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Abstract. � We rewrite excerpts of [Bourbaki, General Topology] using the
category-theoretic notation of arrows and are thereby led to concise reformu-
lations of classical topological de�nitions in terms of simplicial categories and
orthogonality of morphisms, which we hope might be of use in the formalisa-
tion of topology and in developing the tame topology of Grothendieck.

Namely, we observe that topological and uniform spaces are simplicial ob-
jects in the same category, a category of �lters or, equivalently, the category
of pointed topological spaces with maps continuous at the point, and that a
number of elementary properties can be obtained by repeatedly passing to the
left or right orthogonal (in the sense of Quillen model categories) starting from
a simple class of morphisms, often a single typical (counter)example appearing
implicitly in the de�nition.

Examples include the notions of: compact, discrete, connected, and totally
disconnected spaces, dense image, induced topology, and separation axioms,
and, outside of topology, �nite groups being nilpotent, solvable, torsion-free,
p-groups, and prime-to-p groups; injective and projective modules; injective
and surjective (homo)morphisms.
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Die Mathematiker sind eine Art Franzosen: Redet man zu ihnen, so über-
setzen sie es in ihre Sprache, und dann ist es alsobald ganz etwas anderes.
�� Johann Wolfgang von Goethe. Maximen und Re�exionen. Nr. 1005.

�1�

if a man bred to the seafaring life ... should take it into his head to philos-
ophize concerning the faculties of the mind, it cannot be doubted, but he
would draw his notions from the fabric of his ship, and would �nd in the
mind, sail, masts, rudder, and compass.
�� Thomas Reid. An Inquiry into the Human Mind on the Principles of
Common Sense. 1764.

As a scholar, meantime, he was trivial and incapable of labour.
�� Thomas de Quincey. Cicero. Blackwood's magazine. v.52, 1842.

1. Introduction.

1.1. Main ideas.� In this note we rewrite several classical de�nitions and
constructions in topology in terms of category theory and diagram chasing.
We do so by by �rst �transcribing� excerpts of [Bourbaki, General Topology]
and [Engelking, Topology] by means of notation extensively using arrows, and
then recognizing familiar patterns of standard category-theoretic constructions
and diagram chasing arguments.�2�

Arguably, we transcribe the ideas of Bourbaki into a language of category
theory appropriate to these ideas, and our analysis of the text of Bourbaki shows
these ideas (but not notation) are implicit in Bourbaki and re�ect their logic
(or perhaps their ergologic in the sense of [Gromov. Ergobrain; Memorandum
Ergo]).

Doing so, we observe that a number of elementary textbook properties are
obtained by taking the orthogonal (in the sense of Quillen lifting property)
to the simplest morphism-counterexample, and this leads to a concise syntax
expressing these properties in two or three bytes in which e.g. denseness,
separation property Kolmogoro�/T0, compactness is expressed as

(dense image) (Kolmogoro�/T0) (compact)
��c�Ð� �o� c��l ��x� y�Ð� �x � y��r ����o�Ð� �o� c��r�@5�

lr

this shows their Kolmogoro� complexity is very low (byte or two).
We also observe that the categories of topological spaces, uniform spaces,

and simplicial sets are all, in a natural way, full subcategories of the same larger
category, namely the simplicial category of �lters; coarse spaces of large scale

�1� Mathematicians are like Frenchmen: whatever you say to them they translate into
their own language, and forthwith it is something entirely di�erent. In: Johann Wolf-
gang von Goethe. Aphorismen und Aufzeichnungen. Nach den Handschriften des Goethe-
und Schiller-Archivs hg. von Max Hecker, Verlag der Goethe-Gesellschaft, Weimar 1907. Aus
dem Nachlass, Nr. 1005, Uber Natur und Naturwissenschaft. Maximen und Re�exionen.
�2� Arrows and other category-theoretic notations are conspicuously absent from [Bourbaki,
General Topology] and little used in his other books. [Corry, Nicolas Bourbaki and the
Concept of Mathematical Structure], also [Dieudonné, The work of Bourbaki during the last
thirty years] might suggest that Bourbaki conciously avoided category-theory notation.

http://mishap.sdf.org/mints-lifting-property-as-negation/tmp/Bourbaki_General_Topology.djvu
http://www.ihes.fr/~gromov/PDF/ergobrain.pdf
http://www.ihes.fr/~gromov/PDF/ergo-cut-copyOct29.pdf
http://www.ihes.fr/~gromov/PDF/ergo-cut-copyOct29.pdf
https://arxiv.org/abs/1301.0081
http://www.tau.ac.il/~corry/publications/articles/pdf/bourbaki-structures-synthese.pdf#338
http://www.tau.ac.il/~corry/publications/articles/pdf/bourbaki-structures-synthese.pdf#338
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metric geometry are also simplicial objects of a category of �lters with di�erent
morphisms. This is, moreover, implicit in the de�nitions of a topological,
uniform, and coarse space.

The exposition is in form of a story where we pretend to �read o�� category-
theoretic constructions from the text of excerpts of [Bourbaki] and [Engelking]
in a straightforward, unsophisticated, almost mechanical manner. We hope
word �mechanical� can be taken literally: we pretend to search for correlations
between the structure of allowed category-theoretic diagram-chasing construc-
tions and the text of arguments in topology, and hope this search can be done
by a short program.

No attempt is made to develop a theory or prove a theorem: our goal is to
explain the process of transcribing by working out a few examples in detail.
In fact, we think that understanding and formalising this process is a very
interesting question.

This note is a research proposal suitable for a polymaths project: transcrib-
ing topological arguments into category theory involves rather independent
tasks: �nding topological arguments worth transcribing and working out the
precise meaning of category theoretic reformulations are best suited for gen-
eral topologists; spotting category theoretic patterns is best suited for category
theorists; working out formal syntax is best suited for logicians.

We hope our way of translating might of use in the formalisation of topology
and suggests an approach to the tame topology of Grothendieck.

1.2. Contents.� In �1.4, as a warm-up and an example of our translation,
we discuss the de�nition of surjection; in �1.5, we suggest the intuition that
orthogonality is category-theoretic negation. Appendix �5.1.1 gives a verbose
exposition of the same ideas aimed at a student.

In �2.1 we start with a detailed translation of the de�nitions by Bourbaki of
a dense subspace and a separation axiom of being Kolmogoro�/T0 and show
these de�nitions implicitly describe the simplest counterexamples involving
spaces consisting of one or two points, and in fact require orthogonality to
these counterexamples. Appendix �5.2.1 and �5.3.2 gives more examples of
properties de�ned by iterated orthogonals. Examples include the notions of:
compact, discrete, connected, and totally disconnected spaces, dense image,
induced topology, and separation axioms. Appendix �5.3.1 introduces a formal
syntax and semantics which expresses these properties in several bytes in both
human- and a computer- readable form. Outside of topology, examples in
�5.3.2 include �nite groups being nilpotent, solvable, torsion-free, p-groups,
and prime-to-p groups; injective and projective modules; injective, surjective.

Compactness is discussed in �2.2 we reformulate the Bourbaki's de�nition
in terms of convergence of ultra�lters as an iterated orthogonal of the sim-
plest counterexample. With help of this, we show in �2.2.5 that there is a
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factorisation system corresponding to Stone-�ech compacti�cation, and thus
it is somewhat analogous to Axiom M2 �cw��f�- and �c��wf�- decompositions
required in Quillen model categories.

In �2.3 we reformulate the axioms of a topology in a form almost ready
to be implemented in a theorem prover based on diagram chasing with �nite
preorders. In �2.3.2 we observe that the axiom of topology saying that an
arbitrary union of open subsets is open can be expressed as a formula of form
¦§ϕ Ô� §¦ϕ and state a speculation Remark 2.2 that topology is really
about permuting quanti�ers, a language to talk about dependencies.

In �3, we �transcribe� the informal considerations in [Bourbaki, Introduc-
tion]. We �read o�� from there in �3.1.1 and �3.1.6 that topological and uniform
spaces are 2-dimensional simplicial objects in the same category, the category
of �lters. The discussion in �3.2 of the notion of a limit of a �lter F on a
topological space X leads to a reformulation in terms of a lifting property
wrt shift (décalage) simplicial maps forgetting �rst face and degeneracy maps
�X �Xæ,X �X �Xæ, ...�Ð� �Xæ,X �Xæ,X �X �Xæ, ...� .

æ�X��

pr2,3,...

��

Ediag�F �

99s
s

s
s

s
// æ�X�

...

��

33...

��

pr2,..
RRRRRRR

((RRRR

...

��

F � F � FdiagF

��

22

55kkkkkkk
X �X �Xæ

��

pr2,3
PPPPP

((PPPPP

X �X �Xæ

��

F � FdiagF

��

22

66mmmmmmm
X �Xæ

pr2
QQQQQ

((QQQQQQQ

X �Xæ

��

F //

66mmmmmmmm
X

where F � ... � F is equipped with the �nest �lter such that the face maps
(diagonal embeddings) F Ð� F � ... � F , x ( �x, ..., x� are continuous, i.e. a
subset of F � ... � F is diagF -big i� it contains the image of a F -big subset of
F under the face map F Ð� F � ... � F .

We end the section with a discussion in �3.3 of path spaces and cylinder
objects in the category of topological spaces; this also leads to constructions
reminiscent of the shift (décalage). Note that the décalage of a simplicial set
is a model for the path space object of a topological space, somewhat smaller
than the usual model we discuss.�3�

In �4, we formulate a number of open questions. Unfortunately, interesting
open questions are rather vague and concern the expressive power and formali-
sation of the new category theoretic, diagram-chasing way to talk about topol-
ogy; to what extent the new language helps to avoid irrelevant set-theoretic

�3�See [nlab:décalage] for a detailed discussion.

https://ncatlab.org/nlab/show/decalage
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details and counterexamples. An important precise open question in this spirit
is to de�ne a model structure on the simplicial category of �lters compatible
with a model structure on the full subcategory of topological spaces. An appli-
cation which would be of interest in geometry is to formulate a clean version of
Arzela-Ascoli theorem (cf. Question 4.7), i.e. a compactness principle for func-
tion spaces of maps between topological, metric and/or measurable spaces.

1.3. Speculations.� Does your brain (or your kitten's) have the lifting
property (orthogonality), simplicial objects or diagram chasing built-in? �2
suggests a broader and more �exible context making contemplating an exper-
iment possible. Namely, some standard arguments in point-set topology are
computations with category-theoretic (not always) commutative diagrams of
�nite categories (which happen to be preorders, or, equivalently, �nite topo-
logical spaces) in the same way that lifting properties de�ne injection and
surjection. In that approach, the lifting property is viewed as a rule to add a
new arrow, a computational recipe to modify diagrams.

Can one �nd an experiment to check whether humans subconsciously use
diagram chasing to reason about topology?

Does it appear implicitly in old original papers and books on point-set topol-
ogy?

Is diagram chasing with preorders too complex to have evolved? Perhaps;
but note the self-similarity: preorders are categories as well, with the property
that there is at most one arrow between any two objects; in fact sometimes
these categories are thought of as 0-categories. So essentially your computa-
tions are in the category of (�nite 0-) categories.

Is it universal enough? Diagram chasing and point-set topology, arguably a
formalisation of �nearness�, is used as a matter of course in many arguments
in mathematics.

Finally, isn't it all a bit too obvious? Curiously, in my experience it's a party
topic people often get stuck on. If asked, few if any can de�ne a surjective or
an injective map without words, by a diagram, or as a lifting property, even
if given the opening sentence of �5.1 as a hint. No textbooks seem to bother
to mention these reformulations (why?). An early version of [Gavrilovich,
Hasson] states (*)û and (**)û of �1.4 and �5.1 as the simplest examples of
lifting properties we were able to think up; these examples were removed while
preparing for publication.

1.4. Surjection: an example. � Let us now explain what we mean by
translation. A map f � X Ð� Y is surjective i� it is left-orthogonal to the
simplest non-surjective map gÐ� �Y�, i.e.

���û gÐ� �Y� û X
f
Ð� Y

http://mishap.sdf.org/mints/Exercises_de_style_A_homotopy_theory_for_set_theory-I-II-IJM.pdf
http://mishap.sdf.org/mints/Exercises_de_style_A_homotopy_theory_for_set_theory-I-II-IJM.pdf
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Recall that for morphisms f � AÐ� B, g �X Ð� Y in a category, a morphism
f has the left lifting property wrt a morphism g, f is (left) orthogonal to g, and

we write f û g or A
f
Ð� B û X

g
Ð� Y , i� for each i � A Ð� X, j � B Ð� Y such

that ig � fj (�the square commutes�), there is j� � B Ð� X such that fj� � i
and j�g � j (�there is a diagonal making the diagram commute�).

With this de�nition, ���û reads as

���words for each map �Y�
y
Ð� Y , i.e. a point y > Y , there is a map �Y�

x
Ð� X, i.e.

a point x >X, such that f X x � y, i.e. f�x� � y.
This is the text of the usual de�nition of surjectivity of a function found in
an elementary textbook. Conversely, we can read o� ���û from the text of
the de�nition of surjectively, by drawing the commutative diagram as we read
���words.

It is this kind of direct, almost syntactic, relationship between the usual
text and its category theoretic reformulation we are looking for in this paper.
This is what we mean by saying the reformulation ���û is implicit in the text
���words.

For a property (class) C of arrows (morphisms) in a category, de�ne its left
and right orthogonals, which we also call its left and right negation

C l �� �f � for each g > C f û g�

Cr �� �g � for each f > C f û g�

C lr �� �C l�r, C ll �� �C l�l, ...

Take C � �gÐ� ���� in Top. A calculation shows that a few of its iterated
negations are meaningful: in Top, Cr is the class of surjections (as we saw
earlier), Crr is the class of subsets, Crl is the class of maps of form AÐ� A@D,
D is discrete; �Y�Ð� A is in Crll i� A is connected; Y is totally disconnected
i� �Y�

y
Ð� Y is in Crllr for each map �Y�

y
Ð� Y (or, in other words, each point

y > Y ). C l is the class of maps A Ð� B such that either A x g or A � B � g.
C ll is the class of isomorphisms. C lr is the class of maps gÐ� B, B is arbitrary
C lrl is the class of maps which admit a section. C lll � C llr � .. is the class of
all maps.

Thus we see that already in this simplest case, taking iterated orthogonals
(negation) produces several notions from a textbook, namely surjective, subset,
discrete, connected, non-empty, and totally disconnected.

1.5. Intuition/Yoga of orthogonality.� We suggest the following intu-
ition/yoga is helpful.�4�

�4�We were unable to �nd literature which explicitly describes this intuition, and will
be thankful for any references which either discuss this intuition or list potential
(counter)examples.



A NAIVE APPROACH TO TAME TOPOLOGY 9

� taking iterated orthogonals (negation) is a cheap way to automatically
�generate� interesting notions; a number of standard textbook notions
are obtained in this way. We saw that taking iterated negations of the
simplest map of topological spaces, ��Ð� �Y�, generates 5 classes worthy
of being de�ned in a �rst year course of topology (surjective, subset,
discrete, connected, non-empty and totally disconnected).

� it helps to think of orthogonality as a category-theoretic (substitute for)
negation; taking orthogonal is perhaps the simplest way to de�ne a class
of morphisms without a property in a manner useful for a diagram chasing
calculation.

� often a morphism-counterexample can be �read o�� from the text of the
de�nition of an elementary textbook property, and the property can be
concisely reformulated as the orthogonal of the class consisting of that
counterexample.

1.6. Intuition/Yoga of transcription.� We suggest the following intu-
ition/yoga is helpful.

� �transcribing� the usual text of mathematical de�nitions and arguments
by means of notation extensively using arrows sometimes makes it pos-
sible to recognise familiar patterns of standard category-theoretic con-
structions and diagram chasing arguments.

� orthogonality of morphisms often appears in this way, and so do simplicial
objects

� from the text of the de�nition of a topological property sometimes it is
possible to �read o�� a de�nition of a topology or a �lter or a continuous
function; it is worthwhile to try to interpret �for each open subsets there
exists ...� as a requirement that some function is continuous

2. Examples of translation. Orthogonality as negation.

2.1. Dense subspaces and Kolmogoro� T0 spaces.� We shall now tran-
scribe the de�nitions of dense and Kolmogoro� T0 spaces.

2.1.1. �A is a dense subset of X.�� By de�nition [Bourbaki, I�1.6, Def.12],

Let us transcribe this by means of the language of arrows.
A subset A of a topological space X is an arrow A Ð� X. (Note we are

making a choice here: there is an alternative translation analogous to the one
used in the next sentence). An open subset U of X is an arrow X Ð� �U � U ��
; here �U � U �� denotes the topological space consisting of one open point U

http://mishap.sdf.org/mints-lifting-property-as-negation/tmp/Bourbaki_General_Topology.djvu
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and one closed point U �; by the arrow � we mean that that U �
> cl�U�.

Non-empty: a subset U of X is empty i� the arrow X Ð� �U � U �� factors
as X Ð� �U �� Ð� �U � U �� ; here the map �U �� Ð� �U � U �� is the
obvious map sending U � to U �. set U of X meets A: U 9A � g i� the arrow
AÐ�X Ð� �U � U �� factors as AÐ� �U ��Ð� �U � U ��.

Collecting above (Figure 1c), we see that a map A
f
Ð�X has dense image i�

A
f
Ð�X û �U ��Ð� �U � U ��

Note a little miracle: �U �� Ð� �U � U �� is the simplest map whose image
isn't dense. We'll see it happen again.

2.1.2. Kolmogoro� spaces, axiom T0.� By de�nition [Bourbaki,I�1, Ex.2b;
p.117/122],

Let us transcribe this. given any two ... points x, x� of X: given a map �x,x��
f
Ð�

X. two distinct points: the map �x,x��
f
Ð� X does not factor through a single

point, i.e. �x,x�� Ð� X does not factor as �x,x�� Ð� �x � x�� Ð� X. The
negation of the sentence there is a neighbourhood which does not contain the
other de�nes a topology on the set �x,x��: indeed, the antidiscrete topology
on the set �x,x�� is the only topology with the property that there is [no]
neighbourhood of one of these points which does not contain the other. Let us
denote by �x� x�� the antidiscrete space consisting of x and x�. Now we note
that the text implicitly de�nes the space �x� x��, and the only way to use it

is to consider a map �x� x��
f
Ð�X instead of the map �x,x��

f
Ð�X.

Collecting above (see Figure 1d), we see that a topological space X is said

to be a Kolmogoro� space i� any map �x� x��
f
Ð� X factors as �x� x�� Ð�

�x � x��Ð�X.
Note another little miracle: it also reduces to orthogonality of morphisms

�x� x��Ð� �x � x�� û X Ð� �x � x��

and �x� x�� is the simplest non-Kolmogoro� space.

