicated enough that one may
formulate a well-defined refutable conjecture relating to these diagram chasing techniques
and the human mind. As a first attempt, consider the following experiment. Find a pair of
complicated enough proofs in point-set topology such that their diagram chasing translation
share a non-obvious trick but little else. Then explain one of the arguments in words, as
it usually would be explained in a point-set textbook, to a 1st year mathematics student,
and then check whether the other proof has become easier for the student. If the proof
does become easier, interpret this as evidence that understanding the argument involves
translating the argument into category theory. The check should probably be done in a
week’s time reflecting the usual regularity of lectures and seminar meetings: internalizing
a proof takes time.

We also observe that sometimes drawings used to demonstrate a proof correspond quite
closely to a diagram chasing argument. For example, the definition of Hausdorff one draws
an oval representing the topological space X, then draws two points in it, and then draws
small ovals around them. In diagram chasing terms, drawing the two points correspond to
drawing an injective arrow {•, •} −→ X, and drawing the two small ovals correspond to
drawing all the open sets in a 3-point space where each oval represent an open point, and
the third closed point is drawn as a complement of the two ovals in the big one.

5.7. Use of trivial examples in proof searching. Another feature of our diagrammatic
derivation system is a good notion of inheritance: after applying a rule, there is a good
notion of what arrows remained the same, which new vertices correspond to the old ones.
This might enable use of trivial examples in the following way. Pick an arrow and “contract”
it, i.e. label it an isomorphism, or mark a subdiagram commutative, or perhaps add more
assumptions until the number of unknown arrows becomes manageable. Use brute force
to find a proof, and trim it only to rule applications actually used. Perhaps do this several
times using different assumptions, and find rule applications which occur many times. Then
try to apply the same rules in the original diagram under no assumptions.
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5.8. Lifting property as a negation in a category: examples. We notice a pattern
in the examples of §2: these properties are defined as a lifting property with respect to
the simplest or an otherwise archetypal counterexample. In particular, being injective,
surjective, connected, T0, T1, dense, induced topology; surjective and injective on π0 are all
defined by a lifting property with respect to a map between 1-point and 2-point spaces not
having the property.

A demonstrative example is provided by the morphism {x, y} −→ {•}: it is both the
simplest (counter)example of a unconnected space, and of a non-injective map. Accord-
ingly, the left lifting property X −→ {•} i {x, y} −→ {•} defines X is connected, and
{x, y} −→ {•}iX −→ Y defines X −→ Y is injective.

Compactness provides a less trivial example: a standard example of a non-compact space,
say in a course of analysis, is the space R and its decomposition R = ∪n∈N (−n, n) as a union
of intervals. Accordingly, the often used characterisation of compactness (for metrizable
spaces), known as pseudocompactness, that every continuous function to R is bounded,
is, for X connected, equivalent to the lifting property ∅ −→ X i tn∈N (−n, n) −→ R. A
similar but less ¿obvious? characterisation ∅ −→ Xitβ∈αβ −→ α for all ordinals α, works
for arbitrary (not necessarily Hausdorff) connected spaces.

5.9. Lifting property as a negation in a category: a diagram chasing explanation.
A diagram chasing explanation, cf. [GH-I§3.4,Remark 27], for the examples above is that
for the lifting property with respect to a morphism h is a category-theoretically usable
definition of a class of morphisms not containing h: h 6∈ {h}i := {g : g i h} unless h is an
isomorphism. More generally, given a diagram chasing property K, lifting property allows
to give a diagram chasing definition of a class Ki of morphisms not having the property:
namely, h ∈ K ∩Ki implies h is an isomorphism where Ki := {g : g i h for all h ∈ K}.
The dual class iK := {g : hi g for all h ∈ K} has the same properties.

Thus we see that we have a left negation and a right negation which allow to define
morphisms without a property in a form suitable for diagram chasing.

5.10. Lifting property as a rule to linearise the order. We find this very trivial and
short remark noteworthy. After applying the lifting property A −→ B i X −→ Y to a
square A −→ B −→ Y,A −→ X −→ Y the order on the four vertices becomes linear:
A −→ B −→ X −→ Y . This reduces the number of arrows needed to represent the order,
for example in the chain-merge data structure.

5.10.1. Models of Meaning. We propose that these diagram chasing rules may serve as a
useful model of meaning of sentences in a point-set textbook: the reason to utter a sentence
in a proof is to transfer the (mathematical structure of) the corresponding diagram to the
listener. The features of this model is that it ignores the grammar (and allows for meaning
of ungrammatical, incomplete sentences) and it is aware of the shared context, namely that
(we assume that) both parties share knowledge of point-set topology.

5.10.2. A fully automatic problem solver with human-style output of Ganesalingam-Gowers.
We wonder if our approach can be used to write an automatic theorem prover (problem
solver) similar in purpose to that of Ganesalingam-Gowers, albeit in a different and more
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restricted mathematical domain. In their own words, they “describe a program that solves
elementary mathematical problems, mostly but not exclusively in metric space theory, and
presents the solutions in a form that is hard to distinguish from solutions that human
mathematicians might write. [...] It would not be able to produce human-style output if
it did not mirror very closely the way that human mathematicians think.” Our program
shall aim to solve elementary problems in point-set topology and use diagram chasing
as its internal data format. One hopes that for elementary problems, diagram chasing
proofs remain close enough to human-style proofs that an automatic translation is possible,
essentially reversing the process done in §4. We also note that the solution of the second
problem presented on the first page of [GG] is in point-set topology and, from our point

of view, employs an argument using the lifting property {•, •} −→ {•} i X f−→ Y of an
injection. In §4.3 we discuss a problem analysed by [GG,§2.2].

