Ein Sommernachtstraum
a construction of a model category
a very early draft

notes by misha gavrilovich

Woody: Can I pour you a draft, Mr. Peterson?
Norm: A little early, isn’t it, Woody?

Unless hours were cups of sack, and minutes
capons, and clocks the tongues of bawds, and
dials the signs of leaping houses, and the
blessed sun himself a fair, hot wench in
flame-colored taffeta, I see no reason why
thou shouldst be so superfluous to demand
the time of the day. I wasted time and now
doth time waste me.

He draweth out the thread of his verbosity
finer than the staple of his argument.
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Abstract: In 1967 Quillen introduced model categories ”to cover in a uniform way” ”a
large number of arguments [in the different homotopy theories encountered] that were
formally similar to well-known ones in algebraic topology”. We show the same formalism
“covers in a uniform way” a number of arguments in (naive) set theory. We argue that the
formalism is curious as it suggests to look at a homotopy-invariant variant of Generalised
Continuum Hypothesis which has less independence of ZFC, and first appeared in PCF
theory independently but with a similar motivation.

Techically, we show how a naive, diagramme chasing homotopy theory approach to
set theory leads to a construction of a model category (in the sense of Quillen) modelling
some invariants in set theory. These invariants, the covering numbers of PCF theory, appear,
in homotopy theory, as values of (minor variations of) the derived functor of cardinality.

notes by misha gavrilovich. Parts of these notes, especially those connecting Quillen’s model categories
with Shelah’s approach to cardinal arithmetic, arose in the course of a joint work with Assaf Hasson, and
will eventually appear in the form of a joint paper. These notes are a draft at a very early stage, needlessly
verbose and repetitive, and not properly proofread. Any help in proofreading is appreciated. An alterna-
tive shorter exposition on 15 pages is also available, at http://corrigenda.ru/by:gavrilovich/
what :work—in-progress/blat.pdf, and it is somewhat more up-to-date.
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Homotopy theory suggests to look at a homotopy-invariant version of Generalised Continuum
Hypothesis (hGCH) replacing cardinality by its homotopy invariant approximation, the
derived functor, and we observe that ZFC proves strong bounds towards hGCH for many
cardinals, either by PCF theory or trivially.

The little of homotopy theory and model category formalism we use, is rendered in a
rather explicit computational, combinatorial manner. We speculate about a possibility of a
connection to the ergosystems of Gromov.

Disclaimer: This is an early draft that wasn’t proofread yet. Please acknowledge seeing the draft
by visiting http://corrigenda.ru/by:gavrilovich and leaving a comment; an update might be available.

An alternative, somewhat updated and rather dense 15-page summary exposition is available at
http://corrigenda.ru/by:gavrilovich/what:work—-in-progress/blat.pdf.
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1. Introduction.

This text is a draft of work-in-progress that would not normally be distributed
widely; still, we find it makes sense to put it online and ask for help anyone who cares
to read it.

this text hasnt yet been proofread even for english.

Please treat this text as an alpha-version of a software....

read it at your own risk.

In particular, I ask that however bad impression this text makes e.g. by bein full of
mistakes, this should not inform your opinion on the texts the authors of these paper
publish.

....not been proofread yet;
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1.0.1. Observations and Constructions.

1. We suggest a way to represent (some) statements in set theory (first-order formu-
lae in ZFC) as pictures of labelled coloured graphs (representing commutative
diagrammes in a model category with extra data).

2. We suggest that these pictures possess a graphical calculus and a “functional
semantics” motivated by homotopy theory, specifically by Quillen’s formalism
of model categories; in particular, we observe that it seems possible to interpret
axioms of a model category as rules to draw arrows in labelled graphs.

3. We construct a model category whose structure describes notions of set the-
ory. for example, for sets A and B, A C B iff there is a (necessarily unique)
arrow/morphism { A}—{B}, the difference B \ A is finite iff the (unique) ar-

row/morphism {A} L), {B} carries both labels w and ¢ (=is both a weak ("ho-
motopy”) equivalence and a cofibration), and for sets A and B infinite card A =

card B iff the arrow {A} @, {B} carries label c(=is a cofibration), and B is

countable iff @ % {B} is a cofibration. An ordinal A is regular, cfA = \ iff

PR {A} carries labels w and f. In fact we define (the quasi-poset structure

and arrows and) labelling on arrows between all sets, and our model category
is a full subcategory inheriting the labelling. For example, a singleton { A} lies
always in the model category but for A = \ an ordinal, the object A is in the
model category iff cfA = w or cfA = A is regular.

4. We observe that some set-theoretic invariants, the covering numbers of PCF the-
ory, thought of as a ”’better measure of size”, are a standard homotopy theory
homotopy-invariant approximation to cardinality, as values of (minor variations
of a slightly generalised) derived functor. In suggestive notation,

cov(Ry, ¥y, Ry, 2) = Lecard ({8,}) = Lecard (2%)

5. Generally, we remark that there seem to be a similarity between Shelah’s ide-
ology in PCF and the ideology of homotopy theory. We observe that homotopy
theory suggests to look at a homotopy-invariant version of Generalised Con-
tinuum Hypothesis (hGCH) replacing cardinality by its homotopy invariant ap-
proximation, the derived functor, and we observe that ZFC proves strong bounds
towards hGCH for many cardinals, either by PCF theory or trivially. This paral-
lels the 1deology of PCF.

6. To sum up, we hope that homotopy theory provides a non-trivial analogy be-
tween Poincare’s continuous and Cantor’s infinite.

IFor reader’s convenience, we explain the notation: cov(\, &, 0, o) is the least size of a family X C [N]|<" of subsets of
of cardinality less than k, such that every subset of X of cardinality less than 9, lies in a union of less than o subsets in X . The
definition of the derived functor is given in §1.4; the letter I stands for left derived functor and the subscript .. indicates passing
to cofibrant replacement.
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1.0.2. Moreover,

1. These pictures of labelled coloured graphs appear in Quillen’s formalisation of
a model category.

2. We employ a lot of verbosity to mention explicitly every idea of category theory
and model theory we use, and to represent it as a computation, in our example.

3. It seems not inconceivable that any straightforward, computational attempt to
connect the calculus of pictures and (basics of) set theory leads to our interpre-
tation of the pictures as statements in set theory (first-order formulae of ZFC) or
something different but similar.

4. The little of homotopy theory and model category formalism and yoga we use,
is rendered, in our example, in a rather explicit computational, combinatorial
manner, as arrow-drawing rules concerning labelled graphs. Our computation
arriving at the definition of the covering number, seem to consist entirely of
computations with labelled graphs.

1.0.3. Drawbacks:

1. This textis a draft. Unfortunately, we do not fully develop or explain some(many?)
of things mentioned above. Exposition here is quite sketchy and repetitive; type-
setting and English are deplorable. Read at your own risk. However, I believe the
theorems and definitions are correct as stated, and there are no misleading mis-
prints in the main definitions and theorems. I also believe that the construction
of the covering numbers as homotopic invariants is explained in detail.

2. The technical content of the paper may be reduced to a couple of longish sen-
tences (accessible to someone familiar with basics of PCF and Quillen’s model
categories)

3. What we do, appears to be standard, indeed very basic, in homotopy theory,
specifically in Quillen’s formalism. In other worlds, we try to put set theory into
the Procrustean limit of a model category.

4. We do not bother to develop or describe the formalism of pictures as such; rather
we attempt to explain it by an example of a calculation in the formalism (leading
to the definition of a covering number).

5. We do define a model category, but most of standard tools in homotopy theory,
particularly Quillen’s formalism, seem to degenerate in our example, e.g. the
notion of a path and cylinder objects.

6. The categories we consider, would be usually thought as rather degenerate as
categories. They are quasi-partially ordered sets, and every diagramme (that ex-
ists) in such a category, commutes. perhaps this is what enables our analysis to
be so straightforward.

©2010
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7. we say nothing about the proof of bounds of PCF.

8. we take a very naive approach to set theory. Though, it should be possible to
perform our constructions in a Grothendieck universum, below an inaccessible
cardinal, or in an model of ZFC.

1.0.4. Speculations:

Contrary to custom, we mention some highly suppositional speculations, and ex-
pound on them 1n detail. We are tempted to speculate that our approach is not entirely
unrelated to the paper [Gromov, 2009+] and particularly the following quote.

The category/functor modulated structures can not be directly used by ergosystems, e.g. because the
morphisms sets between even moderate objects are usually unlistable.

But the ideas of the category theory show that there are certain (often non-obvious) rules for gener-
ating proper concepts. (You ergobrain would not function if it had followed the motto: “In my theory
I use whichever definitions 7 like”.) The category theory provides a (rough at this stage) hint on a
possible nature of such rules.

In the category we use, the morphism sets between any objects are listable (as the
category 1s a quasi-partially ordered set and every diagramme necessarily commutes).

What we do in this paper, 1s we try to put set theory (textbook) into the Procrustean
limit of a model category, and observe that this is easily done by following in a greedy
manner a number of tricks appearing common/motivated by category/homotopy the-
ory/ Quillen’s model category formalism. Speculations below are on the basis of this
observation.

We are tempted to speculate that everything in this paper, can be done by an er-
gosystem” “directly using the category/functor modulated structures” indulged into
“self-propelled learning”. The category/functor modulated structures are simply com-
mutative diagrammes (whose edges are) labelled by three labels (c), (f), (w). It is
tempting to further speculate that the “ergosystem” performs an analysis of syntactic
structure analysis of introductory first chapters on set theory in textbooks, along the
lines of [Gromov,2009+,§6]; see §1.3 for more details and speculations.

Further it seems that it may be said that the reasoning employed to construct the
model category seem to never raise above the level exhibited in the first and second
solutions of von Neumann bird puzzle suggested by [Gromov, 2009, p.37].

We discuss these speculations, and particularly the von Neumann bird puzzle, in
§1.3.