2.1.3. Finite topological spaces as categories.� Our notation �U �� Ð� �U �
U �� and �x� x�� Ð� �x � x�� suggests that we reformulated the two topolog-
ical properties of being dense and Kolmogoro� in terms of diagram chasing in
(�nite) categories. And indeed, we may think of �nite topological spaces as
categories and of continuous maps between them as functors, as follows; see

http://mishap.sdf.org/mints-lifting-property-as-negation/tmp/Bourbaki_General_Topology.djvu
http://mishap.sdf.org/mints-lifting-property-as-negation/tmp/Bourbaki_General_Topology.djvu
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�a� A
i
//

f
��

X

g

��

B j //

j̃~
~

>>~
~

Y

�b� �� //

��

X


�surj�

��

�Y� //

>>~
~

~
~

Y

�c� A //


�dense�

��

�U ��

��

B //

::v
v

v
v

v
�U � U ��

�d� �x� x�� //

��

X


�T0�
��

�x � x�� //

88rrrrrr
�x � x��

Figure 1. Lifting properties. Dots 
 indicate free variables and
what property of these variables is being de�ned; in a diagram chasing
calculation, "
�dense�" reads as: given a (valid) diagram, add label
�dense� to the corresponding arrow.
(a) The de�nition of a lifting property f û g: for each i � A Ð� X
and j � B Ð� Y making the square commutative, i.e. f X j � i X g,
there is a diagonal arrow j̃ � B Ð� X making the total diagram

A
f
Ð� B

j̃
Ð� X

g
Ð� Y,A

i
Ð� X,B

j
Ð� Y commutative, i.e. f X j̃ � i and

j̃ X g � j. (b) X Ð� Y is surjective (c) the image of AÐ� B is dense
in B (d) X is Kolmogoro�/T0

Appendix 5.3.1 for details and a de�nition of our notation for �nite topological
spaces and maps between them.

A topological space comes with a specialisation preorder on its points: for
points x, y > X, x B y i� y > clx (y is in the topological closure of x). The
resulting preordered set may be regarded as a category whose objects are the
points of X and where there is a unique morphism x�y i� y > clx.

For a �nite topological space X, the specialisation preorder or equivalently
the corresponding category uniquely determines the space: a subset of X is
closed i� it is downward closed, or equivalently, it is a subcategory such that
there are no morphisms going outside the subcategory.

The monotone maps (i.e. functors) are the continuous maps for this topol-
ogy.

We denote a �nite topological space by a list of the arrows (morphisms) in
the corresponding category; '�' denotes an isomorphism and '�' denotes the
identity morphism. An arrow between two such lists denotes a continuous map
(a functor) which sends each point to the correspondingly labelled point, but
possibly turning some morphisms into identity morphisms, thus gluing some
points.

2.2. Compactness via ultra�lters.� We try to interpret the de�nition
of compactness in [Bourbaki,I�9.1, Def.1(C�)] in terms of arrows, or rather we
try to rewrite it using the arrow notation as much as possible. Doing so we
shall see that this de�nition, in appropriate notation, condenses to a Hausdor�
space K is quasi-compact i� K Ð� �Y� is in

����o�Ð� �o� c��r�@5�
lr,

http://mishap.sdf.org/mints-lifting-property-as-negation/tmp/Bourbaki_General_Topology.djvu
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and that the latter expression almost appears in [Bourbaki, I�10.2,Thm.1d]
as a characterisation of the class of proper maps.

2.2.1. Reading the de�nition of quasi-compactness.� We read the de�nition
of quasi-compactness [Bourbaki,I�9.1, Def.I]; we do not know how to read (C)
and therefore we read its reformulation (C�).

A space K is quasi-compact i� each ultra�lter U on the set of points of K
converges, i.e. for each ultra�lter U on the set of points of K there is a point
x > K such that each open neighbourhood of x is U-big. This contains a
quanti�cation over open subsets; this suggests to us that we should try to
extract a de�nition of topology from the text and to interpret the requirement
as continuity of a certain map. each open neighbourhood of x is U-big suggest
we de�ne a topology such that an open subset is an U-big open neighbourhood
of some x >K. This de�nes a topology on K @ ��x��:

�U � U `K is open� 8 �U 8 ��x�� � U `K is open and U-big�

Denote the set equipped with this topology by K @U ��x��. (Note [Bourbaki,
I�6.5, De�nition 5, Example] de�ne this space.)

Thus, in terms of arrows the de�nition becomes (see Figure 2a): K is quasi-

compact i� the identity map K
id
Ð�K factors as

K Ð�K @U ��x��Ð�K

for each ultra�lter U on the set of points of K.
Now note that Figure 2a is a particular case of orthogonality K Ð� K @U

��x�� û K Ð� �Y�, see Figure 2b where the map K Ð� K is arbitrary. Using
orthogonals (negation), we express this by saying that K Ð� K @U ��x�� >

�K Ð� �Y��l. As usual, we are tempted to de�ne compactness as an orthogo-
nal (negation) of a class (property) of morphisms, and therefore we check that
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all maps of form A Ð� A @U �Y� lie in this orthogonal �K Ð� �Y��l. Con-
versely, this also means that K Ð� �Y�, for K quasi-compact, lies in the right
orthogonal (negation) �AÐ� A @U �Y� � U is an ultra�lter on a space A�r.

Summing up, we read De�nition I as

�C��û A Ð� A @U �Y� û X Ð� �Y� for each ultra�lter U on each
space A

Note that there is another, more direct, way to read o� this lifting property
�C��û from a remark in the proof of �C� Ô� �C ��:

In terms of arrows, this reformulation is precisely the lifting property

Z Ð� Z @U ��x�� û X Ð� �Y�

We'd like to view the fact that Bourbaki chooses to formulate explicitly pre-
cisely a lifting property immediately following a key de�nition as evidence that
Bourbaki is implicitly doing category theoretic reasoning.

2.2.2. Proper maps.� If we were to think that [Bourbaki, General Topology]
does implicitly uses category theoretic reasoning and orthogonality, we'd hope
to �nd there the de�nition of the class

�AÐ� A @U �Y� � U is an ultra�lter on a space A�r

And indeed, this is how Bourbaki characterises the class of proper maps in
[Bourbaki, General Topology, I�10.2,Th.1(d)] (cf. Figure 2d), almost exactly.
We see this as evidence that Bourbaki does indeed use category theoretic rea-
soning, or perhaps as an explanation of what do we mean by saying so.

Note we might have started our translation with this characterisation of
proper maps in terms of ultra�lters [Bourbaki, General Topology, I�10.2,Th.1(d)],

http://mishap.sdf.org/mints-lifting-property-as-negation/tmp/Bourbaki_General_Topology.djvu
http://mishap.sdf.org/mints-lifting-property-as-negation/tmp/Bourbaki_General_Topology.djvu
http://mishap.sdf.org/mints-lifting-property-as-negation/tmp/Bourbaki_General_Topology.djvu
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and we'd then arrive at Figure 2d directly.

However, this reformulation is unsatisfactory for us: it uses non-elementary,
in�nitary, set-theoretic notion of ultra�lters which we do not know how to
manipulate category-theoretically..

We'd like to have a de�nition which relies on maps between �nite spaces.
An argument similar to a linear algebra about dual vector spaces gives the

following. For any class C of maps we have that C l � C lrl and Cr � Crlr and
C1 ` C2 implies C l1 a C

l
2 and Cr1 a Cr2 . This implies P lr ` Crlr � Cr whenever

P ` Cr.
Take P to be some class of proper maps between �nite spaces. By above

we see that P lr is a subclass of the class of proper maps. We want to take P
to be large enough so that P lr is the whole class of proper maps. And indeed,
we �nd that a classical theorem in general topology tells us we can do so, at
least if we only care about spaces satisfying separation axioms. Moreover, we
will see it is enough to take P to consist of the following maps between spaces
of size at most 3:

�B1 � O �B2�Ð� �Y� �U�Ð� �U � U ��
�x� y�Ð� �x � y� �o� c�Ð� �o � c�

2.2.3. Reducing to �nite spaces.� Now we are back translating; we ignore the
considerations of the previous subsubsection which give us a rather good idea
of what we would get as the result of translation.

Reduction to �nite spaces is provided by Smirnov-Vulikh-Taimanov theorem
in the form by [Engelking, 3.2.1,p.136] (�compact� below stands for �compact
Hausdor��):

Let us transcribe this. We are given a dense subspace A
i
Ð�X of a topological

space X and a continuous mapping A
f
Ð� Y of A to a [Hausdor�] compact space

Y . The mapping f has a continuous extension over X means that the arrow
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A
f
Ð� Y factors via A

i
Ð� X (cf. Figure 2f). A pair B1, B2 of disjoint closed

subsets of Y is an arrow Y Ð� �B1 � O �B2� where �B1 � O �B2� is the
space with one open point denoted by O and two closed points denoted by B1

and B2. To say the inverse images f�1�B1� and f�1�B2� have disjoint closures

in the space X is to say that the composition A
f
Ð� Y Ð� �B1 � O � B2�

factors as A
i
Ð�X Ð� �B1 � O �B2� (cf. Figure 2g).

Now we need to de�ne the class of dense subspaces. A dense subspace is
an injective map with dense image such that the topology on the domain is
induced from the target. This suggests we try to de�ne this class by taking
left negations (orthogonals) of the simplest archetypal examples of maps with
non-dense image, a non-injective map, and a map such that the topology on
the domain is not induced from the target.

3.2.1. THEOREM. Let Y be Hausdor� compact and let A
i
Ð� X

satisfy (cf. Figure 2(ijk))

(i) (dense) A
i
Ð�X û �U�Ð� �U � U ��

(ii) (injective) A
i
Ð�X û �x� y�Ð� �x � y�

(iii) (induced topology) A
i
Ð�X û �o� c�Ð� �o � c�

Then the properties of A
f
Ð� Y de�ned by Figure 2(f) and Figure

2(g) are equivalent.

This implies that, for Hausdor� compact Y , items 3.2.1(i-iii) and A
i
Ð�X û

�B1 � O �B2�Ð� �B1 � O �B2� imply that A
i
Ð�X û Y Ð� �Y�.

Further, note that if X � A@ ��x�� is obtained from A by adjoining a single
closed non-open point, then

A
i
Ð�X û �B1 � O �B2�Ð� �B1 � O �B2�

i� there exists an ultra�lter U such that A
i
Ð�X is of form AÐ� A @U ��x��.

This implies that maps of form AÐ� A@U ��x�� are in P l and, �nally, that
a Hausdor� space K is quasi-compact i� K Ð� �Y� is in P lr where P consists
of

�B1 � O �B2�Ð� �Y� �U�Ð� �U � U ��
�x� y�Ð� �x � y� �o� c�Ð� �o � c�

2.2.4. The simplest counterexample negated three times.� Note that all maps
between �nite spaces mentioned in the preceeding subsubsection are closed,
hence proper by [Bourbaki, I�10.2,Thm.1b].

A veri�cation shows that, for Y and Z �nite, the map Y
g
Ð� Z is closed i�

�o�Ð� �o� c� û Y
g
Ð� Z

http://mishap.sdf.org/mints-lifting-property-as-negation/tmp/Bourbaki_General_Topology.djvu


16

Denote by ���o� Ð� �o � c��r�@5 the subclass of ��o� Ð� �o � c��r

consisting of maps between spaces of size at most 4.
Considerations above could be summarized by:

Claim. � In the category of topological spaces,

� a Hausdor� space K is quasi-compact i�
K Ð� �Y� is in ����o�Ð� �o� c��r�@5�

lr.
� every map in ����o�Ð� �o� c��r�@5�

lr is proper

And we conjecture that the latter is in fact the class of all proper maps.

Conjecture. � In the category of topological spaces, the following orthogonal
de�nes the class of proper maps:

����o�Ð� �o� c��r�@5�
lr

2.2.5. Compacti�cation as factorisation system/M2-decomposition. � By a
simple diagram chasing argument,�5� �6� each morphism X Ð� Y decomposes

as either X
�P �rl

ÐÐÐ� �
�P �r

ÐÐ� Y and X
�P �l

ÐÐ� �
�P �lr

ÐÐÐ� whenever P is a class of
morphisms and the underlying category has enough limits and colimits.

We shall now see that Stone-�ech compacti�cation is an example of such
a decomposition when P is the class of proper maps and is thus somewhat
analogous to the �cw��f�- and �c��wf�-decomposition required by Axiom M2
of Quillen model categories.

Almost this observation is mentioned explicitly in [Bous�eld, Constructions
of factorization systems in categories]�7�:

In fact, this observation can be found by transcribing [Engelking, Theorem
3.6.1, p.173] by means of diagram chasing (see Figure 3 for the statement and

�5� See Thm. 3.1 of [Bous�eld, Constructions of factorization systems in categories] for details
of such an argument and assumptions which are enough to make it work. However, note that
his de�nitions are somewhat di�erent from ours: unlike us, he considers the unique lifting
property, cf.�2 [ibid.].
�6� See [Holgate,PhD,2.1(Perfect Maps)] and references therein for examples of factorisation
systems related to Stone-�ech decomposition and proper maps. Note [Holgate] says �perfect�
instead of �proper�, as is common in topology.
�7� In our notation M�E1� is almost �E1�

r but not quite: M�E1� is the right orthogonal
(û -negation) with respect to the unique lifting property; [7] is [S. MacLane, Categories for
the Working Mathematician (Springer-Verlag, New York, 1971)].

https://core.ac.uk/download/pdf/82479252.pdf
https://core.ac.uk/download/pdf/82479252.pdf
https://core.ac.uk/download/pdf/82479252.pdf
http://www.maths.uwc.ac.za/~dholgate/Papers/DBHPhd.zip
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�a� K id //
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�b� K //
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�d� X id //
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X

f
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X 8U ��x�� //
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t
Y
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X

g
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A 8U ��x�� //

::t
t

t
t

t
Y

�f� A f //
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Y

g

��

X //

>>|
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|
|

�Y�

�g� A f //
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Y // �B1 � O �B2�

X

55jjjjjjjjj

�h� A //

��

�B1 � O �B2�

��

X //

88qqqqqq
�Y�

�i� A //

��

�U�

��

X //

;;v
v

v
v

v
�U � U ��

�j� A //

��

�x� y�

��

X //

;;w
w

w
w

w
�x � y�

�k� A //

��

�o� c�

��

X //

<<x
x

x
x

x
�o � c�

�l� �o� //

��

X

��

�o� c� //

<<x
x

x
x

x
Y

Figure 2. These are equivalent reformulations of quasi-compactness
of spaces and its generalisation to maps, that of properness of maps.

(a) the identity map K
id
Ð� K factors as K Ð� K 8F ��x�� Ð� K

(b) this is also equivalent to K being quasi-compact (we no longer
require the arrow K Ð� K to be identity) (c) and in fact quasi-
compact spaces are orthogonal to maps associated with ultra�lters

(d) X
f
Ð� Y is proper, i.e. d) If U is an ultra�lter on X and if y > Y is a

limit point of the ultra�lter base f�U�, then there is a limit point x of
U such that f�x� � y. [Bourbaki, General Topology, I�10.2,Th.1(d)]

(e) this is also equivalent to X
f
Ð� Y is proper, i.e. this holds for each

ultra�lter U on each space A (f) The mapping f has a continuous
extension over X (h) for every pair B1,B2 of disjoint closed subsets
of Y the inverse images f�1�B1� and f�1�B2� have disjoint closures
in the space X (i) the image of A is dense in B (j) the map AÐ� B
is injective (k) the topology on A is induced from B (l) for X and Y
�nite, this means that the map X Ð� Y is closed, or, equivalently,

proper

http://mishap.sdf.org/mints-lifting-property-as-negation/tmp/Bourbaki_General_Topology.djvu
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related lifting diagrams). In fact, corollaries [Engelking, 3.6.2-3.6.9] could also
be seen in a diagram chasing way; below we only reformulate Corollary 3.6.3.

Let us now transcribe Theorem 3.6.1 [Engelking] by means of the notation
of arrows. We will deliberately ignore the separability assumptions that X is
Tychono� and βX and Z are assumed to be Hausdor�.

Let P be the class of proper maps. Figure 3ab represent the statement of
the theorem [Engelking, Theorem 3.6.1]. Figure 3a suggests that the compact-
i�cation map X Ð� βX is in the class �P �l; Figure 3b suggests that there is

a unique decomposition X
�P l�
ÐÐ�X �

�P �lr

ÐÐÐ� �Y�.
And indeed, this is implied by a simple diagram chasing argument. Unique-

ness follows from orthogonality of �P �l and �P �r. The decomposition is con-
structed by an argument which looks roughly as follows:�8� consider all the

decompositions of form X
�P l�
ÐÐ� X �

Ð� Y and take the pushout X
�P �l

ÐÐ� Xl of

all the mapsX
�P l�
ÐÐ�X � appearing in the decompositions of this form. The map

belongs to �P �l because left orthogonals are closed under pushouts, By the uni-

versality property of pushouts you obtain a decomposition X
�P �l

ÐÐ� Xl Ð� Y
and a diagram chasing argument based on the de�nition of pushout and or-
thogonality properties of �P �l and �P �lr shows the map Xl Ð� Y is right
orthogonal to �P �l, i.e. belongs to �P �lr as required. An argument of this kind
is known as Quillen small object argument and originally was used to prove
Axiom M2 �cw��f�- and �c��wf�-decomposition of model categories.

The argument shows that under suitable assumptions that a category has

enough limits and colimits, any morphism X Ð� Z decomposes as X
�P l�
ÐÐ�

Y
�P �lr

ÐÐÐ� Z, for any class �P � of morphisms. Here we take �P � to be the class
of proper morphisms.

We end our discussion of compactness with the following rather vague con-
siderations; we hope they might suggest the reader something about the arrow
notation (calculus) appropriate for topology. We admit that what we say below
is very vague.

