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A homotopy theory approach to set theory
notes by misha gavrilovich

but the mischief of it is, nature will have to
take its course

Miguel de Cervantes Saavedra, Don Quixote

Abstract:
We observe that the notion of two sets being equal up to finitely many elements is a

homotopy equivalence relation in a model category, a common axiomatic formalism for
homotopy theory introduced by Quillen ”to cover in a uniform way a large number of
arguments in homotopy theories that were formally similar to well-known ones in algebraic
topology. We show the same formalism covers some arguments in (naive) set theory, and a
well-known set-theoretic invariant, the covering number cf([ℵω]ℵ0), of PCF theory. Further
we observe a similarity between homotopy theory ideology/yoga and that of PCF theory, and
briefly discuss conjectural connections with model theory and arithmetics and geometry.

We argue that the formalism is curious as it suggests to look at a homotopy-invariant
variant of Generalised Continuum Hypothesis about which more can be proven within ZFC
and first appeared in PCF theory independently but with a similar motivation.

1. This is a dense announcement of results partly reporting on joint work with Assaf
Hasson, and shall eventually appear in the form of a joint paper. We give no proofs
but the definitions are given in full detail. Proofs, speculations and motivations may
be found in a more verbose report [Gavrilovich] which also contains some questions.

1.1. Introduction. The structure of the paper. In §1 and §2 we develop a notion of
homotopy between sets such that two sets are homotopic iff they are almost equal,
i.e. if they differ by finitely many elements. We do so in the formalism of a Quillen
model category. In §1.3.2 we define a model category QtNaamen of (some) families
of sets, such that two objects {A} and {B} are weakly (homotopy) equivalent iff A
and B are almost equal. In §1.2 we informally explain how to obtain the definition
of QtNaamen by starting from the poset(class) of all sets ordered by inclusion (con-
sidered as a category): declare some inclusions A ⊆ B as weak equivalences and/or
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2 m.r. gavrilovich a homotopy theory approach to set theory

cofibrations so as to capture notions of finiteness, countability and equicardinality, and
then formally add morphisms that have necessary lifting properties. In §3 we define
and calculate the derived functor of the function card : QtNaamen −→ On sending
a family of sets into its cardinality, and identify its values with a set-theoretic invariant
in PCF theory, the covering number cov(κ,ℵ1,ℵ1, 2). In §1.3.3 and §2.2-2.7 we con-
jecture a similar construction gives a model category associated to a (not necessarily
first order) uncountably categorical theory, and discuss algebro-geometric applica-
tions. In §3.8 we make some remarks and indicate directions for further research. All
necessary definitions, both of homotopy and set theory, are given; appendices provide
some examples as well as a definition of a model category. We work in naive set the-
ory and expressedly ignore the hindrance of a particular axiomatisation of set theory;
a reader may assume that we work either in a Grothendieck universe, a model of ZFC
or a set theory with a universal set, cf. §3.8.3.
1.2. A sketch of the construction of the model category. A reader not familiar with
model categories may skim through the explanation at the first reading.
1.2.1. We start by considering, as a category, the partially ordered set(class) of all
sets ordered by inclusion. We want an inclusion A ⊆ B to be a weak (homotopy)
equivalence iff B \ A is finite. A model category is a category equipped with the
extra structure consisting of the three classes of morphisms called(labelled as) (w)
weak (homotopy) equivalences, (c) cofibrations and (f ) fibrations. Further we define
an inclusion A ⊆ B to be both a weak (homotopy) equivalence and a cofibration iff
B \ A is finite; this is motivated by symmetry considerations as well as as a desire to
follow the standard construction of a cofibrantly generated model structure.
1.2.2. However, we lack fibrations, although e.g. Axiom M2 implies that every mor-
phism is a fibration up to a weak equivalence but no morphism-inclusion A ⊆ B
right-lifts wrt to (wc)-inclusion A ⊆ A∪{b} for b ∈ B \A as required by Axiom M1
of a fibration. Therefore we introduce the fibrations formally, as formal morphisms
having the required lifting properties, in the following way.
1.2.3. By Axiom M2, every morphism-inclusionA ⊆ B, writeA −→ B, decomposes