There are many obvious problems with this. We presume (very) basic understand-
ing of English syntax and mathematics of books our ergosystem reads. It is unclear,
and we have not investigated, whether our strategy gives interesting results in other
cases. And perhaps more.

A technical exposition presuming familiarity with homotopy theory. Imagine a (naive
student) homotopy theorist trying to understand a 1st introductory set-theoretic chap-
ter in a basic textbook on, e.g., topology (todo: suggest a book). What is the (model)
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category which helps to understand the chapter? The ’in”, ’being an element” relation
1s not transitive, and does not lead to a category; the "’being a subset” relation is transi-
tive and does lead to a category of sets reflecting the C-relation. An infinite increasing
chain of sets My C M; C ... reminds of a (semi-)simplicial object Xo— X = Xs...
or a chain complex Xy— X;— Xy,——... in the C-category. So an infinite increas-
ing chain (a common notion), is to be an object; taking its union (a common oper-
ation) is to be an arrow. Whether a subset of the union lies in a single element of a
chain (a common question about a chain), should also be (a common question about)
an arrow. So set the objects to be arbitrary sets (equivalently, sets of sets), and an
arrow A—— B to mean every element of the antecedent set A is a subset of some ele-
ment of the succeedant set B. Adding a single element to a single set, now an arrow

{{a,b,..}} — ), {{a,b, ..., e} }, suggest itself as weak equivalences; as these arrows
have the left lifting property with respect to taking the unions of any increasing chain
of sets, declare these also as (generating acyclic) cofibrations as well as weak equiv-

alences. Further declare an arrow {A} {B} to be a (generating) cofibration iff
card B < card A + Ny, to capture the notion of equicardinality of infinite sets as well

as that of countability (as () ), {B} is a cofibration). Consider the full subcategory
QtNaam consisting® of sets X such that for all A C B,card B < card A + N it

holds {A}U{L : L C B,card L < card B+¥; } {B} A X ——{universe} where
A denotes the lifting property. Define the model category cofibrantly generated by
these two explicitly defined classes of arrows; The construction gives homotopy the-

ory meaning to concepts of a finite set () Lol {X} is a cofibration and a weak equiva-
lence), a countable set () ﬁ {X} is a cofibration) and equicardinality (for A C B in-

finite, { A} 9, {B} is a cofibration). The principle that if you wait long enough, every
finitely many, or small enough, steps would have happen becomes a lifting property of
Quillen’s Axiom M1. For example, for an increasing chain My C M; C M, C ... and
a finite X, the common set-theory argument that for a subset X of the union U; M, of
a chain if X is finite than X is a subset of some element M; of thc chain, becomes an

W9 X K Mg, My, Y U U LY.

Somewhat less trivially, a homotopy meaning acquires the notion of a covering

family ( X Ld), {A} is a weak equivalence and a fibration) and the covering num-

bers (L.card ({A}) = cov(card A, N, Ny, 2), e.g. L.card ({R,}) = pp(R,)) as val-
ues of the left-derived functor-like construction associated with cofibrantly replaced
cardinality. The Homotopy version of Generalised Continuum Hypothesis (hGCH)
for regular cardinals is trivially true

instance of Quillen’s axiom M1 {} —

L.card (2) = Locard ({A}) = cov(card A, R, Ry, 2) = card A

%In suggestive notation, X € ObQtN aam iff X is isomorphic to U{ X" : X «— Xg o), X" CERS X' —X}
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for cfcard A = card A. Bounds on the covering numbers provided by PCF theory,

e.g.
Lecard (2%) = Lecard ({R,}) < X,

are strong partial results towards the Homotopy version of Generalised Continuum
Hypothesis for limit cardinals. In general, it seems possible to speculate that PCF
is the part of ZFC homotopy-invariant with respect to the model category struc-
ture just defined or its analogues. There seem to be a close connection between the
yoga/ideology of PCF and the homotopy theory.

This summary skips a number of things, e.g. speculations about ergosystems.

Shelah’s yoga of cofinalities as right measures of size not leading to independence.
Artificially/naturality thesis. Concluding the introduction, we find it difficult to re-
frain from citing a direct comparison to homotopy invariants made by Shelah [She-
lah, Cardinal Arithmetic,p.457]; see §5 of [Shelah, Logical Dreams] for an extended
discussion.

Artificially / naturality thesis. Probably you will agree that for a polyhedron v (number of vertices),
e (number of edges) and f (number of faces) are natural measures, whereas e + v + f is not, but
from deeper point of view [the homotopy-invariant Euler characteristic] v — e + f runs deeper than
all. In this vain we claim: for A regular 2* is the right measure of [set of all subsets] P()), and
A" is a good measure of S¢,.(A). However, the various cofinalities [such as(?) cf(S¢x, (A),w),
cf(S<a (X)), also cov(A, i, 8, 0), pp,. (A)...(?)] are better measures. A” is an artificial combination
of more basic things of two kinds: the function A — 2* (A regular which is easily manipulated) and
the various cofinalities we discuss (which are not). For example pp(R.,) < N.,, is the right theorem,
not RE? < N, + (2%°)7 (not to say: 2% < R., when X, is strong limit). Also the equivalence of
the different definitions which give apparently weak and strong measures, show naturality[.]

Power of ideas/yoga of homotopy theory and tricks of Quillen’s model category for-
malism. We take great pains and great verbosity to explicate category and homotopy
theory yoga we use, and explicitly reduce what’s used to a number of simple compu-
tational tricks using Quillen’s formalism of a model category.

We find it extremely important, for the purposes of the current paper, that we can
reconstruct all our definitions (and most proofs) by a sequence of simple steps each
employing most trivial, or even syntactically short, guess possible, and visibly mov-
ing towards our goal by satisfying yet another axiom (of a category or a model cate-
gory), capturing yet another important notion of set theory in model category theory
framework. To explain this better, we find it convenient to employ a fictional simple-
minded homotopy theorist character and describe her feelings explicitly whenever
useful. However, we switch back to formal we’ whenever possible.

1.1. Structure of the paper
First we very briefly give some generalities on category theory and Quillen’s ho-
motopy theory. Our exposition of category theory owes to that of [Gromov,2009+].
We take liberty to freely use extended quotes from the books and papers of [Gro-
mov,2009+], [Quillen, 1967], [Shelah, Cardinal Arithmetic], and, later, [Dwyer,Spalinski,2005].

©2010
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In Appendix we reproduce, in their entirety, a few pages from some of the sources we
use. We have no hopes to improve upon the expositions of the authors we cite!

The main body of the paper consists of a fairy tale of a fictional homotopy theorist
discovering the definition of the covering number; in the story we attempt to mention
explicitly every category theory yoga, intuition or trick we use.

A one-page summary of our definitions and results appears near the end(??) of the
introduction.

Definitions and theorems. We define (Def.1) a category St/Naam whose objects are
arbitrary sets, and label its arrows by (c),(f),(w) (Def.2); the category structure on
StNaam is equivalent to that of a quasi partially ordered set (rather, class). We then
define (Def.3) a full subcategory QJt N aam of St Naam such that the labelling induces
on (JtNaam the structure of Quillen’s model category (Lemma 5) where arrows la-
belled (c) are cofibrations, those labelled (f) are fibrations, and those labelled (w)
are weak equivalences. Lemma 5 is followed by a proof clarifying the structure of
@tNaam. Claim 3, Example 4 characterise some of homotopy notions explicitly in
terms of set theory. In §1.4 we introduce a slight generalisation of left derived func-
tors and cofibrant replacement applicable to function card : StNaam --» Ordinals
which is not a functor. Lemma 5 identifies the (generalised) left derived functor of
cardinality card : StNaam --» Ordinals or card : QtNaam --+ Ordinals (af-
ter cofibrant replacement) as the covering number L.card ({A}) = cov(A, Ry, Ry, 2).
Lemma 12 identifies a "finer” cofinality measure pp(A) = cov(A, A, 8y, 2) (for A #
N, ) as values of (generalised) derived functors. Theorem 13 uses new terminology to
list some known PCF bounds on the covering numbers. A discussion following The-
orem 13 hints on a connection between PCF and homotopy theory yogas/ideologies.
Particularly, we explain why to view Shelah’s bound cov(R,,, 8, R;,2) < R, asa
bound towards a Homotopy version of Generalised Continuum Hypothesis. In §1.3
and §1.0.4 we speculate on possibility of a connection to Gromov’s ergosystems.

Our use of set theory is intentionally naive; to avoid any problems, it is sufficient to
conduct all our constructions in an inaccessible cardinal or a Grothendieck universum.

How (not) to read this paper. ...

A person not familiar with homotopy theory may wish to start by reading the fairy
tale, reading background and small print as necessary. ..... A person familiar with ho-
motopy theory may wish to start by reading the one-page summary of our construc-
tion in the introduction, and the statement of the Theorem picking up the definitions
as necessary. Even such a person may find our notation not entirely unuseful.

©2010
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1.2. Generalities on Category Theory and Homotopy Theory
Category theory. “Combinatorially®, a category is a directed graph equipped [with

a notion of composition of some arrows, such that for every X EN vy L 7z , there 1s
a unique arrow h : X —Z called the composition of f and g, denoted h = fg. We
allow multiple edges between two vertices as well as loop edges leaving and entering
the same vertex.]

”A basic notion in the category theory is that of a commutative diagram. Firstly,
a diagram in a category C 1s a (usually finite) subgraph D in C, 1.e. a set of objects
and morphisms between them. A diagram is commutative if for every two object e,
and e, in D and every two chains of composable morphisms, both starting at e; and
terminating at e, , the compositions of the morphisms in the two chains (which are
certain morphisms from e, to e;) are equal.