2.2.6. Compactness as being uniform. ¦§ Ô� §¦. � Often an application of
compactness is as follows. We know that certain choices can be made for each
value of parameters; if we also know that the parameters vary over a compact
domain, then we may assume that these choices are uniform, i.e. that they do
not depend on the value of the parameters. Put another way, compactness

�8�For details see footnote �5�.
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�a� X f //

��

Z

�P �

��

βX �P � //

==z
z

z
z

�Y�

�b� X ¦ //

��

βX

�P �

��

αX �P � //

=={
{

{
{

�Y�

�b�� X �P �l //

�P �l

��

�

�P �lr

��

� �P �lr //

�iso�|
|

>>|
|

�Y�

�c� X
�P l�
ÐÐ� βX

�P �
ÐÐ� �Y� �d� X

�P l�
Ð� Y

�P �lr

Ð � Z

�e� X
�P l�
ÐÐ� βX û �0,1�Ð� �Y�

�f� X Ð� αX
�P �
ÐÐ� �Y� and X

�P l�
ÐÐ� αX û �0,1�Ð� �Y� implies αX � βX

Figure 3. A diagram chasing reformulation of [Engelking, Theorem
3.6.1, p.173]. (a) Every continuous mapping f � X Ð� Z of a Ty-
chono� space X to a compact space Z is extendable to a continuous
mapping F � βX Ð� Z. (b) If every continuous mapping of a Ty-
chono� space X to a compact space is continuously extendable over a
compacti�cation αX of X, then αX is equivalent to the Cech-Stone
compacti�cation of X. This is reformulated as follows: if diagram
�b� holds, then the diagonal map αX Ð� βX can be chosen to be
an isomorphism. (b�) this is an analogue of (b) formulated in terms

of category theory as uniqueness of �
�P �l

ÐÐ� �
�P �lr

ÐÐÐ� � decomposition;
the diagonal arrow exists because �P �l û �P �lr and thus we require
it to be an isomorphism. (c) Both diagrams above can summarized
as: there exists a unique decomposition of this form. (d) Further,
this is implied by an analogue of Axiom M2 �cw��f�- and �c��wf�-
decomposition of model categories: each morphism X Ð� Z decom-

poses as X
�P l�
Ð� Y

�P �lr

Ð � Z (e) Every continuous function f �X Ð�X
from a Tychono� space X to the closed interval I is extendable to a
continuous function F � βX Ð� I. (f) If every continuous function
from a Tychono� space X to the closed interval I is continuously ex-
tendable over a compacti�cation αX of X, then αX is equivalent to the
�ech-Stone compacti�cation of X. Note the conclusion αX � βX is
stated somewhat imprecisely; we rather need to say that morphisms
X Ð� αX and X Ð� βX are the same.
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allows to change the order of quanti�ers ¦§ Ô� §¦ in certain formulas. See
Appendix 5.5 for a list of examples.�9�

The subsection of [Stacks Project, I.5�15, tag 005M] dealing with the Bour-
baki characterisation of proper maps starts with a lemma of this kind:

Lemma 1 (Tube lemma). � Let X and Y be topological spaces. Let A `X
and B ` Y be quasi-compact subsets. Let A �B `W ` X � Y with W open in
X�Y . Then there exists opens A ` U `X and B ` V ` Y such that U�V `W .

In a somewhat more old-fashioned way, this lemma can be reformulated as
follows:

Lemma 2 (Tube lemma). � Let X and Y be topological spaces. Let A `X
and B ` Y be quasi-compact subsets. Let A �B `W `X � Y .

If for each pair of points a > A and b > B we can pick neighbourhoods U �

U�a, b� ? a and V � V �a, b� ? b such that �a, b� > U � V ` W , then we can do
so uniformly in a > A and b > B, i.e. such that U � U�a, b� and V � V �a, b� do
not depend on a and b.

As a formula, this could be expressed as change of order of quanti�ers:

¦a > A¦b > B §U `X §V ` Y �U � V `W and a > U is open and b > V is open�

§U `X §V ` Y ¦a > A¦b > B �U � V `W and a > U is open and b > V is open�

The following example of change or order of quanti�ers is simpler but per-
haps more telling.

For a connected topological space X, the following are equivalent:
� Each real-valued function on X is bounded
� ¦x >K§M�f�x� @M� Ô� §M¦x >K�f�x� @M�
� gÐ�K û @n>N��n,n�Ð� R
here 8n��n,n� Ð� R denotes the map to the real line from the disjoint
union of intervals ��n,n� which cover it. Note this is a standard example
of an open covering of R which shows it is not compact.

The following is even more vague.

2.2.7. �An open covering has a �nite subcovering�. � Mathematically, this
reformulation is based on the following observation:

a space K is compact i� for each open covering U of K, the subset
K is closed in K 8 �ª� in the topology generated elements of U as
closed subsets.

This lets us express being �nite with the help of the notion of the topology
generated by a family of sets.

�9�For a discussion see Remark 8 of [Gavrilovich, Lifting Property]

https://stacks.math.columbia.edu/tag/005M
http://mishap.sdf.org/mints/expressive-power-of-the-lifting-property.pdf
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[Hausdor�, Set theory] denotes by U�x� a neighbourhood of a point x, which
suggests viewing U�x� as a (possibly multivalued) function of a point x ; We'd
like to develop �arrow� notation where this would be expressed as

�x�Ð�K
�U�x��
ÐÐÐÐ� �x� y� ���

here it is implicit that x maps to x by the composition of the two arrows; ��x��
in �U�x�� signi�es that U�x� depends on x.

Changing a single symbol ��� into ��� leads us to consider elements of U
as closed subsets of K:

�x�Ð�K
�U�x��
ÐÐÐÐ� �x� y� ����

We'd like to assume (or require) that ���� inherits some properties of ���,
in the arrow calculus we'd like to de�ne; this would be what corresponds to
considering the topology generated by.

2.2.8. Summary.� These three examples suggest that orthogonality, or û -
negation, has a surprising generative power as a means of de�ning natural
elementary mathematical concepts. In Appendix 5.2.1 and Appendix 5.3.2 we
give a number of examples in various categories, in particular showing that
many standard elementary notions of abstract topology can be de�ned by
applying the lifting property to simple morphisms of �nite topological spaces.
Examples in topology include the notions of: compact, discrete, connected,
and totally disconnected spaces, dense image, induced topology, and separation
axioms. Examples in algebra include: �nite groups being nilpotent, solvable,
torsion-free, p-groups, and prime-to-p groups; injective and projective modules;
injective, surjective, and split homomorphisms.

2.3. Hausdor� axioms of topology as diagram chasing computations
with �nite categories . � We shall now reformulate the axioms of a topol-
ogy in a form almost ready to be implemented in a theorem prover based on
diagram chasing.

Early works talk of topology in terms of neighbourhood systems Ux where Ux
varies though neighbourhoods of points of a topological space. This is how the
notion of topology was de�ned by Hausdor�; in words of [Bourbaki], �We shall
say that a set E carries a topological structure whenever we have associated
with each element of E, by some means or other, a family of subsets of E which
are called neighbourhoods of this element - provided of course that these neigh-
bourhoods satisfy certain conditions (the axioms of topological structures).�

Whenever we are speaking of a neighbourhood Ux of a point x > E, we are
speaking of two functions

�x�Ð�X
U
ÐÐ� �x� x��
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We would like to be able to say that a set E carries a topological structure
whenever we have associated with each element x of E, by some means or other,
a family of arrows, or functions, �x� Ð� E Ð� �x � x�� provided of course
that these arrows satisfy certain conditions (corresponding to the axioms of
topological structures).

This simple observation allows us to show that the axioms of topology for-
mulated in the more modern language of open subsets can be seen as diagram
chasing rules for manipulating diagrams involving notation such as

�x�Ð�X X Ð� �x�y� X Ð� �x� y�

in the following straightforward way.

2.3.1. Axioms of open sets as diagram chasing rules.� As is standard in
category theory, identify a point x of a topological space X with the arrow
�x� Ð� X, a subset Z of X with the arrow X Ð� �z � z��, and an open
subset U of X with the arrow X Ð� �u�u��. With these identi�cations, the
Hausdor� axioms of a topological space become rules for manipulating such
arrows, as follows.

Both the empty set and the whole of X are open says that the compositions

X Ð� �c�Ð� �o�c� and X Ð� �o�Ð� �o�c�

behave as expected (the preimage of {o} is empty under the �rst map, and is
the whole of X under the second map).

The intersection of two open subsets is open means the arrow

X Ð� �o�c� � �o��c��

behaves as expected (the �two open subsets� are the preimages of points o >

�o�c� and o� > �o��c��; �the intersection� is the preimage of �o, o�� in �o�c��
�o��c�� ).

The preimage of an open set is open says the composition

X Ð� Y Ð� �u�u��Ð� �u� u��

is well-de�ned.
We need the following terminology to formulate the next diagram chaning

reformulation. We say that a diagram commutes from vertex A to vertex B i�
the composition of morphisms along any two paths from A to B is the same.
We say a diagram commutes at (to) a vertex A i� it commutes from A to any
vertex B (from any vertex A to B, resp.).

Finally, let us write a diagram chasing rule which corresponds to the fact
that in topology we consider subsets which of elements and that functions are
de�ned element-wise. It allows to reduce diagram chasing to �nite objects.
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� for each arrows A
f
Ð� B, A

g
Ð� B it holds

A
f ))

g 55 B

i� for each �u�Ð� A,
the diagram commutes
at vertex �u�:

�u� // A
f ))

g 55 B

� for each arrows A
f
Ð� B, A

g
Ð� B it holds

A
f ))

g 55 B

i�
for each B Ð� �x �
y�,
the diagram commutes
to vertex �x� y�:

A
f ))

g 55 B // �x� y�

� for each arrows A
f
Ð� B, A

g
Ð� B it holds

A
f ))

g 55 B

i� for each �u� Ð� A
and B Ð� �x� y�,
the diagram commutes
from �u� to �x� y� :

�u� // A
f ))

g 55 B // �x� y�

2.3.2. An arbitrary union of open subsets is open as ¦§ Ô� §¦.� Finally,
the axiom that an arbitrary union of open subsets is necessarily open can be
reformulated in the following ways:

� A subset U of X is open i� each point u of U has an open neighbourhood
inside of U .

� If for each point x of a subset U we can pick an open neighbourhood
x > Ux b U within U , then we can do so in such a way that Ux does not
depend on x (and therefore Ux � U for each x > U).

� As an ¦§ Ô� §¦ implication (cf. �2.2.6,�5.5),

¦x > U §V �x > V and V b U and V is open �

§V ¦x > U �x > V and V b U and V is open �

Let us give several reformulations in terms of diagram chasing:

for each arrow X
ξU
Ð� �U � Ū� it holds

�U � Ū�

��

X ξU //

99s
s

s
s

s
�U � Ū�

i� for each �u�Ð�X �u� //

��

�u� U � Ū�

���

��

X ξU //

88pppppp
�u�U�Ū�

The following reformulation uses that sets consist of points:

for each arrow X
ξU
Ð� �U � Ū� the following are equivalent:
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� there is an arrow X Ð� �U Ð� Ū�
for each �u�Ð�X
the diagram commutes at vertex �u�

�u�

��

�U � Ū�

��

X ξU //

::u
u

u
u

u
�U � Ū�

� for each �u�Ð�X
making the square commute
there is an arrow X Ð� �u� U � Ū�
making the diagram commute

�u�
u(u //

��

�u� U � Ū�

��

X ξU //

88rrrrrr
�u�U�Ū�

� for each �u�Ð�X
for each �u�Ð� �u� U � Ū�
making the square commute
there is an arrow X Ð� �u� U � Ū�
making the diagram commute

�u� //

��

�u� U � Ū�

��

X ξU //

88rrrrrr
�u�U�Ū�

Question 2.1. � It is tempting to rewrite the axioms about in�nite unions
as the following sequence of diagram chasing rules, which seem to be closer to
intuitive considerations:

� pick a new arrow �u�Ð�X
� construct an arrow X Ð� �u � U � Ū� in some way such that the
diagram ��� commutes

� remove the dependency of X Ð� �u � U � Ū� on �u� Ð� X, i.e. label
the arrow X Ð� �u� U � Ū� as not dependent on �u�Ð�X

De�ne a formal syntax and a proof system capturing this kind of derivations.

We cannot stress enough the speculation below.

Remark 2.2. � We �nd it extremely intriguing that an axiom of topology ad-
mits an ¦§ Ô� §¦ reformulation. We view it as a sign that topology is really
about, so to say, permuting quanti�ers, or, in other words, expressly manip-
ulating what variable/term/construction depends on what; so to say, topology
reasons about dependency rather than continuity. A technical way to start
thinking about this point of view is provided by the ¦§ Ô� §¦ reformulations
in �2.3.2 and ¦§ Ô� §¦ reformulations of compactness in �2.2.6 and �5.5.
See also a discussion in �4.3.3.

We hope that this reinterpretation may help clarify the nature of the axioms
of a topological space, in particular it o�ers a constructive approach and a
diagram chasing formalisation of certain elementary arguments, may clarify to
what extent set-theoretic language is necessary, and perhaps help to suggest
an approach to �tame topology� of Grothendieck, i.e. a foundation of topology
"without false problems" and "wild phenomena" "at the very beginning".
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2.4. Urysohn lemma as a de�nition of the real line (Un�nished).
� We sketch a concise exposition of the proof of Urysohn Lemma and then
speculate how it leads to concrete suggestions on how to de�ne the notions of a
path and of a map to R in terms of diagram chasing with �nite spaces. Namely,
we speculate a map to/from R or �0,1� determines a collection of maps X Ð�

~�~�, resp. a collection of mapsX
�path�
ÐÐÐ�

�
�� %% ��� %% ��� %%
� 11�%% ���

�



�

which are maximal collections of

arrows with certain diagram chasing properties. (Here ~�~� and
�

�� %% ��� %% ��� %%
� 11�%% ���

�



�

denote

particular preorders.) These diagram chasing properties should represent the
operations of taking �ner and �ner partitions 0 � t0 @ t1 @ t2 @ ... @ tn @ 1 of
�0,1� and that of covering a path by smaller and smaller neighbourhoods.

We'd like to reformulate these properties of collections as diagram chasing
rules to manipulate labels or arrows to particular �nite preorders, and below
we make very preliminary suggestions towards this.

Our considerations are probably a representation of ideas of Cech coho-
mology, the Freyd de�nition of the interval and Drinfeld note on geometric
realization.

2.4.1. A concise exposition of the proof of Urysohn Lemma. � We hope this
exposition may make the argument more transparent to students, and be used
to shorten and make more transparent parts of formalization of the proof of
Urysohn lemma, e.g. see the proof in Mizar. Note that a minor modi�cation
delivers the proof (and statement) of Tietze extension theorem. First we give
the standard exposition of the proof of Urysohn lemma as written in the notes
by Terrence Tao, and then rewrite it in our notation.

Lemma 1 (Urysohn's lemma). � Let X be a topological space. Then

the following are equivalent:

Y �i� Every pair of disjoint closed sets K,L in X can be separated by

disjoint open neighbourhoods U aK, V a L.
Y �ii� For every closed set K in X and every open neighbourhood U of

K, there exists an open set V and a closed set L such that K ` V `

L ` U .

Y �iii� For every pair of disjoint closed sets K,L in X, there exists a con-

tinuous function f �X � �0,1� which equals 1 on K and 0 on L.
Y �iv� For every closed set K in X and every open neighbourhood U of K,

there exists a continuous function f � X � �0,1� such that 1K�x� B
f�x� B 1U�x� for all x >X.

A topological space which obeys any (and hence all) of (i-iv) is known
as a normal space; de�nition (i) is traditionally taken to be the standard

https://www.mta.ca/~cat-dist/catlist/1999/realcoalg
https://arxiv.org/abs/math/0304064
https://arxiv.org/abs/math/0304064
http://www.mizar.org/JFM/Vol13/urysohn3.html
https://terrytao.wordpress.com/2009/03/02/245b-notes-12-continuous-functions-on-locally-compact-hausdorff-spaces/#more-1844
https://terrytao.wordpress.com/2009/03/02/245b-notes-12-continuous-functions-on-locally-compact-hausdorff-spaces/#more-1844
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de�nition of normality. We will give some examples of normal spaces
shortly.

Proof: The equivalence of (iii) and (iv) is clear, as the complement of
a closed set is an open set and vice versa. The equivalence of (i) and (ii)
follows similarly.

To deduce (i) from (iii), let K,L be disjoint closed sets, let f be as
in (iii), and let U,V be the open sets U �� �x > X � f�x� A 2~3� and
V �� �x >X � f�x� @ 1~3�.

The only remaining task is to deduce (iv) from (ii). Suppose we have
a closed set K �K1 and an open set U � U0 with K1 ` U0. Applying (ii),
we can �nd an open set U1~2 and a closed set K1~2 such that

K1 ` U1~2 `K1~2 ` U0. �U1~2�

Applying (ii) two more times, we can �nd more open sets U1~4, U3~4 and
closed sets K1~4,K3~4 such that

K1 ` U3~4 `K3~4 ` U1~2 `K1~2 ` U1~4 `K1~4 ` U0. �U1~4�

Iterating this process, we can construct open sets Uq and closed setsKq for
every dyadic rational q � a~2n in �0,1� such that Uq `Kq for all 0 @ q @ 1,
and Kq� ` Uq for any 0 B q @ q� B 1.

If we now de�ne f�x� �� sup�q � x > Uq� � inf�q � x ~> Kq�, where q
ranges over dyadic rationals between 0 and 1, and with the convention
that the empty set has sup 0 and inf 1, one easily veri�es that the sets
�f�x� A α� � �qAαUq and �f�x� @ α� � �q@αX�Kq are open for every
real number α, and so f is continuous as required.

Rewrite �i� and �iii� as lifting properties as follows:

�i�û gÐ�X û �K�
U�K

�x�
V �L

�L�Ð� �K�
U�K � x � V �L

�L�

�iii�û gÐ�X û �0�� 8 �0,1� 8 �1��Ð� �0 � 0��x�1 � 1��
where �0�� 8 �0,1� 8 �1�� is the interval with two closed points glued to
the endpoints, cl�0� � �0,0��, cl�1� � �1,1���10�

When �i� and �iii� are rewritten in this form, it is tempting to prove �iii�û
by iterating �i�û in�nitely many times.

And indeed, we may do so by doing pullbacks and liftings along the 3 maps
~�~�Ð� ~� (we renamed points to simplify notation):

�t1
�
o1
�t2
�
o2
�t3�Ð� �t1 � o1 � t2

�
o2
�t3�

�t1
�
o1
�t2
�
o2
�t3�Ð� �t1

�
o1 � t2 � o2

�t3�

�10� In more detail, the topology on �0�� 8 �0,1� 8 �1�� is de�ned by �U � U ` �0,1� open� 8

�0�

8U � 0 > U ` �0,1� open� 8 �1�

8U � 1 > U ` �0,1� open� in particular 0� and 1� are closed,
and cl�0� � �0,0��, cl�1� � �1,1��.
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�t1
�
o1
�t2
�
o2
�t3�Ð� �t1

�
o1
�t2 � o2 � t3�

We draw the �rst two steps; applying �ii�û we get at the 1st step X Ð� ~�~�,
in Tao's notation K1 ` U1~2 ` K1~2 ` U0. Applying �ii�û once more, at the
4th step we �nd X Ð� ~�~�~�. Tao applies �ii� two more times and �nds
decomposition K1 ` U3~4 `K3~4 ` U1~2 `K1~2 ` U1~4 `K1~4 ` U0, which in our
notation would correspond to X Ð� ~�~�~�~�.