Should such a program indeed be written, it would then be very interesting to try to
extend it into a a program able to verify boring technical and computational diagram
chasing parts of a human written mathematical proof. There is no attempt to verify a
whole proof, but rather only a small computation inside of it, at most to list explicitly all
the assumptions used in the proof of a small computational lemma, with a view that a
human reader can then check these assumptions if necessary.

6. A computer syntax

In this section we make a couple of suggestions of how one may want to define a computer-
like syntax for writing diagram chasing rules. These suggestions are incomplete and some-
what inconsistent, and perhaps best ignored.

We aim not to define a complete formal syntax and its semantics; but rather a sketch
sufficient to write down formal proofs informally.

We have an infinite supply of variables of types Point, Object and Label; usually words
of Latin letters. A term is either (i) a variable, or (ii) a constant term of type Object that
is a list of equalities and inequalities between points, e.g. {a<b, c<>d, e=f,. . .}, or (iii)
the same followed by several “′’ (where c<>d means that both c and d are greater or equal
to each other).

There is special notation for arrows. Expression X-->Y denotes a variable ranging over
arrows from X to Y . Expression X--(s,..,q)-->Y denotes a variable ranging over arrows
from X to Y carrying each of the labels s,..,q listed.

Note this gives no convenient way to talk about loops. This is a feature as loops give
rise to non-decidability. To talk about loops and multiple arrows, we have to introduce
new objects X, X’, X’’ and arrows X-->A, X’-->A, X’’-->A and new admissible rules about
(id)-labels X-(id)->X’-(id)->X’’.

A diagram is a collection of arrows. We have a notion of a current context containing
variables and rules.

Expression @X<Y is a predicate stating that the diagram commutes from X to Y where the
diagram consists of the arrows, i.e. variables of type Arrow, in the current context. More
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generally, you specify explicitly a list of arrows on the left, and an arbitrary partial order
on the right.

We also have operators :match and :create, also denoted as * and _. Operator
:match Exp matches Exp and variables therein against current context, and operator
:create Exp add to the current context the expression Exp with substitutions made.

There should be an explicit dependency order on variables: we often need an introduce
a variable, say x, required to be new, say with with respect to variables a, b, c. This is
equivalent to having a function x = x(a, b, c) but it can also be stated as x >dep a, x >dep b
and x >dep c.

There should be syntax sugar added.
Let us give the definition of compactness in §4.5 as an example.
Thus, X is compact iff the following rule is admissible.

*s:Label;

:create{

:match{ *{o>x}<--{o}-->X; _X--(s)-->{o>x}; _@{o}<X } ;

:match{ *X--(s)-->{o>x}’; *X--(s)-->{o>x}’’; _X--(s)-->{o>x};

_{ *{o}-->X; *[[ {o}-->X--(s)-->{o>x}’; {o}-->{o>x}’; ]]@{o}<{o>x}’;

_[[ {o}-->X--(s)-->{o>x}’; {o}-->{o>x}’; {o}-->X--(s)-->{o>x}-->{o>x}’ ]]@{o}<{o>x}

};

_{ *{o}-->X; *[[ {o}-->X--(s)-->{o>x}’’; {o}-->{o>x}’’; ]]@{o}<{o>x}’’;

_[[ {o}-->X--(s)-->{o>x}’’; {o}-->{o>x}’’; {o}-->X--(s)-->{o>x}-->{o>x}’’ ]]@{o}<{o>x}

};

}

:create{ [[ X--(s)-->{o>x}<--{o}; X-->{o} ]]@X<{o<x}

}

}

Acknowledgments and historical remarks. Exposition has been greatly influenced by discus-
sions with Martin Bays, Grigori Mints and Vladimir Sosnilo. I thank Alexander Luzgarev
for interest in the work. Ksenia Kuznetsova helped to realise an earlier reformulation of
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Reformulations §??(1) and §??(2) of surjectivity and connectedness appeared in [GH-I]
as somewhat curious examples of a lifting property. After a similar reformulation of in-
jectivity as a lifting property {x, y} −→ {x = y} i X −→ Y came up in a conversation
with Misha Gromov the author decided to try to think seriously about such lifting prop-
erties, and in fact gave talks at logic seminars in 2012 at Lviv and in 2013 at Munster and
Freiburg. At a certain point the author realised that possibly a number of simple arguments
in point-set topology may become diagram chasing computations with finite topological
spaces, and Grigori Mints insisted these observations be written. Ideas of [ErgB] influenced
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this paper (and [GH-I] as well), and particularly our computational approach to category
theory.

The author wishes to express his deep thanks to Grigori Mints to whose memory this
paper is dedicated....
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happy to receive, and then add, suggestions of missing references and references to relevant
work.
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