“Importantly, axioms imply that every object comes along with a distinguished
identity morphism into itself, say id., the composition with which does not change
other morphisms composable with it, i.e. issuing from or terminating at this object. *

”The underlying principle of the category theory/language is that the internal struc-
tural properties of a mathematical object are fully reflected in the combinatorics of
the graph (or rather [the graph with the collection of commutative diagrammes]) of
morphisms-arrows around it.

”Amazingly, this language, if properly (often non-obviously) developed, does al-
low a concise uniform description of mathematical structures in a vast variety of cases.
5

Contract to a point all arrows which are isomorphisms in the category, to obtain
a skeleton set/graph whose elements/vertices are isomorphism classes of objects of
the original category. It is no longer a category as we cannot compose morphisms
uniquely. (As an example, consider the category of Sets (with arbitrary functions
as morphisms), and composition {e;, e,} LN {01,003} P, {e1,85}. For i an
injection and p a surjection, any endomorphism of {e;, e;} decomposes as RRLAES
for o an automorphism of the 3-element set.)

What do we mean when we talk about a property P of aring R, afield I, Lie group
L, ... 7 We mean (going down to set-theoretic basics) that for every R/, F', L isomor-
phic to R, F', L, resp., as a ring, field, Lie group, resp., the property P (makes sense
and) holds of R/, F’, L’ iff it holds of R, F', L. If the property P involves morphisms,
functions, etc, we adjust (implicitly) the notion of isomorphic accordingly.

3Next few paragraphs are taken from [Gromov,2009+]almost verbatim; even though, we eviscerated the few paragraphs we
cite for our purpose. As customary, any changes are marked like [this]. We apologise for not daring to bother the authors to ask
permission: our justification is that citing a in-text is, for all practical purposes, the same as inserting a link to the files which are
available online.

4”This may strike you as a pure pedantry, couldn’t one formally introduce such morphisms? The point is that it is not the
name but the position of this identity in the set of all selfmorphisms plays the structural role in the category, you can not change
this position at will. ([Gromov,2009+])

5”(Some mathematicians believe that no branch of mathematics can claim maturity before it is set in a category theoretic or
similar framework and some bitterly resent this idea.) ((Gromov,2009+])
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In other words, many(any?) mathematical theorem or definition about rings, fields,
Lie groups,... are isomorphism-invariant, i.e. do not distinguish between isomorphic
objects, although constructions involved most certainly do (the value f(x) does not
make sense for f a morphism(?) between isomorphism classes of objects). Put in yet
another way, a theorem or definition concerns the skeleton set/graph of isomorphism
classes ”with all extra structure which comes by performing constructions in the orig-
inal category(graph with the collection of commutative diagrammes).” ¢

Quillen’s Model category and homotopy theory. Take a category, label some of its
arrows with some or all of three letters ¢, f, w and, mimicking the construction of a
free group on letters of an alphabet’, force all (w)-arrows into isomorphism by adding
formal inverses. This means the following; see p.145,5§2.2 of [Gelfand-Manin]® for
details. For every (w)-arrow f : X—Y, add a new arrow f~' : Y—X in the
opposite direction. Further add as an arrow any directed path in the new graph. Call
two paths are equivalent iff one can be transformed into the other by finitely many
operations of replacing two consecutive edges X —/Y ——97 by their composition
when it is known, i.e. either f and g are arrows in the original category or ¢ = f~! or
f = g~*. Concatenation of paths provides their composition as arrows. Finally, define
a morphism(arrow) in the new category as an equivalence class of paths. There is a
functor from the original category to the new one sending an object into itself, and an
arrow into (the equivalence class of) itself (as the corresponding path of length 1).

In this way we get a category which we shall call a homotopy category of the
labelled category. Further insist that the labelling induces no immediate, obvious
further structure on the new category. This is somewhat vague; in particular, re-
quire the following. Say that an arrow X —Y in the homotopy category inher-
its label (x) (up to isomorphism) iff it decomposes (in the homotopy category) as
X @ Xy ﬂ Y] ﬂ Y where, as shown, X ﬂ X;and Y3 ﬂ Y are iso-
morphisms (in the new category), and X, ), Y] carries label (x) in the old category.
Require that each arrow inherits both labels ( f) and (c¢), and isomorphisms in the new
category, and only isomorphisms, inherit the (w)-label.

Albeit somewhat trivially, every category C can be labelled in this way: put (wcf)
on every isomorphism, and put (fc) on every arrow. For this labelling, the homotopy
category HoC of Cis C itself.

Quillen noticed that

Amazingly, this language of a labelled category has “sufficient generality to cover
in a uniform way the different homotopy theories encountered” if “properly, often
non-obviously, developed” to express “a large number of arguments that [are] for-

5Though we cannot justify relevance of this remark here, we wish to point out that it is consistent with ZFC that, in a
certain sense, any well-defined construction A — F(A) is close to being functorial, see [Hodges-Shelah, 2000](Naturality and
Definability) for an exact statement.

7"Except for set-theoretic difficulties, the category S~!C exists and may be constructed by "mimic[k]ing the construction
of a free group (see Gabriel-Zisman)” [Quillen, §1.12, p.12]

8For reader’s convenience, we reproduce this page in the appendix.
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mally similar to well-known ones in algebraic topology”, and that these “homotopy
theories” are the (non-obvious) structure the homotopy category does inherit.”

In fact, Quillen felt it necessary to give/formulate explicitly an “obviously unsatis-
factory” ”vague definition” of a homotopy theory associated to the labelled category;
his ”vague definition of the homotopy theory associated to a model category, namely
[was that of] the [homotopy] category HoC with all extra structure which comes by
performing constructions in [the labelled category] C.” By a model category, short
for ”a category of models for a homotopy theory”, he means the labelled category;
he gives very concise axioms explicitly and we reproduce his axioms in the appendix
and also give our graphical rendering of the axioms.!0 1!

Note the following parallel of homotopy theory and category theory described be-
fore. A mathematician(?) thinks of isomorphic objects as equivalent/the same for all
practical purposes. A homotopy theorists thinks of objects joined by an (w)-arrows as
equivalent/the same for all her/his purposes; s/he calls them weakly homotopy equiv-
alent. By adding formal inverses s/he forces (w)-arrows into isomorphisms, and these
(weak) homotopy types so obtained are the main object of her interest. As was just
pointed out, working with isomorphism types only is impossible; one needs to start
by picking a representative. Similarly a homotopy theorist notices with disdain that
to work in the homotopy category, she has to refer back to the “higher” level cate-
gory with the labelling: pick representatives there and do diagramme chasing in the
labelled category, not the homotopy category.

Particularly, a homotopy theorist feelings towards a non-homotopy invariant notion
are akin to those of a mathematician towards a non-isomorphism type invariant notion.

The extended quote from the preface of [Quillen, Homotopical Algebra], is:

but there were a large number of arguments that were formally similar to well-known ones algebraic topology,
so it was decided to define the notion of a homotopy theory in sufficient generality to cover in a uniform way the
different homotopy theories encountered.

10For reader familiar with terminology we note that we read weak homotopy equivalence for (w), cofibration for (), fibration
for (f), a cofibration being a weak equivalence, also called acyclic cofibration, for (wc), etc
U For reader’s convenience, we provide here the extended quotation from [Quillen, Homotopical Algebra,§0,p.0.4]:

The term “model category” is short for a category of models for a homotopy theory”, where the homotopy
theory associated to a model category C is defined to be the homotopy category Ho C with the extra structure
defined in 2-3 on this category when C is pointed. The same homotopy theory may have several different models,
e.g. ordinary homotopy theory with basepoint is ([10], [15]) the homotopy theory of each of the following model
categories: O-connected pointed topological spaces, reduced simplicial sets, and simplicial groups. In section 4
we present an abstract form of this result which asserts that two model categories have the same homotopy theory
provided there are a pair of adjoint functors between the categories satisfying certain conditions.

This definition of the homotopy theory associated to a model category is obviously unsatisfactory. In effect, the
loop and suspension functors are a kind of primary structure on Ho C, and the families of fibration and cofibration
sequences are a kind of secondary structure since they determine the Toda bracket (see 3) and are equivalent to the
Toda bracket when Ho C is additive. (This last remark is a result of Alex Heller.) Presumably there is higher order
structure ([8J, [17]) on the homotopy category which forms part of the homotopy theory of a model category, but
we have not been able to find an inclusive general definition of this structure with the property that this structure
is preserved when there are adjoint functors which establish an equivalence of homotopy theories.

The model category we construct, is not pointed.
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1.3. Our fairy tale

if a man bred to the seafaring life ... and if he
should take it into his head to philosophize
concerning the faculties of the mind, it
cannot be doubted, but he would draw his
notions from the fabric of the ship, and
would find in the mind, sails, masts, rudder,
and compass.

As a scholar, meantime, he was trivial, and
incapable of labor.

This section describes how our hero, who (unlike the authors of this paper) is
a homotopy theorist and who (like the authors of this paper) is not too bright, and
knows very little (if at all) set theory could have discovered PCF theory (had Shelah
not already discovered it). Whether our hero could have managed to do anything with
his discovery remains unclear.

Though not necessarily stupid, our hero is looking for simple - even simplistic
- clues, reminiscent of his home world of homotopy theory, in the alien world of set
theory he found herself in. Our hero’s lack of any knowledge of set theory (and having
to start his exploration at some point), is guided by his love for simplicity, puns and
syntactic analysis. Or perhaps our hero is an ergosystem device (see [Gromov,2009+])
performing a syntactic structure analysis of set theory books along the lines of 6 of
[Gromov, 2009+] with hard-wired model category diagram chasing.

His algorithm is, essentially, greedy. At every step he invents a simple task (indeed,
the simplest he can think of) visibly advancing his understanding and/or bringing him
to the goal of having a model category, e.g. by satisfying yet another axiom, some-
times looking back, correcting and readjusting his advancement as he goes. Most(all?)
of tasks and tricks he employs, are quite standard in category and homotopy theory.