���
�
�
�
�
�
�
�
�
�
��

�
�
��

��

�t1
�
o1
�t2
�
o2,0
�o2,t

�
o2,1
�t3�

�� ++WWWWWWWWWWWWWWWWWWWWW

�t1
�
o1
�t2
�
o2
�t3�

�� ++WWWWWWWWWWWWWWWWWWWWWW
�t1 � o1 � t2

�
o2,0
�o2,t

�
o2,1
�t3�

��

X //

K1`U1~2`K1~2`U0
1st stepmmmm

66mm
K1~2`U1~4`K1~4`U0

3rd stepdddddddddddd

22ddddd

K1`U1~2`K1~2`U1~4`K1~4`U0
4th step
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�t1
�
o1 � t2 � o2

�t3� �t1 � o1 � t2
�
o2 � o2,1 � o2,t � o2,1

�t3�

Iterating this builds mapsX Ð� ���
�
�
�
�
�
�
�
�
�
��

�
�
��. Now an argument

using the de�nition of real numbers �nishes the argument, for example, as
follows.

A sequence of real numbers 0 � t0 @ t1 @ t2 @ ... @ tn � 1, ti > R deter-
mines a decomposition of the interval �0,1� ` R as a union of points and open
intervals; and this decomposition can be viewed as a map to a �nite space
which contracts the open subintervals �ti, ti�1� to open points oi: �0,1� Ð�

�t0
�
o0
�t1
�
o1
�t2
�
o2
�...�

on
�tn�. Taking �ner and �ner decompositions

gives rise to a system of maps from �0,1� to these �nite spaces; on the other
hand, as we saw above, iterating (i) also gives rise to a system of maps to these
�nite spaces. A veri�cation now shows such a system of maps determine a map
to �0,1�.

Tietze extension theorem. � Let X be a normal topological space, let �a, b�
be a bounded interval, let K be a closed subset of X, and let f �X Ð� �a, b� be

a continuous function. Then there exists a continuous function f̃ �X Ð� �a, b�

which extends f , i.e. f̃�x� � f�x� for all x >K.
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Rewrite the conclusion as a lifting property (here �Y� denotes the space
consisting of a single point):

K Ð�X û �a, b�Ð� �Y�

A diagram chasing argument shows that the assumption implies the lifting
properties (the �rst one is �i�û above for K Ð�X):

K Ð�X û �t1
�
o1
�t2
�
o2
�t3�Ð� �t1

�
o1 � t2 � o2

�t3�

K Ð�X û �t1
�
o1
�t2�Ð� �t1 � o1 � t2�

Now as in the proof of Urysohn lemma, iterating these lifting property con-
structs f̃ �X Ð� �a, b� as required.

2.4.2. De�nition of the notion of a map to R. � Analysing the proof leads to
the following suggestions towards a diagram-chasing de�nition of maps to the
real line or the interval.

Real line R comes equipped with the collection of maps R Ð� �
�
�
�
�
�
�
�
�

associated with decompositions, for s @ t > R

R � ��ª, s� 8 �s,
s � t

2
� 8 �

s � t

2
� 8 �

s � 2

2
,�ª�

Hence, a map X Ð� R determines a collection of maps X Ð� �
�
�
�
�
�
�
�
�,

and it is tempting to give a diagram-chasing de�nition of a map X Ð� R as a

maximal collection of maps X Ð� �
�
�
�
�
�
�
�
� compatible in a certain sense.

Question (Notion of a map to R). � De�ne a map f � X Ð� �0,1� as a

label on maps X
�R�
ÐÐ� �

�
�
�
�
�
�
�
� which satis�es some diagram chasing com-

patibility properties.

These conditions should probably include:
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2.4.3. De�nition of the notion of a path. � It is tempting to de�ne the notion
of a path in a dual way. Below are very preliminary considerations.

An essential property of a (smooth enough) path is that it can be covered
by a sequence of small open neighbourhoods. Any collection of open subsets
of a space determines a map to a �nite space, and for an non-self-intersecting
path such a sequence determines a map to the following �nite space
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or equivalently a map to a partial order
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We hope that a (possibly

self-intersecting) path determines a collection of such maps which is a maximal
collection satisfying certain diagram chasing properties. Moreover, we hope
these diagram chasing properties correspond to lifting properties representing
the operation of splitting one small neighbourhood into two, and saying these
open neighbourhoods do form a sequence.

Note the partial orders ~�~�...~� occuring in the de�nition of a map to R are
suborders of the partial orders occuring in the de�nition of a path, and we
hope this leads to a tautological diagram chasing corstruction corresponding
to the identity map RÐ� R.

Question (Notion of a path). � De�ne a the notion of path γ � R Ð� X

or γ � �0,1� Ð� X as a label on maps X
�path�
ÐÐÐ�

�
�� %% ��� %% ��� %%
� 11�%% ���

�
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which satis�es some

diagram chasing compatibility properties, and is maximal such.

3. Topological spaces as simplicial �lters.

We shall now introduce terminology which we feel allows us to more directly
give precise meaning to phrases such as �such and such a property holds for
all points su�ciently near a�. We will do so by �reading it o�� the informal
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considerations of [Bourbaki, Introduction] of the intuitive notions of limit,
continuity and neighbourhood.

This section may be read independently of the rest of the paper. Unlike the
previous section, we do not introduce a concise formal syntax to describe the
categorical structures that arise.

3.1. Reading the de�nition of topology.� Now we pretend to directly
transcribe the following explanations of Bourbaki of the intuition of topology
and analysis [Bourbaki, Introduction, p.13]

Call a subset P b X �X topoic i� �a, x� > P whenever x is su�ciently near
a, i.e. for each a > X there is a neighbourhood a > Ua b X of a such that
�a��Ua b P . This terminology enables us to give precise meaning to the phrase
�for each point a such and such a property [ P �a, x� ] holds for all points su�ciently

near a�: by de�nition this means that the set of pairs of points which have this
property is topoic for the topological structure in question.

Call a subset P ` X �X �X topoic i� we can ensure �a, x, y� > P by �rst
picking x su�ciently near to a, and then picking y su�ciently near x, i.e. for
each a > X there is a neighbourhood a > Ua b X of a such that for each x > Ua
there is a neighbourhood x > Ua,x bX such that �a, x, y� > P for each y > Ua,x.
Similarly we de�ne topoic subsets of Xn for n A 2, see �3.1.1 for details.

Topoic subsets of Xn form a �lter where by a �lter we mean a topological
space such that a subset containing a non-empty open set is necessarily open.
Axioms of topology say that the Cartesian powers of X with these �lters form

http://mishap.sdf.org/mints-lifting-property-as-negation/tmp/Bourbaki_General_Topology.djvu
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a 2-dimensional simplicial object æ�X� in the category of �lters.�11� Moreover

æ � TopÐ� Func�Ordop@ω , Åilt�

is a fully faithful embedding of the category of topological spaces into the
category of simplicial objects (in fact, of dimension 2) in the category of �lters.

Here Åilt ` Top is the full subcategory of the category of topological spaces
formed by �lters (for us a �lter is a topological space such that a set containing
a non-empty open subset is necessarily open, hence by a morphism of �lters we
mean a map such that the preimage of a big set is big). or, equivalently, it is
the category of pointed topological spaces and morphisms are maps continuous
at the point and preserving the point. Ord@ω denotes the category of categories
corresponding to �nite linear orders

Y1 Ð� ..Ð� Yn, 0 @ n @ ω.

In particular, the axiom a neighbourhood of a point x is also a neighbour-
hood of all points su�ciently near to x, says that pr1,3 � X � X � X Ð�

X �X, �x1, x2, x3� ( �x1, x3� is continuous wrt the �lters de�ned above, or,
equivalently, wrt the �lter on X �X �X de�ned as pullback along projections
X �X

pr1,2
�ÐÐX �X �X

pr2,3
ÐÐ�X �X.

Continuity of a function f � X Ð� X � �given any point x0 > X and any
neighbourhood V � of f�x0� inX �, there is a neighbourhood V of x0 inX such that
the relation x > V implies f�x� > V � � is expressed by saying that the preimage
f�1�P � `X �X of any topoic subset P `X �

�X � is topoic, or, by saying that

the obvious natural transformation æ�X�
æ�f�
ÐÐÐ� æ�Y � is well-de�ned.

As we have already said, talking about topoic subsets wrt a topological struc-
ture on a set enables one to give an exact meaning to the phrase �whenever x
is su�ciently near a, x has the property P�x��. But, apart from the situation
in which a �distance� has been de�ned, it is not clear what meaning ought to

�11�We �nd it convenient to allow �lters where the empty set is big, i.e. we allow the �lter
of all subsets of a set.
The category Åilt of �lters can be thought in three equivalent ways: (i) it is a full subcategory
of the category of topological spaces whose objects are spaces such that a subset containing
a non-empty open subset is necessarily open (ii) its objects are pointed topological spaces
with morphisms being maps continuous at the point (iii) its objects are sets equipped with a
�nitely additive measure taking only two values 0 and 1 and such that a subset of a measure
0 set has necessarily measure 0; morphisms are measurable maps preserving the measure (iv)
its objects are sets equipped with a collection of subsets called big such that the intersection
of two big subsets is big and a subset containing a big subset is necessarily big as well;
morphisms are maps such that the preimage of a big subset is necessarily big.
(ii) and (iii) suggest that one may also consider the category Æilt of �lters localised as
follows: two maps f, g � X Ð� Y are considered equal as morphisms i� they are equal
locally, resp. almost everywhere, i.e. the subset �x � f�x� � g�x�� is big in X.
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be given to the phrase �every pair of points x, y which are su�ciently near each
other has the property P�x, y��, since a priori topoic subsets wrt a topological
structure give no means of comparing the neighbourhoods of two di�erent points.
Now the notion of a pair of points near to each other arises frequently in classi-
cal analysis (for example, in propositions which involve uniform continuity). It is
therefore important that we should be able to give a precise meaning to this notion
in full generality, and we are thus led to de�ne the notion of topoic subsets wrt
structures which are richer than topological structures, namely uniform structures.

For a metric spaceM , call a subset P bM �M topoic i� �every pair of points
x, y which are su�ciently near each other has the property P�x, y��, i.e. there
is ε A 0 such that �x, y� > P whenever dist�x, y� @ ε. More generally, call a
subset P b Mn topoic i� there is ε A 0 such that �x1, ..., xn� > P whenever
dist�xi, xj� @ ε for each 1 B i B j B n.

The axioms of uniform structure, cf. [Bourbaki,II�I.1], say that the �lters of
topoic subsets on Mn, n C 0, de�ne a 2-dimensional simplicial object

√�M� � Ordop@ω Ð� Åilt

which factors as
Ordop@ω Ð� FinSetsop Ð� Åilt

where FinSetsop is the category of �nite sets.

In particular, to say the map of �lters M
�x,x�
ÐÐÐ� M �M is continuous and

the �lter on M is antidicrete is almost to say Axiom (UI) Every set belonging
to the set of entourages U contains the diagonal ∆ of M �M . Axiom (UII) If
V > U then V �1

> U, where V �1
� ��y, x� � �x, y� > V �, says the permutation of

coordinates M �M
�x,y�(�y,x�
ÐÐÐÐÐÐ�M �M is continuous.

Axiom (UIII) For each entourage V > U there exists entourage W > U such
that W XW ` V says that pr1,3 �M �M �M Ð�M �M, �x1, x2, x3�( �x1, x3�
is continuous wrt the �lter onM �M �M de�ned as pullback along projections
M �M

pr1,2
�ÐÐM �M �M

pr2,3
ÐÐ�M �M .

Thus Axiom (UI) and (UIII) of uniform structures say the functor √�M� �
Ordop@ω Ð� Åilt is well-de�ned, and Axiom (UII) says it factors via Ordop@ω Ð�
FinSetsop.

This terminology gives us means of comparing the neighbourhoods of two
di�erent points and give a precise meaning to the notion of a pair of points near to
each other which arises frequently in classical analysis (for example, in propositions
which involve uniform continuity).

A topological argument often relies on consequently choosing �su�ciently
near� points; in this case we expect that it implicitly constructs a topoic subset
of E � .. �E.

Sometimes an argument chooses points not consequently, and we hope that
often enough it implicitly constructs a topoic subset of E � .. � E, albeit in

http://mishap.sdf.org/mints-lifting-property-as-negation/tmp/Bourbaki_General_Topology.djvu
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a topoic structure not associated with a topological structure and possibly
speci�c to the argument.

Let us now de�ne the topoic structure on a set E associated with a topo-
logical structure on E.

3.1.1. Topoic structure of a topological space.� Let X be a topological space.
Call a property (subset) P b X �X topoic i� �a, x� > P holds whenever x is
su�ciently near a, i.e. for each point a > X there is a neighbourhood Ua such
that �a, x� > P whenever x > Ua. Call a property P b Xn topoic i� we can
ensure that �x1, .., xn� > P provided we pick x2 su�ciently near x1, then pick
x3 su�ciently near x2, then ... then pick xn su�ciently near xn�1, given any
x1 >X, i.e.
for each point x1 >X there is an open neighbourhood Ux1 ? x1 such that

for each point x2 > Ux1 there is an open neighbourhood Ux1,x2 ? x2 such that

for each point x3 > Ux1,x2 there is an open neighbourhood Ux1,x2,x3 ? x3 such that

for each point x4 > Ux1,x2,x3 ....

.....

for each point xn > Ux1,x2,...,xn�1 there is a neighbourhood Ux1,x2,...,xn�1 ? xn such that

�x1, ..., xn� > P .

Topoic subsets form a �lter (as well as a topology) on Xn: P �
a P , P topoic

implies P � is topoic, and the intersection of �nitely many topoic sets is topoic.
As noted above, the �lter of topoic subsets allows us to directly speak about

�su�ciently near� points. If a topological argument relies on consequently
choosing of �su�ciently near� points, then we expect that it implicitly con-
structs a topoic subset of X � .. �X.

3.1.2. Topoic structure of a metric space.� Let M be a metric space. Let us
de�ne the topoic structure associated with metric space M : a subset P `Mn

is topoic i� there is ε A 0 such that �x1, .., xn� >M provided dist�xi, xj� @ ε for
each 1 B i B j B n. Thereby we give the phrase �every pair of points x, y which are
su�ciently near each other has the property P�x, y�� the precise meaning that
P is topoic with respect to the topoic structure associated with the metric
(distance) on M .

3.1.3. Continuity in topological spaces.� Let us now see that the intuitive
explanation of continuity of a function by [Bourbaki, Introduction, p.13] tran-
scribes directly to the language of topoic subsets.

http://mishap.sdf.org/mints-lifting-property-as-negation/tmp/Bourbaki_General_Topology.djvu
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This reads as: given a topoic subset W ` Y � Y , we can �nd a topoic subset
of V ` X �X such that �f�x0�, f�x�� >W provided �x0, x� > V . Here �given�
corresponds to as we please; �we can �nd� to su�ciently; the subset W be-
ing �topoic� corresponds to its value varies as little; and whenever the argument
remains su�ciently near the point in question corresponds to �nding a topoic
subset W of X �X such that �f�x0�, f�x�� >W whenever �x0, x� > V .

Thus continuity of f � X Ð� Y means the map f � f � X �X Ð� Y � Y is
continuous wrt the topoic �lters, or, equivalently, the obvious map of simplicial

objects æ�X�
æ�f�
ÐÐÐ� æ�Y � is well-de�ned.

3.1.4. Axioms of topology.� Bourbaki reformulate the axioms of topology as
Axioms �VI �VIV� stated in terms of neighbourhood �lters [Bourbaki,I�1.2],
also cf. [ibid, Proposition 2]. Note that the notion of a neighbourhood is all
that is need to de�ne topoic subsets, and let us now try to understand these
axioms in terms of topoic subsets and coordinate maps between Xn.

Axioms �VI� and �VII� say that topoic subsets (as de�ned above) do indeed
form a �lter.

The �lter on X is antidiscrete, and thus �VIII� implies that the diagonal em-
bedding

X Ð�X �X, x( �x,x�

is continuous wrt the topoic �lters. In fact, continuity of the diagonal embed-
ding means that either for each x element x is in every set of B�x� or for each
x element x is in no set of B�x�.
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This means that the map

X �X �X Ð�X �X, �x1, x2, x3�( �x1, x3�

is continuous; to see this, consider the preimage of �x�� V `X �X, or rather
a topoic subset �x� � V 8 ��X � �x�� �X� ` X �X. It has to be topoic, and
by de�nition that means that for each point x > X, there is a neighbourhood
W of x such that, for each y > W , V is a neighbourhood of y. (We may take
W to be any open set which contains x1 and is contained in V .)

A further veri�cation shows that the maps

Xn
Ð�Xm, �x1, ..., xn�( �xi1 , ..., xim�, 1 B i1 B ... B im B n

have the property that the preimage of a topoic set is topoic.

3.1.5. Summing up: a simplicial object of a topological space.� The coor-
dinate maps between Cartesian powers remind us of the simplicial object of
Cartesian powers, and we are tempted to understand the topological structure
as a construction of a simplicial object. And indeed, considerations above show
that we obtain a functor

æ�X� � Ordop@ω Ð� Åilt

where Åilt is the category of �lters, and Ord@ω denotes the category of cate-
gories corresponding to �nite linear orders

Y1 Ð� ..Ð� Yn, 0 B n @ ω.

For a space X, the simplicial object æ�X� is the object

�Xæ,X �Xæ,X �X �Xæ, ...�

consisting of Cartesian powers of the set of points of X equipped with the �lter
of topoic subsets corresponding to the topological structure on X de�ned in
�3.1.1.

Continuous maps f � X Ð� X � are in one-to-one correspondence with nat-
ural transformations æ�X� Ô� æ�X ��, and in fact there is a fully faithful
embedding of the category of topological spaces in the category of simplicial
�lters

Top ` Func�Ordop@ω,Åilt�
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3.1.6. Metric spaces.� Consider the topoic structure associated with a metric
space M . A straightforward veri�cation shows that permutations of coordi-
nates Mn

Ð� Mm, �x1, ..., xn� ( �xi1 , ..., xim�, 1 B i1, ...,B im B n have the
property that the preimage of a topoic set is topoic, and hence we obtain a
functor

√�M� � Ordop@ω Ð� Åilt

which factors as
Ordop@ω Ð� FinSetsop Ð� Åilt

where FinSetsop is the category of �nite sets. This functor sends n to the
set Mn equipped with the �lter of topoic subsets, i.e. the �lter of subsets
containing an ε-neighbourhood of the diagonal, for some ε A 0.

Given a mapping f � M Ð� M � of sets of points, the condition that the
preimage of a topoic subset ofM �M is necessarily a topoic subset ofM �

�M �,
says that for each δ A 0 there is ε A 0 such that dist�f�x�, f�y�� @ δ whenever
dist�x, y� @ ε, i.e. the mapping f is uniformly continuous.