as a composition A
(wc)−→ A′

(f)−→ B where the unique morphism A −→ A′ is both a
(w) weak equivalence as well as a (c) cofibration, and the unique morphism A′ −→ B
is a (f) fibration. We add A′ −→ B as a new (for A 6= B) morphism that by definition
satisfies the necessary lifting properties, particularly it left-lifts wrt to A −→ A ∪ b
for all finite b ⊆ B. We also add A −→ A′ as a new (for A 6= B) morphism.
1.2.4. As (we insist that) there is at most one morphism between any pair of objects,
adding formally a morphism A′ −→ B is the same as adding a formal object A′, and
the latter can be identified with a family of subsets of B (of the form A ∪ b, b ⊆ B
finite).
1.2.5. To enable our model category to express (equi)cardinality and countability, we
declare an inclusion A ⊆ B a cofibration iff either cardA = cardB or both A and B
are at most countable. Similarly to the above, we then add formally

(wf)−→-morphisms
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6 m.r. gavrilovich a homotopy theory approach to set theory

(Cexp) a field K equipped with a homomorphism exp : K −→ K
∗

where, as notation suggests, V varies among Q-vector spaces, K varies among al-
gebraically closed fields of zero characteristic, and ϕ varies among group homomor-
phisms; andKp varies among algebraically closed fields of prime characteristic p, and
ψ varies among Z[1

p
]-module homomorphisms such that the isomorphism type of the

restriction ψ|QZ[ 1
p
] : QZ[1

p
] −→ F̄p is fixed. For the first three classes, let �< be all in-

clusions of submodels respecting field and vector space structure; these are necessar-
ily elementary. The definition of class (Cexp) is more complicated and may be found
elsewhere [Zilber, Pseudoexponentiation]. All four are excellent abstract elementary
classes [ibid.,Bays] that have finitely many, up to isomorphism, models of each un-
countable cardinality, i.e. for every uncountable K̄ there are finitely many short exact
sequences up to a linear isomorphism of V inducing a field automorphism on K̄.

3. An application: PCF theory as a homotopy-invariant theory. We derive the
function card : QtNaamen −→ On, observe that its homotopy-invariant left derived
functor Lccard : QtNaamen −→ On is studied in PCF theory under the name of
the covering number, and make some remarks on similarity between ideology/yoga
of homotopy theory and PCF theory.

3.1. Let A,B be quasi-partially ordered sets considered as categories where x −→ y
iff x 6 y. Then a (covariant) functor F : A −→ B is a non-decreasing function
F : A −→ B. If both A and B are also equipped with a c-w-f labelling, we say that

a functor F : A −→ B is homotopy-invariant iff for any arrow X
(w)−→ Y (weak

homotopy equivalence), it holds F (X)
(w)−→ F (Y ). An initial object ⊥ of A is a

minimal element of A (whenever such exists). (As any diagram is commutative in
these categories, we need not state the conditions that the functors have to respect
commutative diagrams.)

3.2. Let On be the category of ordinals where each arrow is labelled (cf) and each
isomorphism is labelled (cwf). For a function F : A −→ On, define (minimum is
taken over all finite sequences labelled as shown)

LcF (X) = min




F (Y ) :

X1 X3 Xn
//___ Y

X

>>}
}

}
}

X2

(w)
aaB

B
B

B

==|
|

|
|

· · ·

(w)
aaB

B
B

B

==|
|

|
|

⊥
(c)

OO�
�
�





3.3. LcF (X) is a homotopy invariant functor "closest from the left"(Quillen, I:4.1) to
the function F : StNaamen−→On, by which is meant: for any homotopy-invariant
functor G : StNaamen−→On such that G(X)−→F (X) for any object X such that

⊥ (c)−→ X , it holds that G(Y )−→LcF (Y ) for any⊥ (c)−→ Y (note then there is a natural
transformation from functor G to functor LcF ).