Our hero views axioms of a category, a model category as rules to draw arrows,
as recipes for action. For example, he has a rule: given arrows A— B and B—C,

draw an arrow A—C'. Axiom M1 of model categories (explained below) is for him

the following rule : given arrows A— X, B—Y,an A & B carrying label (wc),

and an arrow X 9, Y carrying label (f), draw the upward “diagonal” arrow B— X

(and the downward “diagonal” arrow A—Y provided simply by composition). In
the same way he views the definitions he makes. (This “functional semantics” of
axioms of a model category works well for categories being quasi posets where every
diagramme is commutative: in this case, e.g., our hero does not have to keep in (his
feeble) mind that A— (' is the composition of arrows A— B and B—(/, and not
some other arrow.)

Our hero’s thinking i1s very limited. We say he understands a concept, he finds a
concept amazing if he can represent it as a picture of a labelled commutative dia-
gramme common in homotopy theory; our hero likes to make himself amazed. He is
not very good with quantifiers and logic, and perhaps he has had no chance to use
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much of either during his journey we describe.

Our hero’s level of thinking seem to never raise above the level exhibited in the first
and second solutions of von Neumann bird puzzle suggested by [Gromov, 2009, p.37],
and we do wish to speculate that he seems to think in a way ’a baby/animal ergobrain
would do i1t’. No less tempting is it to speculate that he performs the “ergosystem”
analysis described in §6 of [Gromov,2009+]. 12

We finish the description of our hero by a remark that our hero deals with a rather
degenerate category where there is at most one morphism between any two objects.
Curiously, this makes the following Gromov’s argument not apply to this case: "The
category/functor modulated structures can not be directly used by ergosystems, e.g.
because the morphisms sets between even moderate objects are usually unlistable.”

We switch back to the formal we’ whenever possible.

1.3.1. Pictures of commutative diagrammes as sentences in ZFC
Define a coloured labelled sentence as the following data:

(a) a sequence of colours r1, ..., r, and quantifiers ()1, ..., @,

(b) a sequence of labels, e.g. (¢), (w), (f), ..., and special labels », « for free vari-
ables, and labels -, .. for "because” and “therefore”.

(c) adirected graph whose edges are coloured in colours 4, .., r,, equipped with a la-
belling assigning each edge some (or none) of the labels (c), (w), (f), ..., », <.

An important convention is that dashed arrows are always existentially quantified.

Given a category C' with a labelling on morphisms, we interpret a coloured labelled
sentence as a first-order formula in the category (TODO: Definition) representing the
corresponding commutative diagramme with arrows quantified over according to the
list of colours and quantifiers.

In the “functional semantics”, we interpret signs °.*, .. as “given a commutative
diagramme as shown, add the label following the special signs *.-,.".”. A commuta-
tive diagramme representing an V3-formula, reads as a rule “give the commutative
diagramme of solid arrows labelled as shown, add dashed arrows and their labels”.

For reader’s convenience, we quote a couple of paragraphs from an extended discussion of [Gromov,2009+] p.37, §1.8.

A bird flies back and forth between two trains travelling toward each other at 40 and 60 km/h,
respectively. The initial distance between the trains is 100 km and the bird flies 100 km/h. What 1s
the distance covered by the bird before the trains meet?

[Solution] 1. Imagine, your English is poor and you missed all words except for the numbers: 40, 60,
100, 100. Which number would you give in response? Obvi- ously, the best bet is 100, even if you
miss the third hundred=40+60. [Solution] 2. There was only one distance-number in the question =
100 km; therefore this is likely to be the distance-solution. (This remains correct even if the distance
was 150 km.) ([Gromov,2009+])

These 1 and 2 are how a baby/animal ergobrain would do it; you need = 0.3 sec. in either case. And
it is not as silly as it may seem to a mathematician: if 100 km stands for a whiff of a predator, you

12 have no time for computing the total length of its expected jumps.
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1.3.2. The journey begins
Our category.

The lifting property. Commutative diagrammes as ¥3-formulae. Quillen identified
the lifting property as often used in algebraic topology and “any homotopy theory en-
countered”, to concisely define basic notions and tools, and moreover, proving things
often reduces to diagramme chasing using the lifting property of various arrows. Be-
low Fig.0( £ ) we give some examples of properties obtained simply by doing the
lifting property wrt a fixed morphism (in items (e) and (f) this needs to be done twice).

@) T2 @R W ey — @ I
\q;.mo/,/ Y | Pl Y i 7 )
— — C\"i z s {I/-'—'—-—!

&) {03 —— V @ ¥ —T & {3 —>Y

A ;
/ i e (MIW £(ﬁ:ji / = /s 4 {?Wj)
P g £ //

foy — B Y 7 B e

— 5 3 @) — {enn)}
@) AR e nee Y—
///.L J' ) //;' L 3_ o

i3 2 13 (1

Fig.0( £ ). Read a diagramme as an V3-formula with parameters: for the arrows labelled » or «,
the following property holds: "for each commutative diagramme of solid arrows carrying labels as
shown, there exists dashed arrows carrying labels as shown, making the diagramme of all the arrows
commutative” (a) Isomorphism. In a category an arrow is an isomorphism iff it has (either left or
right) lifting property wrt itself (and consequently (a’) any other arrow). (b) an arrow is injective
iff it has the right lifting property wrt {:,-}—{-} whenever(=in most categories where) the latter
notation/arrow makes sense. (¢) an arrow is surjective iff it has left lifting property wrt {}—{:}
whenever(=in most categories where) the latter notation/arrow makes sense. (d) Let I = [0, 1] be the
unit interval of the real line, and let 0 € [0, 1] be its end point; the morphism V— B is a covering
of topological spaces iff there is always exists a unique lifting arrow /—V making the diagramme
commute. (¢) an object I is injective iff for each injective arrow X —Y and any arrow X —1,
there exists an arrow Y —1I. (f) dually, an object P is a projective object, e.g. a free module, iff
for each surjective arrow X «— Y and an arrow X «— P, there exists an arrow Y «— P.(g) a
topological space T is connected iff 7'—{-} has the right lifting property wrtto {-,-}—{-} in the
category of topological spaces) (e) this diagram shall become clear later; it says that a topological
space T' is compact iff every continuous map T'—1R factors via an interval [—n, n] for some n € Z.

In pictures, an arrow A—B has the (left) lifting property wrt X —Y, denoted
A—B L X— Y, iff
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i et e i
4 \\//P -.-—-3
RS

Fig.1( £) The diagramme reads: for every pair of horizontal arrows A— X and B—Y making
the diagramme commutative, there exists the lifiing arrow in the diagonal direction B— X and the
composition arrow A-—Y making the diagramme commutative. The composition arrow A——Y
exists in any category simply by composition. We describe this situation by saying that the arrow
B—Y lifts 10 B—X.

The journey begins. Our hero suddenly finds himself in the alien world of set theory.
Everything is new to him; he is desperate for signs of a familiar homotopy world, for
any signs of Quillen’s model category formalism.

Bewildered and lost, our hero - who has a strong belief in the all embracing de-
scriptive power of the lifting property - desperately looks for its familiar pattern within
the alien world of set theory. At this stage, as a new arrival, his abilities are limited to
syntactic analysis: he looks for any syntactic construction occurring (more than once)
and resembling the lifting property. He runs several times into arguments similar to
the following argument:

[f you represent a set as a union of an increasing chain M, € M, C M, C ..
(i.e. choose a filtration of a set) and take finitely many clements of the union U, M,,
then you infer they all lie in a single element of the chain. (todo: can one get rid of
set theory terminology completely, e.g. does this work if you replace "taking a union’
with "performing infinitely many steps..’)

Our chap draws a diagramme:
> SRSV 2% T B L B

A
Lis B

- - U\ ol W o "". ~
e ST

Fig.2( A ) Our hero considers this diagramme to informally represents the set-theoretic argument
described above, and at the same time resembles a lifting property diagramme.

Our hero is happy to observe that this diagramme looks like a lifting property
diagramme, a first sign of a familiar word: vertices/arrows on the left and right sides
have special properties (being finite or taking the union of a chain) while horizontal
arrows seem to be rather arbitrary (lie in). He proceeds to build up on this observation
to make the diagramme to represent a “honest’ formal commutative diagramme in
a category. So far he knows that the bottom arrow a1, .., ax— U M; is supposed
to mean that every a; lies in the union UM;; the right vertical arrow is supposed to
mean taking the union, and the diagonal arrow is supposed to mean that all the a,

©2010



http://corrigenda.ru/by:gavrilovich/what:writing-in-progress 17

lie in a single element of the chain. Standard set-theory notation suggests to think
of a chain as a set of its elements. But the right arrow becomes {M;},— U M,
and it’s slightly strange e.g. when the chain consist of a single element, taking union
does nothing and the arrow seemingly does something. So think of the union as a
singleton set with the union being its unique element. The €-relation is not transitive
and seems not to fit into category-theoretic thinking, unlike the relation C. This leaves
two options for the bottom arrow ay, .., a, —UM;: either {{a1}, ..., {an } }—{UM;}
or {{a1,...,an} }—{UM;}.

The diagramme now becomes
/f/ = i MA &
7

Vs
&

Vo, BNy o .,OIK%%/'——ﬁ TUME&

Fig.3( £ ) This is a lifting property diagramme in the category where objects are arbitrary sets, and
X —Y iff every element of the antecedent set X is a subset of some element of the succeedant set

Y,

In the diagramme, an arrow X —Y reads every element of the antecedent set
is a subset of some( or every) element of the succeedant set. However, in a category
there must be an identity arrow { M; };—{M; };, and this excludes the second “every”
interpretation (because every M; is a subset of some M; but not necessarily a subset
of each M;).

In a category, an essential part of structure is the notion of composition of arrows;
how can we compose these arrows ? An easy check establishes transitivity: if X —Y
and Y — 7, then X — Z. With this interpretation of an arrow, there is a unique way
to draw an arrow from a set X to a set Z; so define the unique arrow X —Z to be
the composition of the unique arrows X —=Y and Y —Z.