In fact, as is easy to see, this construction also works for uniform spaces,
and we obtain a fully faithful embedding of the category of uniform spaces in
the category of simplicial �lters�12�

√ � UniformSpaces ` Func�Ordop@ω,Åilt�

For a �lter F, let ‚�F� �Hom��,F� denote the simplicial �lter �F,F�F,F�
F � F, ...� consisting of Cartesian powers of F and coordinate maps. Let ¸�F�
denote the simplicial �lter �F,F,F, ...� consisting of F itself and identity maps.

A Cauchy �lter F on a metric space M (cf. [Bourbaki,II�3.1,Def.2]) is a
�lter on the set of points of M such that the obvious map ‚�F� Ð�√�M� is
well-de�ned.

A Cauchy sequence in M is a map ‚�Ncofinite� Ð�√�M� where Ncofinite
is the set of natural numbers equipped with co�nite topology (i.e. a subset is
closed i� it is �nite).

This allows to de�ne various notions of equicontinuity of sequences of func-
tions.

Let X be a topological space, let M be a metric space, and let �fi�i>N be a
family of functions fi �X Ð�M .

The family fi is equicontinuous if either of the following equivalent conditions
holds:

� for every x >X and ε A 0, there exists a neighbourhood U of x such that
dY �fi�x

��, fi�x�� B ε for all i > N and x� > U
� the map æ�X� � ¸��N��Ð�√�M�, �x, i�z� fi�x� is well-de�ned
� the map æ�X� � ¸�Ncofinite�Ð�√�M�, �x, i�z� fi�x� is well-de�ned

�12� For more details see [Gavrilovich, Simplicial Filters], in particular Claim 2 which char-
acterises the category of functors corresponding to uniform spaces.
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If X � �X,dX� is also a metric space, we say that the family fi is uniformly
equicontinuous i� either of the following equivalent conditions holds:

� for every ε A 0 there exists a δ A 0 such that dY �fi�x
��, fi�x�� B ε for all

i > N and x�, x > x with dX�x,x�� B δ
� the map √�X� � ¸��N��Ð�√�M�, �x, i�z� fi�x� is well-de�ned
� the map √�X� � ¸�Ncofinite�Ð�√�M�, �x, i�z� fi�x� is well-de�ned
The family is uniformly Cauchy i� either of the following equivalent condi-

tions holds:
� for every ε A 0 there exists a δ A 0 andN A 0 such that dY �fi�x

��, fj�x�� B ε
for all i, j A N and x�, x > x with dX�x,x�� B δ.

� the map √�X�� ‚�Ncofinite�Ð�√�M�, �x, i�z� fi�x� is well-de�ned
Here �N� denotes the trivial �lter on N with a unique big subset N itself, and
Ncofinite denotes the �lter of co�nite subsets of N.

This suggest we might reformulate Arzela-Ascoli theorem as something about
inner Hom in sÅilt , see Question 4.7.

3.1.7. Measure spaces.� �13� We can associate a topoic structure on a set
with a measure on the set as follows.

Let X be a set and µ be a measure on X. We say a subset U of Xn isU@ω-big
i� there exists �nitely many subsets A1, ..,AN such that µ�X � 81BiBNAi� � 0
and 81BiBNA

n
i ` U .

We say a subset U of Xn is U-big i� there exists countably many subsets
A1,A2, .. such that µ�X � 81Bi@ωAi� � 0 and 81Bi@ωA

n
i ` U .

Similarly to above, these �lters on the Cartesian powers of X and the coor-
dinate maps de�ne simplicial objects in the category of �lters

�XU@ω , �X �X�U@ω , �X �X �X�U@ω , ...�

�XU, �X �X�U, �X �X �X�U, ...�

which we denote byU@ω�X,µ� andU�X,µ�, resp. In fact these functors factor
through the category of �nite sets:

U@ω�X,µ� � Ordop@ω Ð� FinSetsop Ð� Åilt

U�X,µ� � Ordop@ω Ð� FinSetsop Ð� Åilt

Let Y be a set and ν be a measure on Y . A measurable map f � X Ð� Y
such that µ�f�1�A�� � 0 whenever ν�A� � 0 induces morphisms of functors

U@ω�X,µ�
U@ω�f�
ÐÐÐÐ�U@ω�Y, ν� and U�X,µ�

U�f�
ÐÐÐ�U�Y, ν�, and conversely, each

morphism in sÅilt between these objects is of this form.

�13�This section is not �nished, in a very preliminary state and may contain mistakes. I will
appreciate any corrections and suggestions sent by readers.



38

3.1.8. Maps of metric spaces preserving geodesics.� �14�

For a metric space M , call a subset P `Mn topoic wrt geodesic structure i�
�x1, ..., xn� > P whenever

��� there is a geodesic in M �rst passing through x1, then passing through
x2, ..., then passing through xn.

The condition ��� is preserved by coordinate maps Mn
Ð�Mm preserving

the order of coordinates, hence this does de�ne a simplicial �lter based on
�M,M2,M3, ...�.

A map f � M Ð� M � induces a map of these topoic structures on M and
M � if a geodesic in M maps into a geodesic in M �. The converse holds for M
and M � nice enough, e.g. Riemannian manifolds where geodesics are locally
unique.

Note that the topoic structure on M2 is trivial if each pair of points on M
can be connected by a geodesic.

Note that this de�nition can be modi�ed in some obvious ways, e.g. call a
subset P `Mn topoic wrt �ε-geodesic structure, resp. �ε-geodesic structure, i�
there is ε A 0 such that �x1, ..., xn� > P whenever ����ε, resp. ����ε, holds:

����ε for any 1 B i @ j @ k B n dist�xi, xj� � dist�xj , xk� @ dist�xi, xk� � ε
����ε for any 1 B i @ j @ k B n dist�xi, xj� � dist�xj , xk� @ dist�xi, xk��1 � ε�

3.2. Limits as maps to shifted (décalage) topological spaces.� We
now try to transcribe the explanation of the notion of �lter in [Bourbaki,I,Introduction].

�14�This section is not �nished, in a very preliminary state and may contain mistakes. I will
appreciate any corrections and suggestions sent by readers.
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As with continuity, the idea of a limit involves two sets, each endowed with
suitable structures, and a mapping of one set into the other. For example, the limit
of a sequence of real numbers an involves the set N of natural numbers, the set R
of real numbers, and a mapping of the former set into the latter. A real number
a is then said to be a limit of the sequence if whatever neighbourhood V of a we
take, this neigh- bourhood contains all the an except for a �nite number of values
of n; that is, if the set of natural numbers n for which an belongs to V is a subset
of N whose complement is �nite. Note that R is assumed to carry a topological
structure, since we are speaking of neigbourhoods; as to the set N, we have made
a certain family of subsets play a particular part, namely those subsets whose
complement is �nite play the part of open subsets, for we require preimages
of certain subsets to belong to this family. Using terminology of topology, we
reformulate the de�nition as follows: a real number a is said to be a limit of
the sequence if the sequence determines a continuous map from N with �lter
(topology) formed by complement of �nite subsets, to R with �lter (topology)
formed by neighbourhoods of a. We'd like to think of R with this �lter as a �bre
above a of some total space, and we do so as follows. De�ne R �Ræ to be the
�nest �lter on R�R such that the topology on �bre �a��R ` R�R is the �lter
formed by neighbourhoods of a, i.e. we de�ne a subset U ` R�R to be big (open)
i� for each a > R, its �bre Ua � U9�a��R � ��a, x� � �a, x� > U� above a contains
a neighbourhood of a. (This is the �lter of topoic subsets of R � R de�ned
earlier.) With this, we further reformulate the de�nition of limit as follows: a
is the limit of sequence aY � N Ð� R i� �a, aY� � N Ð� R �Ræ, n z� �a, an�
is continuous where R �Ræ is R �R equipped with the �lter of topoic subsets
in the topological structure on R. In other words, taking the limit of the
sequence of real numbers an is taking a factorisation such that the diagonal
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map is constant on the �rst coordinate:

R �Ræ

pr2
��

N

n(�a,an�w
w

;;ww

a(an
// Rantidiscrete

Now let us rewrite this diagram in simplicial terms. First we notice that there
seem to be a simplicial object implicitly present in the diagram: the maps

R�Ræ
pr1
����������
pr2

Rantidiscrete look like a beginning of a simplicial object. Therefore

we consider their 2-coskeleton cosk2�Rantidiscrete

pr1
����������
�����
pr2

R � Ræ�, which is the

object of Cartesian powers of R and coordinate maps

Rantidiscrete ��������
���� R �Ræ

����
����
��������
����

R �R �Ræ...

and the �lter R � ... �Ræ is the coarsest �lter such that each degeneracy map
R � ... � Ræ Ð� R � Ræ, �x1, ..., xn� z� �xi, xj�, 0 @ i @ j @ n, is continuous.
Call this object æ�R�.

Replace in the diagram Rantidiscrete by æ�R�, and R�Ræ by �shifted� æ�R�

R �Ræ

�pr1,pr2�
��������������������
����������
�pr1,pr3�

R �R �Ræ
�����
�����
����������
�����

...

which forgets the �rst face and degeneracy maps. We call it æ�R�� and it
is the composition æ�R� X ��1� where ��1� � Ord@ω Ð� Ord@ω, n z� n � 1,
is the endomorphism adding a new minimal element -1 to each linear order
(and this new minimal element is kept minimal by the image of any morphism,
i.e. ��1��f���1� � �1 for any f > MorOrd@ω). Finally, the map R � Ræ

pr2
ÐÐ�

Rantidiscrete then corresponds to the shift/decalage map æ�R�� Ð� æ�R� for-
getting the �rst face and degeneracy maps.

In summary, in the diagram we replace Rantidiscrete by æ�R�, and R�Ræ by
æ�R��, and the map R �Ræ

pr2
ÐÐ� Rantidiscrete by æ�R�� Ð� æ�R�; we choose

æ�R� because it is a simplicial object already implicitly present in the diagram.
The underlying sets of æ�R�� form a disconnected union @a>R�a��E�R� of

simplicial objects, and therefore any map from a connected simplicial object
is necessarily constant on the �rst coordinate.

This suggests we replace N by a connected simplicial object, and the object
of Cartesian powers is a natural choice.
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This suggests that we rewrite the diagram above as the following lifting
diagram of simplicial objects:

æ�R��

pr2,3,...

��

Ediag�N�

99s
s

s
s

s
// æ�R�

...

��

33...

��

pr2,..
QQQQQQ

((QQQQ

...

��

N �N �NdiagN

��

22

55lllllll
R �R �Ræ

��

pr2,3
OOOOO

''OOOOO

R �R �Ræ

��

N �NdiagN

��

22

66nnnnnnn
R �Ræ

pr2
PPPPP

''PPPPPPP

R �Ræ

��

N //

66mmmmmmmm R

The �lters on Cartesian powers of N are de�ned to be the �nest possible so
that continuity does not place unnecessary restrictions, i.e. the �lter diag�N� on
N�...�N is the �nest possible such that the diagonal embedding NÐ� N�...�N
is continuous, i.e. a subset of Nn is big i� it contains ��n,n, ..., n� � n A N� for
some N A 0.

Note that R is assumed to carry a topological structure which we represent as
a simplicial object in sÅilt ; as to the set N, we have made a certain family of
subsets play a particular part, namely those subsets whose complement is �nite,
and we also represent this structure on N as a simplicial object in sÅilt . Hence,
both R and N, with respective structures considered, live in the same category,
and the notion of limit is expressed as a lifting property in sÅilt .

This is a general fact:

Reformulation 3.1 (limit). � whenever we speak of limit, we are considering
a lifting diagram

æ�X��

pr2,3,...

��

Ediag�F �

99s
s

s
s

s
// æ�X�

...

��

33...

��

pr2,..
RRRRRRR

((RRRR

...

��

F � F � FdiagF

��

22

55kkkkkkk
X �X �Xæ

��

pr2,3
PPPPP

((PPPPP

X �X �Xæ

��

F � FdiagF

��

22

66mmmmmmm
X �Xæ

pr2
QQQQQ

((QQQQQQQ

X �Xæ

��

F //

66mmmmmmmm
X

where F is a �lter and X is a topological space, and the map æ�X�� Ð� æ�X�
is the simplicial map forgetting the �rst face and degeneracy maps, and Ediag �

Åilt Ð� sÅilt as de�ned above.
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The notion of a limit of a �lter on a metric space is similar, but its reformu-
lation can be made self-contained. We do so now.

Recall that, for a metric space M , we denote by M �M � ...�M√ the �lter
of ε-neighbourhoods of the diagonal, i.e. U ` Mn is √-big (open) i� there is
ε A 0 such that �x1, ..., xn� >M

n whenever dist�xi, xj� @ ε for all 0 @ i B j B n.
Recall that E � Åilt Ð� sÅilt is the fully faithful embedding sending a �lter
F into the simplicial object �F,F � F,F � F � F, ...� consisting of Cartesian
powers of Fand coordinate maps.

Reformulation 3.2 (limit). � whenever we speak of limit of a Cauchy �lter
on a metric space, we are considering a lifting diagram

√�M��

pr2,3,...

��

E�F �

::t
t

t
t

t
//√�M�

...

��

33...

��

pr2,..
SSSSSSS

))SSSSS

...

��

F � F � F

��

22

66lllllll
M �M �M√

��

pr2,3
RRRRR

((RRRRR

M �M �M√

��

F � F

��

22

66nnnnnnn
M �M√

pr2
RRRRR

))RRRRRRRR

M �M√

��

F //

66mmmmmmm
M

where F is a �lter and M is a metric space, and the map √�M�� Ð�√�M�
is the simplicial map forgetting the �rst face and degeneracy maps, and E �

Åilt Ð� sÅilt as de�ned above.

This allows us to formulate several properties of spaces as lifting properties
(here � and � denote the initial and terminal object of sÅilt):

� a topological space K is quasi-compact i� each ultra�lter U on K con-
verges, i.e.,

�Ð� Ediag�U� û æ�K�� Ð� æ�K�

� a metric space M is quasi-compact i� each ultra�lter U on M converges

�Ð� Ediag�U� û √�M�� Ð�√�M�

� a metric space M is complete i� each Cauchy �lter F on M converges

�Ð� E�F� û √�M�� Ð�√�M�

Also note

� a metric space M is pre-compact i� each ultra�lter U on M is Cauchy

constUÐ� E�U� û √�M�Ð� �



A NAIVE APPROACH TO TAME TOPOLOGY 43

3.2.1. Arzela-Ascoli theorems as lifting properties. � The reformulations above
allow us express equicontinuity and Arzela-Ascoli theorems, and we attempt
to do so in this subsection. This subsection is preliminary, work in progress
and likely to contain misprints and inaccuracies.

Below we formulate various equicontinuity and convergence notions for se-
quences of functions, and then reformulate them as lifting properties is sÅilt .

Recall that E � Åilt Ð� sÅilt is the fully faithful embedding sending a �lter F
into the simplicial object �F,F�F,F�F�F, ...� consisting of Cartesian powers of
F and coordinate maps. Let const �F� denote the simplicial �lter �F,F,F, ...�
consisting of F itself and identity maps.

A Cauchy �lter F on a metric space M (cf. [Bourbaki,II�3.1,Def.2]) is a
�lter on the set of points of M such that the obvious map E�F�Ð�√�M� is
well-de�ned.

A Cauchy sequence in M is a map E�Ncofinite� Ð�√�M� where Ncofinite
is the set of natural numbers equipped with co�nite topology (i.e. a subset is
closed i� it is �nite).

This allows to de�ne various notions of equicontinuity of sequences of func-
tions.

Let X be a topological space, let M be a metric space, and let �fi�i>N be a
family of functions fi �X Ð�M .

The family fi is equicontinuous if either of the following equivalent conditions
holds:

� for every x >X and ε A 0, there exists a neighbourhood U of x such that
dY �fi�x

��, fi�x�� B ε for all i > N and x� > U
� the map æ�X� � const ��N��Ð�√�M�, �x, i�z� fi�x� is well-de�ned
� the map æ�X� � const �Ncofinite� Ð� √�M�, �x, i� z� fi�x� is well-
de�ned

� the map æ�X� �Ediag��N��Ð�√�M�, �x, i�z� fi�x� is well-de�ned
� the map æ�X� � Ediag�Ncofinite� Ð� √�M�, �x, i� z� fi�x� is well-
de�ned

If X � �X,dX� is also a metric space, we say that the family fi is uniformly
equicontinuous i� either of the following equivalent conditions holds:

� for every ε A 0 there exists a δ A 0 such that dY �fi�x
��, fi�x�� B ε for all

i > N and x�, x >X with dX�x,x�� B δ
� the map √�X�� const ��N��Ð�√�M�, �x, i�z� fi�x� is well-de�ned
� the map √�X� � const �Ncofinite� Ð� √�M�, �x, i� z� fi�x� is well-
de�ned

� the map √�X� �Ediag��N��Ð�√�M�, �x, i�z� fi�x� is well-de�ned
� the map √�X� � Ediag�Ncofinite� Ð� √�M�, �x, i� z� fi�x� is well-
de�ned

http://mishap.sdf.org/mints-lifting-property-as-negation/tmp/Bourbaki_General_Topology.djvu
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The family fi is uniformly Cauchy i� either of the following equivalent con-
ditions holds:

� for every ε A 0 there exists a δ A 0 andN A 0 such that dY �fi�x
��, fj�x�� B ε

for all i, j A N and x�, x >X with dX�x,x�� B δ.
� the map√�X��E�Ncofinite�Ð�√�M�, �x, i�z� fi�x� is well-de�ned
An equicontinuous family fi uniformly converges to a function f i� either

of the following equivalent conditions holds:
� for every ε A 0 there exists N A 0 such that dY �f�x�, fi�x�� B ε for all
i A N and x >X.

� the map æ�X� � Ediag�Ncofinite� Ð� √�M�� Ð� √�M�, �x, i� z�
�f, fi�x�� is well-de�ned

� the mapæ�X��E�Ncofinite�Ð�√�M�� Ð�√�M�, �x, i�z� �f, fi�x��
is well-de�ned

An equicontinuous family fi has a subsequence which uniformly converges
to a function f i� for some ultra�lter U extending the �lter Ncofinite of co�nite
subsets either of the following equivalent conditions holds:

� the map æ�X� � Ediag�U� Ð�√�M�� Ð�√�M�, �x, i� z� �f, fi�x��
is well-de�ned

Here �N� denotes the trivial �lter on N with a unique big subset N itself,
and Ncofinite denotes the �lter of co�nite subsets of N.

This suggest we might reformulate Arzela-Ascoli theorem as something about
inner Hom in sÅilt , see Question 4.7.