In particular, the function LcF : StNaamen−→On is the left derived functor of
F : StNaamen−→On provided that F is a functor.
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3.4. Take F = card to be the cardinality function. Arguably, the model category
formalism suggests we view Lccard : StNaamen −→ On as an analogue of a cofi-
brantly replaced left derived functor of the “forgetful functor” card : StNaamen −→
On. Then homotopy yoga suggests we view values of Lccard , e.g. Lccard ({ℵα}) =
Lccard ({X : X ⊆ ℵα}), as (homotopy-invariant and therefore) more robust and in-
teresting invariants, as compared with the non-homotopy-invariant values card ({X :
X ⊆ ℵα}).
3.5. And indeed, it is for the reasons of being more robust and less prone to change by
forcing that the values of Lccard ({ℵα}) (for limit ℵα) have been introduced in set the-
ory (Shelah, Cardinal Arithmetic). Set-theoretically, Lccard ({ℵα}) = cov(ℵα,ℵ1,ℵ1, 2)
is the least size of a family X of countable subsets of ℵα, such that every count-
able subset of ℵα is a subset of a set in the family X . This may used, for example,
to study the cardinality (ℵα)ℵ0 of the set of countable subsets of ℵα, via the bound
(ℵα)ℵ0 6 cov(ℵα,ℵ1,ℵ1, 2) + 2ℵ0 , by decomposing it into a "noise" "non-homotopy-
invariant" part 2ℵ0 whose value is known to be highly independent of ZFC (and easy
to force to change), and a homotopy-invariant part cov(ℵα,ℵ1,ℵ1, 2) which admit
bounds in ZFC (and is harder to force to change).
3.6. A short calculation gives Lccard ({X : X ⊆ ℵ0}) = 1 (in ZFC) whereas it is
known that there are models of ZFC where e.g. card ({X : X ⊆ ℵ0}) = 2ℵ0 > ℵωω .
Meanwhile, non-trivially, Shelah (Cardinal Arithmetic, IX:4) proves Lccard ({ℵω}) <
ℵω4 . Similar upper bounds exist on Lccard ({ℵα}) for (most) ℵα limit (excepting
ℵα = α), and are provided by PCF theory.
3.7. Arguably, the above justifies saying that the homotopy-invariant version of Gen-
eralised Continuum Hypothesis has less independence of ZFC, as suggested by ho-
motopy theory.

3.8. Remarks. These remarks are explained in more details in [Gavrilovich].
3.8.1. Gromov [Ergosystems] writes that “The category/functor modulated structures
can not be directly used by ergosystems, e.g. because the morphisms sets between
even moderate objects are usually unlistable. But the ideas of the category theory
show that there are certain (often non-obviuos) rules for generating proper concepts.”
Curiously, in our categories where this obstruction does not arise, all definitions we
make seem to be a result of a rather direct and automatic, straightforward repeated
application of the lifting property to basic concepts of naive set theory, and the ax-
ioms of a model category admit a functional semantics whereby they are interpreted
as rules to draw arrows and add labels on labelled graphs. We say more on this in
[Gavrilovich], particularly §1.0.4,p.5 and §1.3,pp.12-14.
3.8.2. Shelah explicitly states his ideology of PCF theory in Shelah (Logical Dreams),
e.g. Thesis 5.10, and we find it remarkably similar to the model category ideology
as applied to StNaamen. It is unclear whether a deeper connection with PCF theory
exists, e.g. whether the sequence of PCF generators is a (non-pointed, non-functorial)
analogue of a (co)fibration sequence, or whether X 7−→ {X} and X 7−→ ∪x∈Xx
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8 m.r. gavrilovich a homotopy theory approach to set theory