So our homotopy theorists has found himself a category where the above diagram
describes an actual lifting property. Moreover, any diagramme in the category that
exists, commutes, and this makes the journey of our hero so much easier!

Following his gut feelings, our hero tries to investigate lifting properties of some
simple arrows in the new category, and joyfully observes, that combining simple set
theoretic properties, with lifting diagrammes quite often results in other set theoretic
properties he has already run into.
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B /xﬁA‘{(‘--‘(ﬂ)X A N : //f
{slau/fﬂfjf} TA%@E/—:—?‘\L ml 1 iulﬂ

Fig.4( £ )
UX) 0—{{a}} £ X—{Y}forallaiff Y = UX := Liex 2
(lim) Y is a directed limit/union of X iff { A, B}—{AUB} K X—Y forall A, B

(fini) for A C B, B\ A's finite iff {A}—{B} < {M;}ier—{Uier M;} for any increasing
chain M; (i.e. M; € M; or M; C M, for every i, 7)

Of course, our hero has to use set theoretic concepts (such as linearly ordered sets,
or - given a set A - form the set {A}, but other than that he is quite satisfied. The
world of set theory is no longer totally alien to him as he realises that in the new
world objects still form a category and people apply the lifting property to define new
concepts from old ones. So he is happy to define:

Definition 1 (category StNaam) Objects ObSt Naam are arbitrary sets. In St Naam,
marphisms are unique when they exist, and there is a morphism X —Y iff Vz €

X3y € Y(z C y). Composition of morphisms is defined by requiring that that all

diagrammes that exist, commute. (In fact this follows from the uniqueness of mor-

phisms) -

1.3.3. Constructing a model category labelling.

With these tools in hand, the labelling of arrows can now proceed almost axiomat-
ically a task on which our homotopy theorist now embarks. What he is trying to do
now, is a well-known construction of a cofibrantly generated model structure starting
by defining the classes of generating cofibrations and generating cofibrations which
are also weak equivalences.

Now we embark to do the labelling. We introduce the Axioms of a model category
when (and if) we need them.

Two lifting properties. Axiom M1. Quillen’s axiom M1 requires that any (c)-arrow
should have the lifting property w.r.t any (wf)-arrow, and dually (interchanging (f) and
(c) labels and reversing the direction of every arrow), that any (wc)-arrow should have
the lifting property wrt any (f)-arrow.
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Y —— ==
3 —-- A A
@ 7 |uh ol 7 [
it = e

Fig.M1( A ). For classes (a) and (b) of arrows, let (a) £ (b) denote that for every a € (a) and
b € (b), it holds @ A b. Then these diagrammes read : (¢) X (wf) and (we) £ (f) where
(e), (wf), (we), (f) denote the classes of arrows labelled (¢), (wf), (we) and (f), resp.

Labels (we) and (f)."Dual’s dual argument. Our hero first ponders which arrows to
label (w). In algebraic topology (and in Quillen’s model categories) these correspond
to morphisms called weak homotopy equivalences, and indeed are thought of as some
sort of equivalence, in the sense, as explained above, that our homotopy theorist is
only interested in properties preserved under this weak equivalence.

What is the simplest thing to do in set theory that never matters, particularly in a
theorem or a definition ?

Adding a single element to a single set seems something basic and common, and
seldom, if ever, matters in set theory; this idea is short enough to be stumbled upon
by for our hero, and its connection to our hero’s inner world of model categories is
explicit enough to be recognised as such immediately. In our notation this corresponds
to the arrow {{a, b, ...} }—{{a,b, ..., e} }. So it is reasonable to think of these arrows
as some sort of equivalences, and therefore put (w) on these.

But we have already seen somewhat similar arrows in the lifting property Fig. 1-
3( £ ), Fig. 4(lJ). Our hero is aware that the arrows {{a,b,...}}—{{a,b, ..., e}}
appear on the left side of the only lifting property diagramme he has seen so far! He
knows that in Quillen’s axioms, arrows appearing on the left side of a lifting property,
are always labelled (c) (for example, in the both diagrammes of the Quillen’s axiom
M1 the arrows on the left are labelled (c¢)). That makes him/her add label (¢) onto
these arrows.

Now that we have put label (wc) on some arrows, we might put (f) on all arrows
which have the right lifting property wrt to all arrows labelled (wc).

Now put label (wc) on all arrows which has the left lifting argument wrt to every
arrow already labelled (f). We might continue and try to put (f) on some more arrows
but our hero would not. The following claim is an innate knowledge to him/her, but
we do the proof.

Claim 1 ((wef)) The labelling defined satisfies M 1{wef). If we add labels (we) or (f) 1o any arrow
that does not have them already, M1(wcf) is no longer satisfied. (Axiom M6a) An arrow is labelled
(f) iff it has the left lifting property wrt any arrow labelled (we). An arrow is labelled (wc) iff it has
the right lifting property wrt any arrow labelled (f). All isomorphisms are labelled (wcf).

Proof. The argument is the same as the one showing that, for a vector space V, the duality V™ =
V*** always holds. Let (wec)g be the class of arrows labelled (wc) at the first step, ie. (we)g =
{{A}—{A U {a}} : Aisaset}. Let (f) := ((wc)o) <« be the class of all arrows f such that
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(we)o A f,and (we) = “(f) = “ (((we)o) < ). Continue (f)2 == (we) « . Now do the
V* = V" .argument: as (we)o £ (f), we get (we)o € (we) and infer by duality (f) 2 (f)2.
By construction (we) £ (f).ie. (f)2 = (we) « 2 (f). We are done. By definition. if we add
an (wc)- or (f)-arrow while preserving M1(wcf), it must lie in “ (f) and (we) « , resp. But we
added these arrows already: this proves the second claim. The third and forth claims follow from the
second one. The last claim holds as an isomorphism has both left and right lifting property wrt any

arrow. TA‘S . TA,S ﬁ
Pk
(w9 wy ok [Pl )
/7 sy
TAuﬁﬁK\ TAvsaty —

Fig. M1 (wc-dual). These three diagrammes represent the three steps taken in the labelling defining
(we)- and (D-arrows.

Meantime, our hero feels happy : he grokkes '* the concept of a finite set — that’s
when {0} 2% (A}

Labels (c) and (wf). Now we see whether we can extend the labelling to satisfy
M1 (cwf). In a model category, we need to have enough enough labels (c¢) and (f), so
that, when factored out by (w)-arrows, in the homotopy category every arrow inherits
both (f) and (c) labels. (We said this in the introduction and this is implied by Quillen’s
Axiom M2). So far this is not true: no arrow in the homotopy category inherits a
(c)-label as we have not put any yet; all (wc)-arrows get contracted. So we have to
continue and go back to our hero...

Meantime, our hero heard a lot of talk about sets of equal cardinality, and put (c) on
all arrows {A}——{ B}, card A = card B trying to get to grips with this. Alas, belat-
edly he noticed that his (wc)-arrows {{a, ..,b}}—{{a, .., b,c}} between singletons
of finite sets, do not fall in this class: indeed, for finite sets A,B, card A = card B
iff A = B. Or perhaps he has not give it a thought (he tends not to think much), be-
ing preoccupied trying to understand what countability is—apparently a very useful

PThe word 1o grok is taken from hacker’s slang. Here is the definition: from [Jargon File (4.4.4, 14 Aug 2003)]:
grok /arok/, /arohk/, vt.
[common; from the novel Stranger in a Strange Land, by Robert A. Heinlein, where it is a Martian
word meaning literally ‘to drink” and metaphorically ‘to be one with’] The emphatic form is grok
in fullness. 1. To understand. Connotes intimate and exhaustive knowledge. When you claim to
‘grok’ some knowledge or technique, you are asserting that you have not merely learned it in a
detached instrumental way but that it has become part of you, part of your identity. For example, to
say that you "know" LISP is simply to assert that you can code in it if necessary — but to say you
"grok™ LISP is to claim that you have deeply entered the world-view and spirit of the language, with
the implication that it has transformed your view of programming. Contrast zen, which is similar
supernal understanding experienced as a single brief flash. See also glark.
2. Used of programs, may connote merely sufficient understanding. “Almost all C compilers grok
the void type these days.”
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concept! His (only) way of understanding a concept, is, of course, is by putting some
labels, and his freedom is severely limited now — he has only about (c)-labels to put
left. So he puts (c) label on all arrows {#} —{A} for A countable.

So we label these arrows (c) and extend the labelling as we just did above. In
symbols,

(c)o := {{A}—{B}: A C Baresets, card B = card A}JU{)—{B} : B aset, card B < R¢},

and (wf) := ((c)o) <,andfinally (¢) := < (wf) = “ (((¢)o) < ). Evidently (wc)y C
(¢)o and therefore by K -duality (f) D (wf) and (wc) C (c).

Note that an arrow {A}——{B} acquires the label (c¢) iff card B < card A + R,
(and A € B). This follows from the observation that {} —{B} £ X—Y implies
{A}—{B} K X—Y forany A C B and any X —Y.

g TAY -
mré@:mdﬂll-cc) Card AclCy |79 ©

103 7 A%

Fig. M1(c-dual). These three diagrammes represent the three steps taken in the labelling defining
(we)- and (f)-arrows.

"(ﬂ) o (s)

S

We state some properties of labelling just defined.

Claim 2 ((cfw)) The labelling defined satisfies M1{cfw). If we add labels (¢) or (wf) to any arrow
that does not have them already, M1(cfw) is no longer satisfied. (Axiom M6b) An arrow is labelled
(c) iff it has the left lifting property wrt any arrow labelled (wf). An arrow is labelled (wf) iff it has
the right lifting property wrt any arrow labelled (c). All isomorphisms are labelled (wcf).