This allows to formulate a couple of versions of Arzela-Ascoli theorems as
implications between lifting properties:

Reformulation 3.3 (Arzela-Ascoli). � For K a quasi-compact topological
space and M a quasi-compact metric space, each equicontinuous sequence fi �
K Ð�M , i > N has a subsequence which uniformly converges to a continuous
function:

�Ð� Ediag�U� û æ�K�� Ð� æ�K�
�Ð� Ediag�U� û √�M�� Ð�√�M� for each ultra�lter U
implies

�Ð� æ�K� �Ediag�U� û √�M�� Ð�√�M� for each ultra�lter U

For K a quasi-compact topological space and M a pre-compact metric space,
each equicontinuous sequence fi � K Ð�M , i > N, has a uniformly convergent
subsequence:

�Ð� Ediag�U� û æ�K�� Ð� æ�K�
constUÐ� E�U� û √�M�Ð� � for each ultra�lter U
implies

æ�K��const�U�Ð� æ�K��Ediag�U�û√�M�Ð� � for ultra�lter U on N
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Remark 1. � Note that one may identify the real interval �0,1� with the set
of endofunctors Ord@ω

τ
Ð� Ord@ω such that τ�n� � n � 1 for any n > ObOrd@ω.

To see this, note that such an endofunctor is given by inserting a new element
in each �nite linear order in a compatible manner. This temps us to think of
the space of paths.

3.3. Path and cylinder spaces and Axiom M2(cw)(f) and M2(c)(wf)
of Quillen model categories. � In the category of topological spaces, there
is a simple but very useful way to turn an arbitrary map into either a �bration
or co�bration. It it captured by Axiom M2 of model categories which requires
that each map decomposes as a composition of a co�bration and a �bration,
and any one of them may also be required to be a weak equivalence.

In notation,
A � �0,1� @A B
88

�c�
q

q

q q q �wf�
MM

&&MMM

A // B

A �B B
I

;;

�cw�
v v

v
v �f�

HH

##H
H

A // B
Figure 3 gives drawings representing these decompositions in the category

of topological spaces.

3.3.1. (cw)(f)-decomposition.� Let us analyse Figure 3b (cw-f decomposi-
tion).

Recall that, to translate, we care both about intuition and algebraic manip-
ulations.

The construction uses the following algebraic manipulations: it considers
pairs �x, γconstf�x� � and �x, γ�t1��. We ignore paths because these are complicated
�in�nitary� notions we are unable to express in our language, and hence all we
are left with are pairs �x, f�x�� where x > A and �x, y� where x > A,y > B.
This suggests we look at the following decomposition:
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X //

�x,f�x��
��

X �X //oo

�x1,f�x1�,x2,f�x2��
��

X �X �X //oo

�x1,f�x1�,x2,f�x2�,x3,f�x3��
��

oo

X � Y //

y

��

X � Y �X � Y //oo

�y1,y2�
��

X � Y �X � Y �X � Y //oo

�y1,y2,y3�
��

oo

Y // Y � Y //oo Y � Y � Y //oo oo

What is the �lter Fcw-f on the elements of the middle row X�Y �X�Y � ...?
The diagram suggests that we start with the �lter corresponding to the product
topology on X � Y .

Let us use the intuition. In model categories, weak equivalences are thought
of as equivalences and therefore X and �X � Y �Fcw-f

should be very similar
for purposes we care about. Geometric intuition suggests that we only care
about an in�nitesimal neighbourhood of ��x, idx� � x > X� and would prefer
our paths to be in�nitesimally short.

This motivates us to modify the topoic �lter of the product topology on
X � Y by adding as topoic �in�nitesimal neighbourhoods of X�

�
x>X,f�x�>Uf�x� a neighbourhood

�x� �Uf�x� `X � Y

That is, we de�ne a new �lter Fncw-f on �X �Y �n generated by subsets Un 9W
where U is of the form above andW is a topoic subset of �X�Y �n with respect
to the product topology on X � Y .

Remark 2. � Note that when X � a is a point, this decomposition gives us

�a�
�cw�
ÐÐ� Y X�0�a

�f�
ÐÐ� Y . This suggests that we think of Y X�0�a as the space of

in�nitesimally short paths starting at a; this would correspond to the intuition
that an in�nitesimally short path is roughly the same as its endpoint.

3.3.2. (c)(wf)-decomposition.� Dually, the (c)(wf)-decomposition of X
f
Ð� Y

leads us to consider
X //

�x,f�x��
��

X �X //oo

�x1,x2�
��

X �X �X //oo

�x1,x2,,x3��
��

oo

�X @ Y � //

y

��

�X @ Y � � �X @ Y � //oo

�y1,y2�

��

�X @ Y � � �X @ Y � � �X @ Y � //oo

�y1,y2,y3�

��

oo

Y // Y � Y //oo Y � Y � Y //oo oo

Intuitively, a (in�nitesimal) neighbourhood of a point y contains points �x,1�
whenever f�x� � y.
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This motivates us to modify the topoic �lter of the disjoint union topology
on X @Y by requiring its topoic subsets to satisfy also the following property:
x > P whenever f�x� > P , x >X.

That is, we de�ne a new �lter Fnc-wf on �X � Y �n which consists of the
subsets topoic wrt the disjoint union topology which also satisfy the property
that �z1, .., xi, ..., zn� > P whenever xi >X and �z1, .., f�xi�, ..., zn� > P.

Arguably, one might �nd an intuition according to which �X @ Y �Fc-wf
is

similar to Yæ.

4. Open questions and directions for research

4.1. Research directions. � Our observations suggest the following broad
questions and directions for research.

4.1.1. Category theory implicit in elementary topology. � We'd like to think
of our observations as translations of ideas of Bourbaki on general topology into
a language of category theory appropriate to these ideas, and that these ideas
(but not notation) are implicit in Bourbaki and re�ect their logic (or perhaps
the ergologic in the sense of [Gromov]).

Question 4.1 (Category theory and topological ideas and intuition)

� Translate more of Bourbaki and some intuitive topological arguments into
the language of category theory and diagram chasing.

� Understand how this translation works and in what way it is a translation
rather than something new. Formulate what does it mean to say that these
category theoretic constructions are implicit in Bourbaki and �nd evidence
that indeed they are implicitly there.

� More speculatively, �nd evidence that these category theoretic diagram
chasing arguments are implicitly present in the topological intuition of a
student, say by �nding correlations between errors of intuition and errors
of calculation.

But is this so and what does it actually mean?
The goal of our analysis is somewhat reminiscent of the goal of [Hodges. Ibn

Sina on analysis: 1. Proof search. Or: Abstract State Machines as a tool for
history of logic] where he �extract[s] from [the text of Ibn Sina's commentary
on a couple of paragraphs of Aristotle's Prior Analytics] all the essential ingre-
dients of an Abstract State Machine for [a proof search] algorithm�. We'd like
to think that we extract from the text of a couple of paragraphs of Bourbaki
all the essential ingredients of certain category theoretic constructions.

4.1.2. Formalisation of topology.� Our translation is unsophisticated and is
largely based on textual coincidences and correlations between the text and
allowed category theoretic manipulations. Can these coincidences�and the

http://wilfridhodges.co.uk/arabic05.pdf
http://wilfridhodges.co.uk/arabic05.pdf
http://wilfridhodges.co.uk/arabic05.pdf
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translation�be found by a machine learning algorithm? A hope is that cate-
gory theoretic manipulations are restrictive enough so that a brute force search
for correlations between (long enough sequences of) allowed category theoretic
manipulations and the text of Bourbaki may produce meaningful results.

Designing such an algorithm would involve designing a derivation system for
the category theoretic constructions used.

Our reformulations of certain notions of topology in terms of orthogonality
(negation) are so concise (several bytes) that they can be found, or rather listed,
by a brute force search. This might be a starting point in designing such an
algorithm: �rst design an algorithm which can work with the reformulations
in terms of iterated orthogonals (negations) of maps between �nite spaces, �nd
correlations between these orthogonals and text of Bourbaki, and single out
the interesting notions obtained by iterated negation (orthogonals) from very
simple morphism. These notions should include quasi-compactness, denseness,
connected etc.

Question 4.2 (Category theory and topological ideas and intuition)

� Write a short program which extracts diagram chasing derivations from
texts on elementary topology, in the spirit of the ideology of ergosys-
tems/ergostructures. The texts might include [Bourbaki, General Topol-
ogy] as well as some informal explanations.

In particular, it should be able to convert verbal de�nitions of properties
de�ned by orthogonals into the corresponding orthogonals.

� Develop a formalisation of topology based on this translation.

4.1.3. Tame topology and foundations of topology. � Does our point of view
shed light on the tame topology of Grothendieck and allows to develop a foun-
dation of topology �without false problems� and �wild phenomena� �at the very
beginning�? [Esquisse d'un Programme, translation,�5,p.33]

Our approach does seem to avoid certain set-theoretic issues and construc-
tions. For example, ultra�lters do appear in our reformulation of compactness,
but do so only in a combinatorial disguise. Remark 1 in �3.2 suggests a way
to think about pathspaces without real numbers.

Question 4.3 (Tame topology and foundations of topology.)

� Develop elementary topology in terms of �nite categories (viewed as �nite
topological spaces) and labelled commutative diagrams, with an emphasis
on labels (properties) of morphisms de�ned by iterated orthogonals (û -
negation).

� Develop topology in terms of �nite categories, labelled commutative di-
agrams, and simplicial �lters. Develop a syntax to describe simplicial
�lters as concise as the syntax of iterated û -negation of maps between
�nite spaces.

http://mishap.sdf.org/mints-lifting-property-as-negation/tmp/Bourbaki_General_Topology.djvu
http://mishap.sdf.org/mints-lifting-property-as-negation/tmp/Bourbaki_General_Topology.djvu
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Does this lead to tame topology of Grothendieck, i.e. a foundation
of topology �without false problems� and �wild phenomena� �at the very
beginning� ?

Grothendieck suggests that the following needs to be done �rst:

Among the �rst theorems one expects in a framework of tame topol-
ogy as I perceive it, aside from the comparison theorems, are the
statements which establish, in a suitable sense, the existence and
uniqueness of �the� tubular neighbourhood of closed tame subspace
in a tame space (say compact to make things simpler), together
with concrete ways of building it (starting for instance from any
tame map X Ð� R� having Y as its zero set), the description of
its �boundary� (although generally it is in no way a manifold with
boundary!) ∂T , which has in T a neighbourhood which is isomor-
phic to the product of T with a segment, etc. Granted some suitable
equisingularity hypotheses, one expects that T will be endowed, in
an essentially unique way, with the structure of a locally trivial �-
bration over Y , with ∂T as a sub�bration.

Question 4.4. � Write a �rst year course introducing elementary topology
and category theory ideas at the same time, based on the observations above and
the calculus to be developed. Compactness would be explained with help of all the
de�nitions above; Tychono� theorem follows immediately by a diagram chasing
argument from the fact that compactness is given by û -negation (orthogonal);
¦§Ð� §¦ de�nitions would give students some intuition.

As a �rst step, write an exposition aimed at students of the separation axioms
and Urysohn Lemma in terms of the lifting properties.�15�

Note that the standard proof of Urysohn lemma can be represented as fol-
lows: iterate the lifting property de�ning normal (T4) spaces

gÐ�X û �x�x��X�y��y�Ð� �x�x� �X � y��y�

to prove

gÐ�X û �x� x1 � ...� xn � y�Ð� �x� x1 � ... � xn � y�

Then pass to the in�nite limit to construct a map X Ð� R.

�15� See https://ncatlab.org/nlab/show/separation+axioms+in+terms+of+lifting+

properties for a list of reformulations of the separation axioms in terms of orthogonals.

https://ncatlab.org/nlab/show/separation+axioms+in+terms+of+lifting+properties
https://ncatlab.org/nlab/show/separation+axioms+in+terms+of+lifting+properties
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4.1.4. Homotopy and model category structure.� Let Æilt be the category Åilt
of �lters localised as follows: we consider two morphisms equal i� they coincide
on a big subset of the domain, i.e. f, g � X Ð� Y are considered equal as
morphisms in Æilt i� the subset �x � f�x� � g�x�� is big in X.

Question 4.5 (Homotopy theory and model category structure on
sÅilt or sÆilt.)

Is there an interesting model category structure on sÅilt or sÆilt? Does it
lead to interesting homotopy theory of uniform spaces?

In �3.3 we suggest examples of (cw)(f)- and (c)(wf)-decompositions. Do the
corresponding classes of acyclic co�brations and �brations generate a model
structure on sÅilt or sÆilt?

Does either category have interesting objects corresponding to quotients of
topological spaces by a group action?

4.2. Metric spaces, uniform spaces and coarse spaces. �

4.2.1. Uniform structures. �

Question 4.6. � Rewrite the theory of uniform structures and metric spaces
in terms of the category sÅilt of simplicial �lters. In particular,

� reformulate the Lebesgue's number lemma, partition of unity, and the
characterisation of paracompactness by A.Stone mentioned by [Alexan-
dro�] (cf. �5.5).

Question 4.7 (Arzela-Ascoli). � 1. Reformulate various notions of equicon-
tinuity and convergence of a family of functions fi �X Ð�M in terms of
maps in sÅilt using e.g. const �Ncofinite�, E�Ncofinite�, const �Ncofinite8Ncofinite

�ª��, æ�Ncofinite8Ncofinite
�ª��, E�Ncofinite8Ncofinite

�ª��, æ�Ncofinite�,
æ�X�, √�X�, and √�M�.

2. Reformulate and prove Arzela-Ascoli theorem in terms something like in-
ner Hom in sÅilt and the lifting properties de�ning precompactness, com-
pactness etc.

3. De�ne various function spaces in terms of something like inner Hom in
sÅilt .

4.2.2. Large scale geometry.� The category of quasigeodesic metric spaces
and large scale Lipschitz maps embeds into another category s◊ilt of simplicial
�lters, with maps of �lters de�ned di�erently: a ◊ilt-morphism of �lters maps
a small subset into a small subset.

Let X be a metric space. Call a subset U of Xn small i� the diameters
of tuples in U are uniformly bounded, i.e. there is a d � d�U� such that for
each �u1, ..., un� > U , dist�ui, uj� B d for each 1 B i, j B n; this de�nes a �lter
on Xn. Note that coordinate maps Xn

Ð� Xm have the property that the

http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=rm&paperid=6719&option_lang=eng
http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=rm&paperid=6719&option_lang=eng
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image of a small subset is necessarily small. Hence this construction de�nes a
functor X � FinSetsop Ð� ◊ilt. A natural transformation X Ð� Y of functors
associated with metric spaces X and Y , resp., corresponds to a map of metric
spaces f �X Ð� Y such that for each d A 0 there is D A 0 such that

dist�f�x��, f�x���� @D whenever dist�x�, x��� @ d, x�, x�� >X.

For X quasi-geodesic, this is the class of large scale Lipschitz maps.

Question 4.8 (Large scale geometry). � Rewrite in terms of the cate-
gory s◊ilt of simplicial �lters the theory of metric spaces and uniformly bounded
maps and the theory of coarse structures (cf. [Bunke, Engel]).

4.2.3. Group theory. � In the category of groups, properties de�ned by or-
thogonals (cf. �5.3.2) include groups being nilpotent, solvable, torsion-free,
p-groups, and prime-to-p groups.

This suggests it is worthwhile to try to rewrite group theoretic arguments
in diagram chasing manner, say the proof that nilpotent groups are solvable,
and try to �nd a semantics for our notation of �nite topological spaces in the
category of groups.

Question 4.9 (Group theory). � � Calculate iterated û -negation (or-
thogonals) of interesting morphisms in the category of groups and �nd
interesting properties de�ned this way.

� Find a diagram chasing reformulation of the Sylow theorems.
� Find a semantics in the category of groups for the notation introduced in
�5.3.1.

To reformulate the Sylow theorem, the following characterisation of inner
automorphisms may be of help: an automorphism f � GÐ� G is inner i� either
of the following equivalent conditions hold (cf. [Schupp,Inn]):

� f � G Ð� G extends to an automorphism of f � � H Ð� H, for any
h � GÐ�H, i.e. f X h � h X f �.

� f � G Ð� G extends to an automorphism of f � � H Ð� H, for any
h �H Ð� G, i.e. f X h � h X f �

To �nd a semantics, it would help to �nd a category which contains both
groups and �nite preorders. One candidate is the category Cats of categories
where a group G is identi�ed with a category with a single object O such that
Aut�O� � G. Intuitively, one may think of the category of groups as analogous
to the (sub)category of Hausdor� spaces in the following way: the interesting
example are groups (Hausdor� spaces), yet the big ambient category contains
useful objects (�nite topological spaces) which are very unlike the interesting
examples we care about, but are useful to talk about these examples.
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4.3. Open problems.� Now we would like to formulate several suggestions
with speci�c details.

4.3.1. Topology.�

Question 4.10. � Develop a syntax and a derivation calculus based on û -
negation, arrows, labelled arrows and diagrams, �nite topological spaces, and
simplicial �lters. Develop an intuition for the calculus as well.

1. Standard arguments and de�nitions in elementary topology should be rep-
resented by short formal calculations which are both human readable and
computer veri�able.

2. In particular, the calculus should express concisely all the three de�nitions
of compactness, and prove their equivalence by short formal calculations.

Question 4.11. � Does topological intuition (as developed by a �rst year stu-
dent) relate to the formal calculus we'd like to develop? Note that this might be
testable by an experiment, namely it might be possible to test whether mistakes
of intuition correspond to mistakes of calculation. This might even be used to
develop the calculus.

Question 4.12. � Write a very short program which would �invent� (gener-
ate) the (very) basic theory of topology, possibly using unstructured input such
as the text of [Bourbaki, General Topology]. Our examples suggest that iter-
ating right and left û -negation up to 5 times and restricting size to 3 or 4 is
enough to generate, but not single out, the notions of compactness, connect-
edness, a subset, a closed subset, separation axioms, and some implications
between them.

What is the length of a shortest such program? To what extent have the
axioms of topology to be hardcoded rather than generated?

Let us comment on how such a program may look like.
We observed that there is a simple rule which leads to several notions in

topology interesting enough to be introduced in an elementary course. Can this
rule be extended to a very short program which learns elementary topology?

We suggest the following naive approach is worth thinking about.
The program maintains a collection of directed labelled graphs and cer-

tain distinguished subgraphs. Directed graphs represent parts of a category;
distinguished subgraphs represent commutative diagrams. Labels represent
properties of morphisms. Further, the program maintains a collection of rules
to manipulate these data, e.g. to add or remove arrows and labels.