can be usefully viewed as analogues of suspension X 7−→ ΣX and loop X 7−→ ΩX
spaces, cf. Kojman (A short proof of PCF theorem).
3.8.3. Manin (A course in logic, 2010, p.174) discusses the Continuum Hypothesis
and the possibility for a need to “try to find alternative languages and semantics” for
set theory. It would seem that the connection between homotopy theory (in the model
category formalism) and set theory (in ZFC or NF, or similar formalisms) we suggest,
may provide for such an alternative language and semantics.
3.8.4. Note that a topological space T determines a homotopy-invariant functor acc T :
QtNaamen −→ Naamen, X 7−→ ∪X∈Xacc T (X ∩ T ) sending a family X into
the set of accumulation points ∪X∈Xacc T (X ∩ T ) of a member of the family; here
Naamen is the poset of all sets under inclusion. It appears that the definition of a
topological space may be stated purely category-theoretically in terms of this functor
and the functor {·} : Naamen −→ QtNaamen, X 7−→ {X}.
3.8.5. Our original motivation was to associate a model category (via the class of
families of models) to an uncountably categorical theory and, more generally, to an
excellent abstract elementary class (Shelah, Classification theory of non-elementary
classes). In particular, we wanted to use the language of homotopy theory to per-
form the model-theoretic analysis of complex exponentiation (C,+, ∗, exp) (Zilber,
Pseudo-exponentiation on algebraically closed fields of characteristic zero) and covers
of semi-Abelian varieties ([Bays] and references therein). These results claim there
exist a unique, up to an appropriate notion of isomorphism (not respecting topol-
ogy), function ex : C −→ C satisfying ex (x + y) = ex (x)ex (y), the Schanuel
conjecture and a dual thereto; Bays replaces C and ex by an elliptic curve and its
cover exE : C −→ C/Λ. Their analysis leads to a number- and geometric-theoretic
conditions on semi-Abelian varieties (Mumford-Tate, Kummer theory, Mordell-Weil,
Schanuel Conjecture); we wanted an analysis covering more general algebraic vari-
eties which would to lead to geometric conditions in place of those above.
3.9. Thanks. I thank my Mother and Father for support, patience and more. I also
thank Artem Harmaty for attention to this work, and encouraging conversations, and
Martin Bays for reading and discussing. Detailed thanks are in the report [Gavrilovich].
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4. Appendix. Some examples.

Below we use cwf-notation and the language of model categories to give some ex-
amples in our model categoryQtNaamen and the model category Top of topological
spaces. All claims we make are either standard or follow from the definitions and may
be found in [Gavrilovich].

4.1. Homotopy category. Cofibrant and fibrant objects. Cofibrant objects, i.e. objects

X such that ∅ (c)−→ X , are families of countable sets. A family X is fibrant, i.e.

X
(f)−→ {x : x = x }, iff for every x ∈ X and every a finite, the union {x ∪ a}

is also covered by a member of X , in notation {x ∪ a} −→ X . We ignore non-
existence of {x : x = x } in ZFC; note that in ZFC fibrant objects are necessarily
proper classes. The homotopy category HoQtNaamen is, up to equivalence of cat-
egories: (i) HoQtNaamen is the full subcategory of fibrant and cofibrant objects,
(ii) HoQtNaamen is the category of families of countable sets, with the arrows:

X −→ Y iff every x ∈ X is almost covered by an element y ∈ Y , i.e. X 99K·(wc)L99 Y .

4.2. StNaamen vs QtNaamen. Put a label (q) on an arrow A −→ B iff A −→
B i X −→ Y lifts wrt any arrow X −→ Y between objects of QtNaamen.
Then for any A ∈ ObStNaamen there exists an Ã ∈ ObQtNaamen, unique up

to isomorphism, such that A
(q)−→ Ã. Diagram chasing using (q)-labels and M6 of

StNaamen shows that the category QtNaamen is closed under M2-decomposition,

i.e. if A, Y ∈ ObQtNaamen and A
(wc)−−→ B

(f)−→ Y and A
(c)−→ X

(wf)−−→ Y , then
B,X ∈ ObQtNaamen.