Labels (w). Axiom M2: (w)=(wc)(wf). The composition of two (w)-arrows is required
to be an (w)-arrow; e.g., this is implied by Axiom M2(2-out-of-3). So we put labels
(w) on the arrows that are compositions of a (wc)-arrow and a (wf)-arrow.

e W)

Fig.M2(w) In the new labelling, we add a label (w) Lo every arrow decomposing (wc)(wl).

We need to check that at this step we introduced no new (wf)- and (wc)-arrows.
We know that an arrow carries label (wc) iff it has the left lifting property wrt any
(H)-arrow. As (we) = “(f) and (wf) = (c) © by construction, it is enough to show
that (we)(wf) N (¢) £ (f) and (¢) K (we)(wf) N (f). The figure 5(w) depicts the
proof.
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M3. Fibrations are stable under composition, base change,
and any isomorphism 1a a fibration.
i
—Coflbrations-are stable-under - composition;eco~base change;—and—

any iscmorphismtis a cofibration.

Fig. 1: Axiom M3 as it appears in the book of Quillen (1967).

But let us go back to our hero. Can s/he do this proof ; does s/he understand the
formulae (we) = “ (f) and (wf) = (c) “ ? Yes, but only in a rather practical sense:
to conclude that an arrow in a commutative diagramme is labelled (wc) or (wf), add
a new lifting square including that arrow, and prove the lifting property for the new
square.

PN O S O | =
. @l / ’? ) © < | €) ——-
wh) g -—-———-—)w ‘r ___--———“;]

Fig.5(w) (a) first draw the diagramme how s/he added (w)-labels (b) to use (we) = “ (), draw an
(D-arrow and the lifting square (c) find the lifting arrow in the lifting square by using all available
lifting properties.

1.3.4. Axioms M6, M1, M3, and M4 in St Naam

Axiom M6. (f) = “(we), (¢) = (wf) <, (w) = (f) © “(c), and (wf) = “ (c), (we) =
(/) “, (w) = (we)(wf). Theaxiom M6 states that (f) = “ (wc), (c) = (wf) <, (w) =
(/) “ “(c). To our hero it is clear that the axiom M6 is satisfied by construction, and
that "it is clear that M6 implies M1, M3, and M4”. (Quillen,§5.2, Remark 1 following

the introduction of M6). The axiom M6 has been verified explicitly above. Let us now
verify the axiom M3; we skip the others.

Axiom M3. Now our hero embarks to check Axiom M3. He repeatedly uses the
formulae (f) = (we) © and (¢) = (wf) ~.

) > T
o : Py AT | e
— o N | s |l
o \i‘ .
(o)

(o
Figure M3f. (a) (f)-arrows are stable under composition (¢) Any isomorphism is labelled (f).
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T A
vad \ awy | B }
=9 - = /7—

Figure M3c. (a) (¢)-arrows are stable under composition (c) Any isomorphism is labelled (c).

—Vv

—_——

e

——

Figure M3f. (b1) the vertical arrow on the left side, is the base change, i.e. pull back, of the arrow
on the right side (b2) (f)-arrows are stable under base change

"'_.—_?—— E——
T
© ¢

Figure M3c. (b1) the vertical arrow on the right side, is the cobase change,i.e. push out, of the arrow
on the left side (b2) (c)-arrows are stable under co-base change

Summary. Self-consistency of the labelling. So far, we put anumber of labels (w),(¢).(f)
on the arrows of the category StNaam. We have done in three steps possibly inter-
fering with each other and we need to check that everything’s ok. (**sorry, 1 seem
unable to spell things precisely at the moment. what follows is utterly unreadable and
useless...**). Let us check that the labelling satisfies Quillen’s axioms M1 and M6.
This follows from the construction.

First notice that (we)o € (¢)o and consequently (wf)o € (f)o. Now forget for a
moment the last step of adding (w)-labels; then every (w)-label on a (wc)- or (wf)-
arrow was put as a part of a (wc)- or (wf)-label on the same step. Consider a (wc)-
arrow and show that (wc)-label was put on it at step 1 ((we) £ (f)): otherwise both
(w)- and (c)-labels were asquired on the step 2((c¢) £ (wf)), i.e. the arrow acquired
(wcf)-label at the 2nd step; in particular, this implies it has the left lifting property wrt
itself, and is then an isomorphism. Finally this implies that the arrow was put (wcf)-
label also at the step 1((we) K (f)). Analogously we show that the (wf)-label was
put on an (wf)-arrow always at the step 2((¢) £ (wf)). (This explanation seems
utterly unclear and useless..)
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1.3.5. Homotopy/diagrammatic meaning of set-theoretic concepts

Our hero recounts his trophies: with great feeling of fulfilment he observes that
(we)

he grokkes finiteness ( {} —= {A} ), countability {} 9, { B}, and equicardinality

{A} L {B} for infinite sets A C B. He has an uneasy feeling of understanding

of what’s regular for an ordinal ( A Lici {A}) (but doesn’t know what an ordinal

is.) Ile also has an idea about unions (Y = UX := Ugexz iff {}—{{e}} K
X——{Y'}) and directed systems of sets (X is a directed setiff {A, B}—{AUB} £
{X}—{universe} forall A, B)

He sees the typical argument about long chains as applications of Quillen’s Axiom
Ml1. e.g. {} s {{a1,..,ax}} < {M}; 0, {U; M;}—every finitely many ele-
ments of the union of an increasing chain are contained in one of its elements—, and
{M;} i {B} K {M}; fwh), {U; M;} (if you split a set of sufficiently inaccessible
cardinality into a chain, each small set is contained in an element of the chain). '

While Alice is still feeling amazed, gratified or fideistic, we summarise the new
definitions and spell out their meanings in set theory.

Definition 2 ("model category” “cofibrantly generated” labelling) — (f) anarrow X —Y is la-
belled (f) iff it has the right lifting property w.r.to any arrow {A}—{AU {a}}

0 s

' »Cuky
> 4
JALTa)) —

L(S)

(wf) an arrow X——=Y" is labelled (wf) iff it has the right lifting property w.rto {A}—{B} for
card 13 < card A + Ny

VR 7\ p—

cord & s ard A+ (o P ()

163 * S
L{wf)

(we) an arrow A— B is labelled (we) iff it has the left lifting property w.r.to any arrow labelled

()

HTODO: use interest/amazement to parallel gromov's terminology, e.g.” Thus various degrees of interest/amusement and
surprise/amazement are rough indicators of a relation of the structure of your egobrain to the in- formational structure presented
in the flow of signals. (If you are bored by a sequence of letters, this may be because you are not familiar with the language or.
on the contrary, il you were obliged to memorize this sequence as a child at your school lessons.) ™
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i
#

P
lwl) £

—

L{twe)
(c) anarrow A— B is labelled {¢) iff it has the left lifting property w.r.io any arrow labelled (wf)

- Y

s

(k)

ey, & % Y
VAR,
L{c)

{w) an arrow A—=Y i5 labelled (w) iff it can be decomposed as A— B = X —Y where the
first arrow is labelled (wc) and the second one is labelled (wf)

)
(e \

L{w)

Claim 3 (labels (¢)(O(w)(wel(wh) in ZFC) In words these definitions mean:

(f) an arrow X —Y is labelled (f) iff for every x € X U {{}}. y € Y and a finite subset
Yis s Yn € y there exists 2" € X such that (x Ny) U (g1 .-y } € 2.

(wf) an arrow X ——Y is labelled (wf) iff for every x € X U{{}}, y € Y and a subset y’ C y of
y such that card y’ < card (z M y) + Vo, there exists ' € X such that y' C 2'.

{we) an arrow A— B is labelled (we) iff every b € B is contained, up to finitely many elements,
inana € AU{{}}. b\ ais finite.

fc) an arrow A—— B is labelled (c¢) iff every element of B of cardinality A is connected to an
element of AU {{}} by a finite 2\-connected chain of elements of B; a finite = A-connected
chain is a finite sequence by, ..., by, such that card (b N b1 )+ Ry = Aforall 0 < i < n.

(w) an arrow A—Y is labelled (w) iff for everv a € AU {{}}. y € Y and subset y' C y,
cardy’ < card (a N y) + Ro, there exists a’ € A such that y' is contained in a’ up to finitely
many elements.

Let us prove this claim although we do not really need it. Items (f) and (wf) are straightforward 1o
check. To prove (wc), notice that it is straightforward to check that if if every b € B is contained. up

to finitely many elements, inan a € A, then A—B £ X % ¥ for any arow X 2% ¥ labelled

(f).
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To prove (we) and (c), first definc objects
A:={(an b)Ubfini : a € A,b € B,byin: C b finite}
B:={b:bCb € B,bisconnected to an element of A by a finite >card b-connected chain of elements of B}

[t is straightforward to check by definitions that arrows A—— A A, Band A—B &0, B are
labelled as shown, and that A— A and A— B satisfy (wc) and (c). Using items (f) and (wf). it is
straightforward to check that any arrow as in item (wc) has the left lifting property with respect to
any arrow labelled (I); induction on the length of the >A-connected chain shows that any arrow as in
ilem (c) has the left lifting property with respect to any arrow labelled (wf). To finish the proof, we
need to show that, conversely, any arrow A— 3 that has the lifting property with respect to all ()
or (wf). is labelled (we) or (c), respectively. In particular, there arrows have the lifting property wrt

to A <L Band B 0 B, ie. B—+A— B and B—B— B and thercfore B is isomorphic

to A or B, and therefore A—B satisfies items (wc) and (c), resp., of the claim.