The program interacts with a �ow of signals, say the text of [Bourbaki,
General Topology, Ch.1], and seeks correlations between the diagram chasing
rules and the �ow of signals. It �nds a "correlation" i� certain strings occur
nearby in the signal �ow i� they occur nearby in a diagram chasing rule. To

http://mishap.sdf.org/mints-lifting-property-as-negation/tmp/Bourbaki_General_Topology.djvu
http://mishap.sdf.org/mints-lifting-property-as-negation/tmp/Bourbaki_General_Topology.djvu
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�nd "what's interesting", by brute force it searches for a valid derivation which
exhibits such correlations. To guide the search and exhibit missing correlations
in a derivation under consideration, it may ask questions: are these two strings
related? Once it �nds such a derivation, the program "uses it for building
its own structure". Labels correspond to properties of morphisms. Labels
de�ned by the lifting property play an important role, often used to exclude
counterexamples making a diagram chasing argument fail. In [DeMorgan] we
analysed the text of the de�nitions of surjective and injective maps showing
what such a correlation may look like in a "baby" case.

A related but easier task is to write a theorem prover doing diagram chas-
ing in a model category. The axioms of a (closed or not) model category as
stated in [Quillen,I.1.1] can be interpreted as rules to manipulate labelled com-
mutative diagrams in a labelled category. It appears straightforward how to
formulate a logic (proof system) based on these rules which would allow to
express statements like: Given a labelled commutative diagram, (it is permis-
sible to) add this or that arrow or label. Moreover, it appears not hard to
write a theorem prover for this logic doing brute force guided search. What
is not clear whether this logic is complete in any sense or whether there are
non-trivial inferences of this form to prove.

Writing such a theorem prover is particularly easy when the underlying
category of the model category is a partial order [Gavrilovich, Hasson] and
[BaysQuilder] wrote some code for doing diagram chasing in such a category.
However, the latter problem is particularly severe as well.

The two problems are related; we hope they help to clarify the notion of an
ergosystem and that of a topological space.

The following are somewhat more concrete questions.

Question 4.13. � � Prove that a compact Hausdor� space is normal by
diagram chasing; does it require additional axioms? Note that we know
how to express the statement entirely in terms of û -negation and �nite
topological spaces of small size.

� Formalise the argument in [Fox, 1945] which implies the category of topo-
logical spaces is not Cartesian closed; does it apply to sÅilt?

Namely, Theorem 3 [ibid.] proves that if X is separable metrizable
space, R is the real line, then X is locally compact i� there is a topology on
XR such that for any space T , a function h �X�T Ð� R is continuous i�
the corresponding function h� � T Ð� XR is continuous (where h�x, t� �
h��t��x��

Note that here we do not know how to express the statement.

Question 4.14. � Characterise the interval �0,1�, a circle S1 and, more gen-
erally, spheres Sn using their topological characterisations provided by the Kline
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sphere charterisation theorem and its analogues. An example of such a char-
acterisation is that a topological space X is homomorphic to the circle S1 i� X
is a connected Hausdor� metrizable space such that X ��x, y� is not connected
for any two points x x y > X ([Hocking, Young. Topology, Thm.2-28,p.55]);
another example is that a topological space X is homomorphic to the closed in-
terval �0,1� i� X is a connected Hausdor� metrizable space such that X � �x�
is not connected for exactly two points x x y > X ([Hocking, Young. Topology,
Thm.2-27,p.54]).

4.3.2. û -negation, or orthogonality.� Call a subcategory A of B û
s-full i�

the value of an s-orthogonal of a class of morhpisms in A does not depend
whether it is calculated in A or in B. i.e. �C�s

A
� �C�s

B
for any class C of

morphisms of A, where s > �l, r�n is a string.

Question 4.15. � Calculate left and right û -negations and generalisations,
e.g. (C�r, (C�l, (C�rl, (C�ll, (C�rr, (C�llr, ... for various simple classes of
morphisms in various categories, e.g. morphisms of �nite topological spaces or
�nite groups.

Develop abstract theory of the lifting property. Find examples of û
s-full

subcategories.

4.3.3. Compactness as being uniform.� In �5.5 we observe that a number of
consequences of compactness can be expressed as a change of order of quan-
ti�ers in a formula, i.e. are of form ¦§ϕ�...� Ô� §¦ϕ�...� namely that a
real-valued function on a compact is necessarily bounded, that a Hausdor�
compact is necessarily normal, that the image in X of a closed subset in X �K
is necessarily closed, Lebesgue's number Lemma, and paracompactness. In
�2.3.2 we show that an axiom of topology, namely that an in�nite union of
open sets is open, is also of this form.

Such formulae correspond to inference rules of a special form, and we feel a
special syntax should be introduced to state these rules.

For example, consider the statement that "a real-valued function on a com-
pact domain is necessarily bounded". As a �rst order formula, it is expressed
as

¦x >K§M�f�x� BM�Ô� §M¦x >K�f�x� BM�

Another way to express it is:

§M �K Ð� R¦x >K�f�x� BM�x��Ô� §M > R¦x >K�f�x� BM�

Note that all that happened here is that a function M � K Ð� R become a
constant M > R, or rather expression "M(x)" of type K Ð� M which used
(depended upon) variable "x" become expression "M" which does not use
(depend upon) variable "x". We feel there should be a special syntax which
would allow to express above as an inference rule removing dependency of
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"M(x)" on "x", and this syntax should be used to express consequences of
compactness in a diagram chasing derivation system for elementary topology.

To summarise, we think that compactness should be formulated with help
of inference rules for expressly manipulating which variables are 'new', in what
order they 'were' introduced, and what variables terms depend on, e.g. rules
replacing a term t(x,y) by term t(x).

Something like the following: ... f(x) =< M(x) ...

--------------------

... f(x) =< M ...

Question 4.16. � In �5.5 we give several examples where consequences of
compactness are expressed as change of order of quanti�ers ¦§Ð� §¦.

� Is there a theorem generalising these examples?
� Is there a proof system which allows to formulate inference rules corre-
sponding to these reformulations?

4.4. Open problems.� Here we formulate precise questions one may ask.
The choice of these questions is somewhat arbitrary.

Question 4.17 (Iterated orthogonals in Top). � � Are there �nitely
many di�erent iterated orthogonals of the form �g Ð� �Y��s where s >
�l, r�@ω?

More generally, are there �nitely many di�erent classes obtained from
�g Ð� �Y� by repeatedly passing to left or right orthogonal C l or Cr or
the subclass C@n of morphisms between spaces of size at most n?

Is there an algorithm which decides whether two such classes are equal?
� Find the shortest expressions (Kolmogoro� complexity) of various topo-
logical notions.

� Is

����o�Ð� �o� c��r�@5�
lr

the class of proper maps?
� Calculate�16�

���c�Ð� �o�c��r
@5�

lr, ���c�Ð� �o�c��lrr

��a�U�x�V�b�Ð� �a�U � x � V�b��lr

� Characterise the class of covering maps as an iterated negation of a class
of maps of �nite spaces.

Y Calculate û
lr-orthogonal of the class of maps of �nite spaces which

have unique path lifting property up to reparametrisation.

�16� For motivation see Remark 5 of [Gavrilovich, Lifting Property]

http://mishap.sdf.org/mints/expressive-power-of-the-lifting-property.pdf
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Y Calculate ��a, b� Ð� �a � b��lr and �D Ð� �Y� � D is discrete�lr;
these are the iterated orthogonals of the simplest examples of cov-
ering spaces.

Note the orthogonals may depend on the category they are calculated in, which
is either Top or sÅilt .

A number of elementary topological properties can be de�ned by, in a sense,
combinatorial expressions, by taking iterated orthogonals in Top of a single
morphism between �nite topological spaces [Gavrilovich, Lifting Property].
Calculate these expressions in sÅilt using the embedding æ � Top Ð� sÅilt .
Note that this would give properties of both topological spaces and metric
spaces. Do they de�ne the same properties of topological spaces? Do they
provide an interesting analogy between topological spaces and metric spaces,
e.g. compactness [Bourbaki, I�10.2, Thm.1(d), p.101] and completeness [Bour-
baki, II�3.6, Prop.11]?

The following is an example of a precise conjecture.

Question 4.18 (Compactness and completeness)

� Calculated in Top, is

����o�Ð� �o� c��r�@5�
lr

the class of proper maps?
� Is the following true in n sÅilt or sÆilt?

1. A Hausdor� space X is compact i�

æ �X Ð� �Y�� > ���æ ��o�Ð� �o� c���r�@5�
lr

2. A metric space M is complete i�

√ �M Ð� �Y�� > ���æ ��o�Ð� �o� c���r�@5�
lr

� Does the value of an orthogonal depend whether it is calculated in Top or
sÅilt? For example, is it true that for any morphism f of �nite topological
spaces,

�f�lrTop � �æ�f��lrsÅilt 9 Top and �f�rlTop � �æ�f��rlsÅilt 9 Top ?

Recall Æilt is the category Åilt of �lters localised as follows: we consider two
morphisms equal i� they coincide on a big subset of the domain, i.e. f, g �X Ð�
Y are considered equal as morphisms in Æilt i� the subset �x � f�x� � g�x�� is
big in X.

Question 4.19 (Is sÅilt or sÆilt a model category?)
Let �cw�0, �f�0, �c�0 and �wf�0 be the classes of maps arising in the exam-

ples of M2 �cw��f�- and �c��wf�-decompositions suggested in �3.3.
Do classes �cw�lr0 , �f�

rl
0 , �c�

lr
0 and �wf�rl0 de�ne a model structure on sÅilt

or on sÆilt?

http://mishap.sdf.org/mints-lifting-property-as-negation/tmp/Bourbaki_General_Topology.djvu
http://mishap.sdf.org/mints-lifting-property-as-negation/tmp/Bourbaki_General_Topology.djvu
http://mishap.sdf.org/mints-lifting-property-as-negation/tmp/Bourbaki_General_Topology.djvu
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Does it induce one of the usual model category structures on the subcategory
Top of sÅilt?

Question 4.20 (Orthogonals in group theory). � � Is the class of �-
nite CA-groups or CN-groups de�ned by a natural lifting property, say as
an iterated orthogonal of a single homomorphism? Recall that a group is
a CA-group, resp. CN-group, i� the centraliser of a non-identity element
is necessarily abelian, resp. nilpotent.

� Calculate iterated left and right û -negations and generalisations, e.g.
(C�r, (C�l, (C�rl, (C�ll, (C�rr, (C�llr, ... for various simple classes
of morphisms in various categories, e.g. morphisms of �nite topological
spaces or �nite groups.

� Reformulate the Feit-Thompson odd group theorem as inclusion of orthog-
onals.�17�

5. Appendix

5.1. Surjection and injection: an example of translation and orthog-
onals. � This section is part of a note�18� written for The De Morgan Gazette
to demonstrate that some natural de�nitions are lifting properties relative to
the simplest counterexample, and to suggest a way to �extract� these lifting
properties from the text of the usual de�nitions and proofs. The exposition is
in the form of a story and aims to be self-contained and accessible to a �rst
year student who has taken some �rst lectures in naive set theory, topology,
and who has heard a de�nition of a category. A more sophisticated reader
may �nd it more illuminating to recover our formulations herself from reading
either the abstract, or the abstract and the opening sentence of the next two
sections. The displayed formulae and Figure 4(a) de�ning the lifting property
provide complete formulations of our theorems to such a reader.

5.1.1. Surjection and injection. � We try to �nd some �algebraic� notation
to (re)write the text of the de�nitions of surjectivity and injectivity of a func-
tion, as found in any standard textbook. We want something very straightfor-
ward and syntactic�notation for what we (actually) say, for the text we write,
and not for its meaning, for who knows what meaning is anyway?

(*)words : �A function f from X to Y is surjective i� for every element y
of Y there is an element x of X such that f�x� � y.�

�17�For a partial reformulation see Gavrilovich, Expressing the statement of the Feit-
Thompson theorem with diagrams in the category of �nite groups].
�18�See [Gavrilovich, DMG]. I thank Vladimir Sosnilo for help with the exposition.

http://mishap.sdf.org/mints/mints-expressing-odd-subgroup-theorem-with-diagrams.pdf
http://mishap.sdf.org/mints/mints-expressing-odd-subgroup-theorem-with-diagrams.pdf
http://mishap.sdf.org/mints/mints-lifting-property-as-negation-DMG_5_no_4_2014.pdf
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A function from X to Y is an arrow X Ð� Y . Grothendieck taught us that a
point, say �x of X�, is (better viewed as) as �Y�-valued point, that is an arrow

�Y�Ð�X

from a (the?) set with a unique element; similarly �y of Y � we denote by an
arrow

�Y�Ð� Y.

Finally, make dashed the arrows required to �exist�. We get the diagram
Fig. 1(b) without the upper left corner; there ���� denotes the empty set with
no elements listed inside of the brackets.

(**)words : �A function f from X to Y is injective i� no pair of di�erent
points of X is sent to the same point of Y .�

�A function f from X to Y � is an arrow X Ð� Y . �A pair of points� is a
�Y, Y�-valued point, that is an arrow

�Y, Y�Ð�X

from a two element set; we ignore �di�erent� for now. �the same point of Y � is
an arrow �Y�Ð� Y . Represent �sent to� by an arrow

�Y, Y�Ð� �Y�.

What about �di�erent�? If the points are not �di�erent�, then they are �the
same� point of X, and thus we need to add an arrow representing a single
point of X, that is an arrow

�Y�Ð�X.

Now all these arrows combine nicely into diagram Figure 4(c); however, our
analysis does not necessarily makes it clear that the diagonal arrow needs to
be denoted di�erently. How do we read it? We want this diagram to have
the meaning of the sentence (**)words above, so we interpret such diagrams as
follows:

�û � : �for every commutative square (of solid arrows) as shown there is
a diagonal (dashed) arrow making the total diagram commutative� (see
Fig. 1�a�).

(recall that �commutative� in category theory means that the composition of
the arrows along a directed path depends only on the endpoints of the path)

Property �û � has a name and is in fact quite well-known [Qui]. It is called
the lifting property, or sometimes orthogonality of morphisms, and is viewed as
the property of the two downward arrows; we denote it by û .
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�a� A
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//

f
��

X

g

��

B j //

j̃~
~

>>~
~

Y

�b� �� //

��

X


�surj�

��

�Y� //

>>~
~

~
~

Y

�c� �Y, Y� //

��

X


�inj�

��

�Y� //

==z
z

z
z

Y

�d� X //


�inj�

��

�x, y�

��

Y //

<<x
x

x
x

x
�x � y�

Figure 4. Lifting properties. Dots 
 indicate free variables and
what property of these variables is being de�ned; in a diagram
chasing calculation, �
�surj�" reads as: given a (valid) dia-
gram, add label �surj� to the corresponding arrow.
(a) The de�nition of a lifting property f û g: for each i � AÐ�X
and j � B Ð� Y making the square commutative, i.e. f Xj � iXg,
there is a diagonal arrow j̃ � B Ð�X making the total diagram

A
f
Ð� B

j̃
Ð� X

g
Ð� Y,A

i
Ð� X,B

j
Ð� Y commutative, i.e. f X j̃ � i

and j̃ X g � j. (b) X Ð� Y is surjective
(c) X Ð� Y is injective; X Ð� Y is an epicmorphism if we
forget that �Y� denotes a singleton (rather than an arbitrary
object and thus �Y, Y� Ð� �Y� denotes an arbitrary morphism

Z @Z
�id,id�
ÐÐÐ� Z)

(d) X Ð� Y is injective, in the category of Sets; π0�X� Ð�
π0�Y � is injective, when the diagram is interpreted in the cat-
egory of topological spaces.

Now we rewrite (*)words and (**)words as:

���û ��Ð� �Y� û X Ð� Y

����û �Y, Y�Ð� �Y� û X Ð� Y

So we rewrote these de�nitions without any words at all. Our bene�ts? The
usual little miracles happen:

The notation makes apparent a similarity of (*)words and (**)words: they are
obtained, in the same purely formal way, from the two of the simplest arrows
(maps, morphisms) in the category of Sets. More is true: it is also appar-
ent that these two arrows are the simplest counterexamples to the properties,
and this suggests that we think of the lifting property as a category-theoretic
(substitute for) negation. Note also that a non-trivial (one which is not an
non-isomorphism) morphism never has the lifting property relative to itself,
which �ts with this interpretation.

Now that we have a formal notation and the little observation above, we
start to play around looking at simple arrows in various categories, and also
at not-so-simple arrows representing standard counterexamples. You notice a
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few words from your �rst course on topology: �i� connected, �ii� the separa-
tion axioms T0 and T1, �iii� dense, �iv� induced (pullback) topology, and �v�

Hausdor� are, respectively,�19�

(i):
X Ð� �Y� û �Y, Y�Ð� �Y�

(ii):
�Y� ��Ð� �Y � �� û X Ð� �Y�

and
�Y� ��Ð� �Y � �� û X Ð� �Y�

(iii):
X Ð� Y û �Y�Ð� �Y� ��

(iv):
X Ð� Y û �Y� ��Ð� �Y�

(v):

�Y, Y��
�inj�
ÐÐÐ�X û �Y� �� Y

��Ð� �Y�

here
�Y� ��, �Y� ��, . . .

denote �nite preorders, or, equivalently, �nite categories with at most one
arrow between any two objects, or �nite topological spaces on their elements
or objects, where a subset is closed i� it is downward closed (that is, together
with each element, it contains all the smaller elements). Thus

�Y� ��, �Y� �� and �Y� �� Y
��

denote the connected spaces with only one open point Y, with no open points,
and with two open points Y, Y� and a closed point �. Line (v) is to be interpreted
somewhat di�erently: we consider all the injective arrows of form �Y, Y��Ð�X.

We mentioned that the lifting property can be seen as a kind of negation.
Confusingly, there are two negations, depending on whether the morphism
appears on the left or right side of the square, that are quite di�erent: for
example, both the pullback topology and the separation axiom T1 are negations
of the same morphism, and the same goes for injectivity and injectivity on π0
(see Figure 4(c,d)).

Now consider the standard example of something non-compact: the open
covering

R � �
n>N

�x � �n @ x @ n�

�19�The notation is self-explanatory; for the de�nition see �5.3.1.
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of the real line by in�nitely many increasing intervals. A related arrow in the
category of topological spaces is

+
n>N

�x � �n @ x @ n� Ð� R.

Does the lifting property relative to that arrow de�ne compactness? Not quite,
but almost:

��Ð�X û +
n>N

�x � �n @ x @ n� Ð� R

reads, for X connected, as �Every continuous real-valued function on X is
bounded, i.e. for each continuous f �X Ð� R there is a natural number n > N
such that �n @ f�x� @ n for each x > X�, which is an early characterisation
of compactness taught in a �rst course on analysis. Notice that this charac-
terisation mentions explicitly the arrow X Ð� R and the bounded intervals
of the real line, i.e. arrows �x � �n @ x @ n�

b

Ð� R, n > N constituting the
arrow-counterexample on the right hand side.