4.3. Singletons. For sets A and B, A ⊆ B iff there is a (necessarily unique) ar-

row/morphism {A}−→{B}, and {A} (wc)−−→ {B} is an acyclic cofibration iff B \A is

finite (and A ⊆ B). For sets A and B infinite cardA = cardB iff {A} (c)−→ {B}, and

B is countable iff ∅ (c)−→ {B} is a cofibration.

4.4. Ordinals. For a ordinal it holds α −→ {α} and ∪α −→ α.
{α} −→ α + 1 −→ {α}, i.e. {α} and α + 1 are isomorphic

α
(f)−→ α + 1 iff α = ∪β<αβ is limit.

α
(wf)−−→ α + 1 iff α is a regular cardinal, i.e. cfα = α

α
(c)−→ α + 1 iff α = ω or α is not a cardinal

α
(wc)−−→ α + 1 iff α is not a limit ordinal, i.e. α 6= ∪β<αβ

α
(c)−→ β iff α = β or α is not a cardinal and

. either card β 6 cardα + ℵ0 or β is a cardinal and card β 6 (cardα + ℵ0)+.

α
(wc)−−→ β iff β < α + ω and α not a limit ordinal

α ∈ ObQtNaamen iff cfα = ω or cfα = α

c©2010
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5. Appendix. Examples of lifting properties.

We give examples of some widely used notions that can be defined by a lifting
property. Arguably, it is useful to think of these definitions as follows: we take a
counterexample and "forbid" it by requiring the lifting property wrt to it. The fol-
lowing example may make this more clear. Assume we are interested in counting
something, and we realise that to hope to preserve the count we need to avoid the two
simplest possible(?) operations: adding a point {} −→ {·} to nothing or gluing two
points into one {·, ·} −→ {·}. However, avoiding just these two is not enough: what
we want is a class of operations(morphisms) which have nothing to do with these two
bad ones. And we define such a class by requiring the left lifting property (Fig.4(b-c)).
This gives us the class of bijections, i.e. exactly the operations that preserve the count.

.Fig.4. Read a diagramme as an ∀∃-formula with parameters: for the arrows labelled � or �, the fol-
lowing property holds: "for each commutative diagramme of solid arrows carrying labels as shown,
there exists dashed arrows carrying labels as shown, making the diagramme of all the arrows com-
mutative" (a) Isomorphism. In a category an arrow is an isomorphism iff it has (either left or right)
lifting property wrt itself (and consequently (a′) any other arrow). (b) an arrow is injective iff it
has the right lifting property wrt {·, ·}−→{·} whenever(=in most categories where) the latter no-
tation/arrow makes sense. (c) an arrow is surjective iff it has left lifting property wrt {}−→{·}
whenever(=in most categories where) the latter notation/arrow makes sense. (d) Let I = [0, 1] be
the unit interval of the real line, and let 0 ∈ [0, 1] be its end point; the morphism V−→B is a
covering of topological spaces iff there is always exists a unique lifting arrow I−→V making the
diagramme commute. (e) an object I is injective iff for each injective arrow X−→Y and any arrow
X−→I , there exists an arrow Y−→I . (f) dually, an object P is a projective object, e.g. a free mod-
ule, iff for each surjective arrow X ←− Y and an arrow X ←− P , there exists an arrow Y ←− P .
(g) a topological space T is connected iff T−→{·} has the right lifting property wrt to {·, ·}−→{·}
in the category of topological spaces) (e) a topological space T is compact iff every continuous map
T−→R factors via an interval [−n, n] for some n ∈ Z.
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