As a corollary. we record that we proved axmm M2 ofmodel categories, i.e. that every arrow A— B

(1we)
decomposes as A --+ A’ h243 Band A -5 A’ --+ B (recall an arrow being dashed means an

existential quantifier).
It is more convenient to prove (w) by pictures. First we give a picture representing the characteri-
sation in item (w), and then we prove the item by pictures combining set-theoretic and categorical

notations. (‘,q,...- ——= >
A ) )y —
fay'y —2 A A ey () &T“ - - Ay
% ey
© /'&@/ Jes © P T
// \ I’ ~—7 X &
N\ 1
N ® 'llm, /2’ @ [ ‘
Ry ¥ T3 W ——

Fig. (w) (a) the characterisation of (w) (b) use M2; we need to prove that X' 7. ¥ (¢)
add "arbitrary” black solid arrows; by M6 or the definition of the labelling, it is enough
to show that we can always add the dashed black arrow. (d) add arrows successively
following the legend on the right-hand side.

lixample 4 (M2) Lowenheim- Skufem theorem says that every morphism {A}—{M} fora M a

model, decomposes as {A} LN T . LR —— {M} where My is a collection of models. This

is a modification of Quillen’s axiom M2,

(M1) Fix a monster model M of a first-order theory, An elementary submodel M4 < M is prime
and minimal over a set A C M iff the arrow {A}—{Ma} A {N}—{B} for any
(elementary sub)model N < M and any set B C M. In words the lifting property means
that for every elementary submodel N < M, A C N implies Ma C N, i.e. the definition of
minimality. By Baldwin-Lachlan's theorem, these always exist under certain conditions. Thus,
Baldwin-Lachlan’s theorem reminds M1.

(Adjoint) Baldwin-Lachlan's theorem is a typical claim about existence of a right adjeint functor. Con-
sider a formula @ : Naam(T)— Naam as a covariant functor from the category of models
of a theory T (morphisms being inelusions) to the category Naam of sets (morphisms be-
ing inclusions). By definition, ¢ is right adjoint 1o a functor My : Naam—sNaam(T) iff
there is a bijection Homygan(A, o(M))—— Homyaamir)(Ma, M) for any set A € Naam
and a model M € Naam(T'), and, moreover, the bijection is functorial in A and M. However,
Hompaan(A, p(M)) has a unique element iff A C (M), similarly for Homyagairy (M, M4):
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therefore the bijection is functorial if exists. That is, A C @(M) iff Ma € M for any A, M.
That is, the model M 4 is prime and minimal over A.

(UX) 0—{{a}} £ X—{Y}forallaiff Y =UX =) 2
(lim) Y is a directed limithmion of X iff {A, B}—{AU B} A X—{Y}forall A, B

(fini) for A C B, B\ Als finite iff {A}—{B} A {M:}ier—{UiciM;} for any increasing
chain M; (i.e. M; C M, fori <y 3,1,7 € 1).

1.3.6. Do we have a model category? Axiom MS5(2-out-of-3)

Our hero knows that axiom M5 are essentially the only ones he needs to check.
As we saw, the axiom M6 is satisfied more-or-less by construction of a cofibrantly
generated structure. In presence of MO not only for finite diagrams, i.e., assuming
existence of limits and colimits of infinite diagrammes, also axiom M2 is implied.
(However, infinite limits and colimits may involve set-theoretic difficulties, and we
avoid this argument.)

Axiom M5(2-out-of-3). The statement. Axiom M5 says that if two of the morphisms
g: X—Y, h:Y—Z gh: X—Z are labelled (w), so is the third, and that any
isomorphism is labelled (w). The second claim is by construction, and we only need
to verify the 2-out-of-3 property.

Axiom MS5. Analysis in StNaam. First he tries to check this for arrows labelled (wf)

and (wc). So he draws
_ | © ) (é’_%/
@ e (2 \ 2 (e / a0 |
/ wh & " L we / /7 \ub
(@ /\ ‘ /4

tud)

wo 3 Wi
- s \) f
e e ml >

Fig. M5 (a) this proves that fg € (w/f) implies f € (wf): add the red arrows and establish the
lifting property. (b) an analogous "diagrammatic” proof of the fact fg € (wc) implies g € (wc).
(c) follows from the set theoretic characterisation of (we) in Claim 1. (d) this proves f,g € (wf)
implies fg € (wf). (e) this proves f, g € (we) implies fg € (wc). (1) our hero gets stuck proving
this: if g, fg € (wf) then f € (w) (g) to prove (f), our hero needs to draw the dashed arrow
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Then he looks at diagramme Fig. M5(g). After failing to prove it, he tries to con-
struct an example of such a diagramme. The easiest way is perhaps to take the bottom
arrow 1o be an identity and use the coproduct construction (Fig. M5(cx wf)(g:a)). Re-
call that in St Naam, the coproduct is just the union.

W~

<lg,

(€3
Z ¢,

. can

©

(P T 6h fel (5:<)

Fig. MS(cxwl). (g:a) take the g-vc!‘lcx to be the coproduct of the top left and top right vertices.
(g:a’) the previous diagramme expanded when the leftmost (c)-arrow is a (¢)e-arrow: card B <
card A4Np, A C B, and [B]‘N’ denotes the set of all countable subsets of B. (g:b) He observes that
MS5(2-out-of-3) implies that there in (g:a) and (g:a’), the bottom vertex is contained in the coproduct
up to (wc), and that this is false in (g:a’) unless either /3 and A differ by finitely many elements (i.c.

{A} dwe, {B})or B is countable (i.e. 4 {Bh.

Our hero observes that M5(2-out-of-3) implies that he needs to “forbid™ arrows
appearing in Fig. M5(cxwf)(g:a’) unless either B and A differ by finitely many cle-

ments (i.e. {A} % {BY}) or B is countable (i.c. § < {B}).

How to do that? It is not option for him to use negation explicitly, it feels so unnat-
ural to him; in particular, a definition using negation can hardly be used in diagramme
chasing (and, we remind, our hero thinks by diagramme chasing). His first move is
to use the lifting property: "forbid” these arrows by requiring the lifting property
w.r.to them. This way, those arrows which are isomorphisms, are not "forbidden™.
We remark that this provides a useful way to use of negation in the category theory
framework.

To summarise, our hero makes the following definition.

Definition 3 (a model category QtNaam) The objects of the category QtN aam are
those X € ObStNaam such that

1AT0 {LeB: Lol

- ]
(b Ce) Tl e &

Fig. QtNaam (a) this is the "diagrammatic” definition (b) this is an equivalent definition (¢) this is
yet another equivalent definition expanded in set-theory notation

@

The structure of a model category on QtNaam is provided by the labelling inherited
from StNaam.

Our hero ponders whether M5(2-out-of-3) holds for the category QtNaam. Perhaps
he is able to prove this by diagramme chasing coupled with basic set theory; perhaps
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not. In any case, he shall not spend too much time trying to prove it; he shall believe in
this unless he find a counterexample, and that won’t happen, as the following lemma
shows.

Lemma 5 The category QtNaam satisfies the axioms of a Quillen’s model category.

We give a proof that clarifies the structure of Qt/Naam. It is enough to prove that QtNaam is a
closed model category, i.e. satisfies M0, M2, M5 and M6. (It is known that axioms M3 and M4 are
implied.) We verify M0, M1, M2, M6, M5 in that order.

StNaam vs QtNaam.

Definition 4 For X,Y € ObStNaam, define X 2Y iff

(i) the picture holds: ¢ <) -_—— - 3*41 )
(TRl
iX
¥ Ly ©
(c)

(ii) for any countable set L (i.e. 0 —= {L}), 3z € X (L \ z is finite) iff 3y € Y (L \ y is finite)
Foran X, let & (X" : X — Xo L x Lo 31 x}.

Claim 6 (QtNaam vs StNaam) (a) X € ObQtNaam
(b) XX, {} X5 B K Xx—X
(¢) X—X K Z—T forany arrow Z—T in QtNaam.

Proof. Todo. Let us check only (a) and (b). First note {} 252

X # X, This is done via pictures.

Lwnien) y

Fig.X. (a) this proves {} ~2% {D} K X—X (b) this lemma is proved by an casy
set-theoretic argument (b) this proves X is in QtNaam.

MO. Limits and colimits. For sets X1,..., Xq, let Xy = Xh U..UX,, Xy = ,i::, Xn =
{ZiNzznN..Nap 1 21 € X3,..,Tn € X, }. We remark that terminology seems somewhat
confusing: a colimit (according to some) is a direct limit, and a colimit (according to some) is an
inverse limit.

Claim 7 (M0) . Let D be a finite commutative diagramme whose vertices are marked by objects
X1,.., X, € ObQtNaam. (a) Xy is the colimit of D in StNaam, and the coproduct of X1, ..., X
in StNaam. (b) Xn is the limit of D in StNaam, and the product of X1, ..., Xx in StNaam. (c)
Xu € QtNaam is the colimit of D in QtNaam, and the coproduct of X1, ..., X in QtNaam. . (b)
Xn € QtNaam is the limit of D in QtNaam, and the product of X, ..., Xy, in QtNaam.
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Proof. An casy check. We only check that Xn € QtNaam and X, € QtNaam is the colimit of
[ in QiNaam,

RS "
Y&~ K
= l

e_,_,-/‘—“ u‘

Fig.M0.(a) first construct the green arrows by z; € QtNaam, then use the limit uni-
versal property in StNaam (b) for on object X € ObQtNaam., first construct the green
arrow by the universal property of the colimit Xy = X3 U...UX,, in StNaam, and then

use the lifting property Xy —— Xy A X —{universe} in StNaam to construct the
red arrow

Axiom M1 is inherited from StNaam. To prove Axiom M2 for QtNaam. we need a claim whose
prove uses an important set-theoretic trick.

Which alters when it alteration finds,
Or bends with the remover to remove:
0. no! it is an ever-fixed mark

A fixed-point argument,

)~ #
Claim 8 (A fixed-point argument) The following holds:
e Lotrrrs |
WV(we)

. = (we) - |
g Y e —2 1]

In words, the (b) reads: if every countable subset of a set B is, up to finitely many elements, a subset
af an element of a set X, then there is a subset of B' such that B and B' differ by finitely many
elements, and every countable subset of B' is a subset of an element of X.