In a category of metric spaces with say distance non-increasing maps, a
metric space X is complete, i.e. each Cauchy sequence xn > X, n > N, say
dist�xn, xm� B 1~n, converges to some point xª > X such that dist�xª, xn� B
1~n, i�

�“xn� � n > N�Ð� �“xn� � n > N� 8 �“xª�� û X Ð� �Y�

(where dist�“xn�,“xm�� �
1
n for m A n, dist�“xª�,“xn�� �

1
n , as de�ned

above.)
In functional analysis, a (partially de�ned!) linear operator f � X Ð� Y

between Banach spaces X and Y is closed i� for every convergent sequence
xn > X, if f�xn� ÐÐÐÐ�

nÐ�ª
y in Y , then there is a x > X such that f�x� � y and

xn ÐÐÐÐ�
nÐ�ª

x, i.e.

�“xn� � n > N�Ð� �“xn� � n > N� 8 �“xª�� û Domain�f�Ð� Y

A module P over a commutative ring R is projective i� for an arbitrary
arrow N Ð�M in the category of R-modules it holds

0Ð� R û N Ð�M Ô� 0Ð� P û N Ð�M.

Dually, a module I over a ring R is injective i� for an arbitrary arrow N Ð�M
in the category of R-modules it holds

R Ð� 0 û N Ð�M Ô� N Ð�M û I Ð� 0.
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5.1.2. Finite groups.� There are examples outside of topology; see Appendix 5.2.1.
Let us give some examples in group theory. There is no non-trivial homomor-
phism from a group F to G, write F ~� G, i�

0Ð� F û 0Ð� G or equivalently F Ð� 0 û GÐ� 0.

A group A is Abelian i�

`a, be Ð� `a, b � ab � bae û AÐ� 0

where `a, be Ð� `a, b � ab � bae is the abelianisation morphism sending the free
group into the Abelian free group on two generators; a group G is perfect,
G � �G,G�, i� G ~� A for any Abelian group A, i.e.

`a, be Ð� `a, b � ab � bae û AÐ� 0 Ô� GÐ� 0 û AÐ� 0

in the category of �nite or algebraic groups, a group H is soluble i� G ~�H for
each perfect group G, i.e.

0Ð� G û 0Ð�H or equivalently C Ð� 0 û H Ð� 0.

A prime number p does not divide the number elements of a �nite group G
i� G has no element of order p, i.e. no element x > G such that xp � 1G yet
x1 x 1G, ..., x

p�1
x 1G, equivalently Z~pZ ~� G, i.e.

0Ð� Z~pZ û 0Ð� G or equivalently Z~pZÐ� 0 û GÐ� 0.

A �nite group G is a p-group, i.e. the number of its elements is a power of a
prime number p, i� in the category of �nite groups

0Ð� Z~pZ û 0Ð�H Ô� 0Ð�H û 0Ð� G.

5.2. Appendix. Iterated orthogonals: de�nitions and intuition.�
For a property (class) C of arrows (morphisms) in a category, de�ne its left
and right orthogonals, which we also call left and right negation:

C l �� �f � for each g > C f û g�

Cr �� �g � for each f > C f û g�

C lr �� �C l�r, ...

here f û g reads �f has the left lifting property wrt g �, � f is (left) orthogonal to
g �, i.e. for f � AÐ� B, g �X Ð� Y , f û g i� for each i � AÐ�X, j � B Ð� Y
such that ig � fj (�the square commutes�), there is j� � B Ð� X such that
fj� � i and j�g � j (�there is a diagonal making the diagram commute�),
cf. Fig. 5.

The following observation is enough to reconstruct all the examples of iter-
ated orthogonals in this paper, with a bit of search and computation.
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Observation.
A number of elementary properties can be obtained by repeatedly
passing to the left or right orthogonal C l,Cr,C lr,C ll,Crl,Crr, ...
starting from a simple class of morphisms, often a single (counter)example
to the property you de�ne.

The counterexample is often implicit in the text of the de�nition
of the property.

A useful intuition is to think that the property of left-lifting against a class
C is a kind of negation of the property of being in C, and that right-lifting
is another kind of negation. Hence the classes obtained from C by taking
orthogonals an odd number of times, such as C l,Cr,C lrl,C lll etc., represent
various kinds of negation of C, so C l,Cr,C lrl,C lll each consists of morphisms
which are far from having property C.

Taking the orthogonal of a class C is a simple way to de�ne a class of
morphisms excluding non-isomorphisms from C, in a way which is useful in a
diagram chasing computation.

The class C l is always closed under retracts, pullbacks, (small) products
(whenever they exist in the category) and composition of morphisms, and
contains all isomorphisms of C. Meanwhile, Cr is closed under retracts,
pushouts, (small) coproducts and trans�nite composition (�ltered colimits)
of morphisms (whenever they exist in the category), and also contains all iso-
morphisms. Under some assumptions on existence of limits and colimits and
ignoring set-theoretic di�culties�20�, each morphismX Ð� Y decomposes both

as X
�C�l

ÐÐ� Y
�C�lr

ÐÐÐ� Y and X
�C�rl

ÐÐÐ� Y
�C�r

ÐÐ� Y .
For example, the notion of isomorphism can be obtained starting from the

class of all morphisms, or any single example of an isomorphism:

�Isomorphisms� � �all morphisms�l � �all morphisms�r � �h�lr � �h�rl

where h is an arbitrary isomorphism.

5.2.1. Examples of iterated orthogonals.� Here give a list of examples of well-
known properties which can be de�ned by iterated orthogonals starting from
a simple class of morphisms.

(i) �g Ð� ����r, �0 Ð� R�r, and �0 Ð� Z�r are the classes of surjections
in in the categories of Sets, R-modules, and Groups, resp., (where ���
is the one-element set, and in the category of (not necessarily abelian)
groups, 0 denotes the trivial group)

�20�For an example of a theorem along these lines see [Bous�eld, Constructions of factor-
ization systems in categories, 5.1 Ex, 3.1 Thm]. Note that he considers the unique lifting
property, unlike us.

https://core.ac.uk/download/pdf/82479252.pdf
https://core.ac.uk/download/pdf/82479252.pdf
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�a� A i //
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��
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�c� �Y, Y� //
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�inj�

��

�Y� //

z
z

==z
z

z

Y

Figure 5. Lifting properties. (a) The de�nition of a lifting
property f û g. (b) X Ð� Y is surjective (c) X Ð� Y is
injective

(ii) ���, Y� Ð� ����l � ���, Y� Ð� ����r, �R Ð� 0�r, �Z Ð� 0�r are the
classes of injections in the categories of Sets, R-modules, and Groups,
resp

(iii) in the category of R-modules,
a module P is projective i� 0Ð� P is in �0Ð� R�rl

a module I is injective i� I Ð� 0 is in �R Ð� 0�rr

(iv) in the category of Groups,
a �nite group H is nilpotent i� H Ð� H � H is in �0 Ð� G �

G arbitrary�lr

a �nite groupH is solvable i� 0Ð�H is in �0Ð� A � A abelian �lr �
� �G,G�Ð� G � G arbitrary �lr

a �nite groupH is of order prime to p i�H Ð� 0 is in �Z~pZÐ� 0�r

a �nite group H is a p-group i�, in the subcategory of �nite groups,
H Ð� 0 is in �Z~pZÐ� 0�rr

a group F is free i� 0Ð� F is in �0Ð� Z�rl

(v) in the category of metric spaces and uniformly continuous maps,
a metric space X is complete i� �1~n�n Ð� �1~n�n 8 �0� û X Ð� �0�
where the metric on �1~n�n and �1~n�n 8 �0� is induced from the real
line
a subset A `X is closed i� �1~n�n Ð� �1~n�n 8 �0� û AÐ�X

(vi) in the category of topological spaces,
for a connected topological space X, each function on X is bounded i�

gÐ�X û 8n��n,n�Ð� R

(vii) in the category of topological spaces (see notation de�ned below),
a space X is path-connected i� �0,1�Ð� �0,1� û X Ð� ���
a space X is path-connected i� for each Hausdor� compact spaceK
and each injective map �x, y�0K it holds �x, y�0K ûX Ð� ���

Proof. In (iv), we use that a �nite group H is nilpotent i� the diagonal
��h,h� � h >H� is subnormal in H �H, cf. [Nilp], and in fact the orthogonal is
the class of subnormal subgroups.

http://groupprops.subwiki.org/wiki/Nilpotent group
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5.3. A concise notation for certain properties in elementary point-
set topology. � We introduce a concise, and in a sense intuitive, notation
(syntax) able to express a number of properties in elementary point-set topol-
ogy. It is appropriate for properties de�ned as iterated orthogonals (negation)
starting from maps of �nite topological spaces.�21�

For example, surjective, injective, connected, totally disconnected, and dense
are expressed as ���Ð� �a��r, ��x, y�Ð� �x � y��r, ��x, y�Ð� �x � y��l or
���Ð� �a��rll, ���Ð� �a��rllr, ��x�Ð� �x� y��r.

5.3.1. Notation for maps between �nite topological spaces.� A topological
space comes with a specialisation preorder on its points: for points x, y > X,
x B y i� y > clx (y is in the topological closure of x). The resulting preordered
set may be regarded as a category whose objects are the points of X and where
there is a unique morphism x�y i� y > clx.

For a �nite topological space X, the specialisation preorder or equivalently
the corresponding category uniquely determines the space: a subset of X is
closed i� it is downward closed, or equivalently, is a full subcategory such that
there are no morphisms going outside the subcategory.

The monotone maps (i.e. functors) are the continuous maps for this topol-
ogy.

We denote a �nite topological space by a list of the arrows (morphisms) in
the corresponding category; '�' denotes an isomorphism and '�' denotes the
identity morphism. An arrow between two such lists denotes a continuous map
(a functor) which sends each point to the correspondingly labelled point, but
possibly turning some morphisms into identity morphisms, thus gluing some
points.

With this notation, we may display continuous functions for instance be-
tween the discrete space on two points, the Sierpinski space, the antidiscrete
space and the point space as follows (where each point is understood to be
mapped to the point of the same name in the next space):

�a, b� Ð� �a�b� Ð� �a� b� Ð� �a � b�
(discrete space) Ð� (Sierpinski space) Ð� (antidiscrete space) Ð� (single point)

In A Ð� B, each object and each morphism in A necessarily appears in B
as well; we avoid listing the same object or morphism twice. Thus both

�a�Ð� �a, b� and �a�Ð� �b�

denote the same map from a single point to the discrete space with two points.
Both

�a�U�x�V�b�Ð� �a�U � x � V�b� and �a�U�x�V�b�Ð� �U � x � V �

�21�I thank Urs Schreiber for help with the exposition in this subsection.
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denote the morphism gluing points U,x, V .
In �a�b�, the point a is open and point b is closed. We denote points by

a, b, c, .., U, V, ...,0,1.. to make notation re�ect the intended meaning, e.g.X Ð�
�U � U �� reminds us that the preimage of U determines an open subset of X,
�x, y�Ð�X reminds us that the map determines points x, y >X, and �o� c�
reminds that o is open and c is closed.

Each continuous map A Ð� B between �nite spaces may be represented in
this way; in the �rst list list relations between elements of A, and in the second
list put relations between their images. However, note that this notation does
not allow to represent endomorphisms AÐ� A. We think of this limitation as
a feature and not a bug: in a diagram chasing computation, endomorphisms
under transitive closure lead to in�nite cycles, and thus our notation has better
chance to de�ne a computable fragment of topology.

5.3.2. Examples of iterated orthogonals obtained from maps between �nite topo-
logical spaces.� Here give a list of examples of well-known properties which
can be de�ned by iterated orthogonals starting from maps between �nite topo-
logical spaces, often with less than 5 elements.

In the category of topological spaces (see notation de�ned below),

� a Hausdor� space K is compact i� K Ð� ��� is in ���o�Ð� �o�c��r
@5�

lr

� a Hausdor� space K is compact i� K Ð� ��� is in

��a� b�Ð� �a � b�, �o�c�Ð� �o � c�, �c�Ð� �o�c�, �a�o�b�Ð� �a � o � b� �lr

� a space D is discrete i� gÐ�D is in �gÐ� ����rl

� a space D is antidiscrete i� D Ð� ��� is in ��a, b�Ð� �a � b��rr � ��a�
b�Ð� �a � b��lr

� a space K is connected or empty i� K Ð� ��� is in ��a, b�Ð� �a � b��l

� a space K is totally disconnected and non-empty i� K Ð� ��� is in
��a, b�Ð� �a � b��lr

� a space K is connected and non-empty i� for some arrow ���Ð�K
���Ð�K is in �gÐ� ����rll � ��a�Ð� �a, b��l

� a space K is non-empty i� K Ð� ��� is in �gÐ� ����l

� a space K is empty i� K Ð� ��� is in �gÐ� ����ll

� a space K is T0 i� K Ð� ��� is in ��a� b�Ð� �a � b��r

� a space K is T1 i� K Ð� ��� is in ��a�b�Ð� �a � b��r

� a space X is Hausdor� i� for each injective map �x, y� 0 X it holds
�x, y�0X û �x�o�y�Ð� �x � o � y�

� a non-empty space X is regular (T3) i� for each arrow �x�Ð�X it holds
�x�Ð�X û �x�X�U�F�Ð� �x �X � U�F�

� a space X is normal (T4) i� g Ð� X û �a�U�x�V�b� Ð� �a�U �

x � V�b�
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� a space X is completely normal i� gÐ�X û �0,1�Ð� �0�x�1� where
the map �0,1�Ð� �0�x�1� sends 0 to 0, 1 to 1, and the rest �0,1� to x

� a space X is path-connected i� �0,1�Ð� �0,1� û X Ð� ���
� a space X is path-connected i� for each Hausdor� compact space K and
each injective map �x, y�0K it holds �x, y�0K û X Ð� ���

� a non-empty space X is regular (T3) i� for each arrow �x�Ð�X it holds
�x�Ð�X û �x�X�U�F�Ð� �x �X � U�F�

� a space X is normal (T4) i� g Ð� X û �a�U�x�V�b� Ð� �a�U �

x � V�b�
� a space X is completely normal i� gÐ�X û �0,1�Ð� �0�x�1� where
the map �0,1�Ð� �0�x�1� sends 0 to 0, 1 to 1, and the rest �0,1� to x

� a space X is path-connected i� �0,1�Ð� �0,1� û X Ð� ���
� a space X is path-connected i� for each Hausdor� compact space K and
each injective map �x, y�0K it holds �x, y�0K û X Ð� ���

� �gÐ� ����r is the class of surjections
� �gÐ� ����r is the class of maps AÐ� B where A x g or A � B
� �gÐ� ����rr is the class of subsets, i.e. injective maps A0 B where the
topology on A is induced from B

� �gÐ� ����lr is the class of maps gÐ� B, B arbitrary
� �gÐ� ����lrl is the class of maps AÐ� B which admit a section
� �g Ð� ����l consists of maps f � A Ð� B such that either A x g or
A � B � g

� �gÐ� ����rl is the class of maps of form AÐ� A@D where D is discrete
� �Y�Ð� A is in �gÐ� ����rll i� A is connected
� Y is totally disconnected i� �Y�

y
Ð� Y is in �g Ð� ����rllr for each map

�Y�
y
Ð� Y (or, in other words, each point y > Y ).

� ��b�Ð� �a�b��l is the class of maps with dense image
� ��b�Ð� �a�b��lr is the class of closed subsets A `X, A a closed subset
of X

� ��a�b�Ð� �a � b��l is the class of injections
� ���a�Ð� �a�b��r

@5�
lr is roughly the class of proper maps (see below).

Proof. Items related to compactness and proper maps are discussed in ??.
Other items require a simple if tedious veri�cation.

5.4. Separation axioms as orthogonals.� See https://ncatlab.org/

nlab/show/separation+axioms+in+terms+of+lifting+properties for a list
of reformulations of the separation axioms.

5.5. Appendix. Compactness as being uniform: change of order of
quanti�ers. � We give several examples where an application of compact-
ness can be reformulated as changing the order of quanti�ers in a formula.

https://ncatlab.org/nlab/show/separation+axioms+in+terms+of+lifting+properties
https://ncatlab.org/nlab/show/separation+axioms+in+terms+of+lifting+properties
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5.5.1. Each real-valued function on a compact set is bounded. �

¦x >K§M�f�x� @M�

§M¦x >K�f�x� @M�

Note this is a lifting property, for K connected:

��Ð�K û @n>N��n,n�Ð� R

here @n��n,n� Ð� R denotes the map to the real line from the disjoint union
of intervals ��n,n� which cover it. Note this is a standard example of an open
covering of R which shows it is not compact.

5.5.2. The image of a closed set is closed. � K is compact i� the following
implication holds for each set X and each subset Z `X �K:

¦y >K§U§V �U `X open and V `K open and a > U and y > V and U � V ` Z�

§U§V ¦y >K�U `X open and V `K open and a > U and y > V and U � V ` Z�

The hypothesis says Z contains a rectangular open neighbourhood of each
point of the line �a� �K; the conclusion says that Z contains a rectangular
open neighbourhood of the whole line �a� �K.

5.5.3. A Hausdor� compact is necessarily normal.� The application of com-
pactness in the usual proof of this implication amounts to the following change
of order of quanti�ers:

¦a > A¦b > B§U§V �a > U and b > V and U 9 V � �� and U `K open and V `K open�
§U§V ¦a > A¦b > B�a > U and b > V and U 9 V � �� and U `K open and V `K open�

5.5.4. Lebesgue number Lemma. � Let S be a family of (arbitrary) subsets
of a metric space X.

¦x >X§δ A 0§U > S¦y >X�dist�x, y� @ δ Ô� y > U�

§δ A 0¦x >X§U > S¦y >X�dist�x, y� @ δ Ô� y > U�

The hypothesis says that �InnU � U > S� is an open cover ofX; the conclusion
is as usually stated, that each set of diameter @ δ is covered by a single member
of the cover.

Note that this lemma may be expressed in terms of uniform structures.

5.5.5. Paracompactness.� [Alexandro�,�2.3,p.38] writes �as it seems to me,
one of the deepest and most interesting properties of paracompacts� is the
following theorem of A.Stone: that

A T1-space is paracompact i� for each open covering α of X there is
an open covering β such that for each x in X there is U in A such
that 8�V > β � x > V � ` U

http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=rm&paperid=6719&option_lang=eng
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The family of subsets 8�V > β � x > V � where x > X, V > β forms a covering
denoted by β� by [Alexandro�]. This is somewhat reminiscent of a simplicial
construction.

As quanti�er exchange, this is:

for each open covering α exists open covering β. ¦x >X¦V > β§U > α�x > V Ô� V ` U�

for each open covering α exists open covering β. ¦x >X§U > α¦V > β�x > V Ô� V ` U�

The hypothesis holds trivially: take β � α,V � U .

Question 5.1. � Describe a logic and a class of formulae where such ex-
change of order quanti�ers is permissible. Is there a treatment of compactness
in terms of changing order of quanti�ers ?
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