Proof. Pick, for every finite subset & C B, a countable set B, C B\ a such that { B, }—X does
not hold. It may happen that {B, \ b}——X for some finite b C B,. To avoid that, add B} to B,
for every such b, i.e. consider By = B, U Ui B, tinie Bs. For every b C B, finite, {B; \ b}— X
does not hold but it may still hold for some ¢ C B finite. To avoid that, take B, = U, B, where
By = Bn UUse s, finie Bo. The set B, is countable and contains Bj, for every finite b C B..
This implies that B, is not, up to finitely many elements, a subset of an element of X.

Axiom M2, Axiom M2(cfw) is simply by diagramme chasing; axiom M2(wcfl) employs the fixed
point argument.
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X X
[6@

xl
i:w&!
1

o g7 Jeb

S

Fig. M2(QtNaam)(cfw). (a) we need to prove that X' € ObQtNaam (b) By definition
of QtNaam, the following is enough. Add ("arbitrary”) black arrows, and use model cat-
egory axioms to "construct” the dashed black arrow. (c) apply the definition of QtNaam
to construct the bottom red arrow, and apply M1(cfw) to construct the dashed arrow,

Note that in the previous figure, there was no real need to use letters X, X', Y. The argument to

prove M2(cfw) is slightly more complicated, and we use set-theoretic notation to clarify the picture.
lavle!l o

) e {A083

5

(M{

i

Fig. M2(QtNaam)(cfw). (a) we need to prove that Y’ € ObQtNaam (b) By definition
of QtNaam, the following is enough. Add ("arbitrary”) black arrows, and use model
category axioms to "construct” the dashed black arrow. (¢) add arrows successively
following the legend on the right-hand side;

Axiom M6 for QtNaam. To show M6 for Qt Naam, we need to show that if an arrow in QtNaam
has the required lifting property to every arrow labelled by one of the four labels (c), (wc). (f),
(wh), then it has the corresponding label in Q¢ Naam and therefore StNaam. It turns out that it is
enough Lo test the arrow against its decomposition (in QtNaam) by M2. The following four pictures
give the proof. They implicitly use the fact that, in St Naam, a decomposition A— B— A implics

A _("80) B {180) A
WA (5 Iy 4 K —X
R —— —X % B
i / we) k@/ . A wh
’ wour| @7 | & @)
(W) -! L‘éf')’ *) & . /
i " ~ (6 y
= ) / )( lud?
Y | g = o

Fig. M6(QtNaam)
Axiom M3(2-out-of-3) for QLN aam.

Claim 9  (a) X 2 Y is an equivalence relation
(b) in QitNaam, X 5 Y iff X—Y and X 2 Y
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(¢} axiom M5(2-out-of-3) holds

Proof. (c) is implied by (a) and (b). (a) is by definition. (b) By the set-theoretic characterisation
of an (w)-wrrow we need to prove forany BC y e YV, A Car € X,and L € Bifcard L <
card (B N A) 4 No then there exists ' € X such that L \ = is finite. The definition of X £ Y
requires the above holds for countable L only. For uncountable L C B, we know that for any

countable L' C L C.B, L' is, up to finitely many elements, a subset of an element of X (i.c.
e {wf) . fwe) ; x F

0 -5 B, sk, {B},B. --+ X' i X). By the Claim (fixed point argument) above, there
exists B C B, B\ B'is finite (i.c. {B'} SR, {B}) such that cvery countable subsct of B’ is a

subset of an element of X (i.c. B ~-2%, {B'} and B,—X). In notation, the latter sentence is:

0% Bt "0 (8“9 (B}, B, -4 x.

Now apply the definition of QtNaam to conclude that every subset of B’ of cardinality < card (B'n
A) 4+ Vg = card (BN A) +Ng is a subset of an element of X. That implies that every < card (BN
A) + Vo subset of 53 is a subset, up to finitely many elements, of an element of X, as required.

In pictures, the proof is as follows. ' YN .n,.,,.,_\}
o ewn? ) el — o wel X
N r— W H/., . .
X L / Ny & we
i claind .
P
?\ 20 )
o e @k Vaam e ] y

f.._,w""v wer A 8)

Fig. M5, Add arrows successively as shown on the legend.

The following lemmas require familiarity with notation in the book of Quillen.

In fact, by Quillen’s Theorem 1" of §1.13 we can quite explicitly describe the homotopy category
of QtNaam. Observe that a set/class X is cofibrant (meaning 0 9, Xisa cofibration) i{T every

element 2 € X is a countable set; the set/class X is fibrant (meaning X M, {universe} is a
fibration) i[T for every & € X and a finite set a the unionz Ua C y € X forsome y € X Let
mQtNaam; denote the full subcategory of all objects which are both fibrant and cofibrant.

Lemma 10 The homotopy category HoQtNaam exists and mQtNaam.;— HoQtNaam is an
equivalence of categories. The objects of HoQtNaam are same as that of QtNaam. There is
an arrow X—Y in HoQtNaam, necessarily unique, iff for every y € Y and a countable set
z Cy €Y, thereis x € X containing z up to finitcly many elements. Objects X and Y are
isomorphic in HoQtNaam iff for every countable set L, L is contained up 1o finitely many elements
inan element of X iff it is, up to finitely many elements, contained in an element of Y.

Proof. Implied by Theorem 1" of Quillen. See appendix and his book for precise definitions.

We take a chance to remind the construction of the category C, = C// A we need later. By definition,
for an object A € QtNaam. let the objects of Qt Naam®, = QitNaam/A be arrows A— X, and
morphisms are arrows X ——Y" making the obvious triangular diagramme commutative. In our case,
of course, QtN aamh = @QtNaam/A is a full subcategory of QtNaam.
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) ///

Fig. (QtNaam/A)

1.4. Deriving functors. Recovering the covering number. Homotopy
Continuum Hypothesis

A model category is a tool to derive functors. Itis known that calculating (co)homology
groups is often quite meaningful. In the formalism of model categories, instead of ho-
mology groups one looks at derived functors; a (co)homology group H9(X, A) is then
a group of homotopy classes of maps defined by a formula like

HI(X, A) = [Lap(X)—QItN TN 4]

where L, is some derived functor, 2 and X are so-called loop and suspension func-
tors, Ly, (X)—Q9+ NN 4] is the group of homotopy classes of maps from L, (X)
to QITVEN A, where N > 0 is an integer with ¢ + N > 0; see §5.2-5.6 of Quillen
(1967) for more explanations.

Accordingly, model categories are sometimes thought of as a mere tool to define
and calculate homotopy-invariant derived functors.

We remark/remind in passing that the notion of the model category itself is con-
sidered not homotopy-invariant, and this makes some people to consider it as a wrong
notion needed to be improved or replaced.

Standard homotopy tools degenerate. We remark that that all the standard tools of
model categories degenerate in QtNaam, for the simple reason that the category is a
quasi partially ordered set: every two morphisms X —Y are left and right homotopic
(being identical), and a path and cylinder object of any object X is always X, as
these by definition factor as X —X/—X @& X and X ® X— X x [—X and
X ®X =X ®X = X (as arrows are unique). Further, the category is not pointed
so (co)fibration sequences(analogues of long exact sequences of (co)homology), loop
and suspension functors etc do not make sense. It appears that every computation
in the Quillen’s book involves some of these notions, and, accordingly, most(all?)
theorems in the book are trivial to prove when specialised to our example QtNaam.

Still, as we shall soon see, the notion of a left derived functor and cofibrant re-
placement does not trivialise, at least after a slight generalisation.

Derived functors. Partially ordered sets. Encountering a non-homotopy invariant
functor is a typical situation in homotopy theory, and the solution is to find a a functor
closest from the left which factors through the homotopy category; closest from the

©2010



34 http://corrigenda.ru/by:gavrilovich early draft 2010

left means a universality property; these functors are known as (left) derived functors.
What does it mean in our case?

Our categories StNaam, QtNaam are quasi partially ordered sets/classes, in the
following sense, and for such categories the necessary notions of category and homo-
topy theory may be described quite explicitly. We remark that we slightly extend the
definitions to be able to derive not necessarily functors.

A category A carries canonically the structure of a quasi partially ordered set (A, < 4): for e1, e €
ObA, 1 <4 e iff there is a morphism from e; to e2. Conversely, every quasi partially ordered
set (P, <) can be canonically considered as a category: ObA = P, and there is a unique mor-
phism e; — e, iff ; <p e5. There is no morphism e; —e, for ¢; L e5; the composition of
morphisms e; —eo and €2 —— e3 is the unique morphism e; —e3.

For quasi partially ordered sets/classes A, B considered as categories, a functor /* : A— B isa
monotonic function, and a covariant functor is a non-decreasing function. For covariant functors
F,G : A— B, there exists a natural transformation taking F into G iff VX € ObA(F(X) <a
G(X)); such a natural transformation is necessarily unique if exists. The functors F, G : A—B
are naturally equivalent iff 7'(e) < G (o) <p F(e) for every object € ObA.

For quasi-partially ordered sets/classes A, A’, B as categories, and covariant functors v : A— A’
and F : A— B, the left derived functor .”F : A’— B with respect to v : A—— A’ is “the
functor from A’ to B such that L7 F o «y is closest to I’ from the left” in the following precise
sense. By definition "/’ : A’—— B is a covariant functor, i.e. an order-preserving function from
A’ to B, such that (i) firstly, Ve € ObA(L"F o v(e) < F(e)), and (ii) secondly, for every non-
decreasing function (functor) G : A’— B such that Ve € ObA(G o v(e) <p F(e)), it holds
Ve ¢ ObA'(G(e) <p L7F(e)). Similarly we may define the right-defined (covariant) functor
inverting the direction of all the inequalities in the above formulae.

For B = On a well-ordered set, the left-derived functor always exists and

L7 F(¢') = min{F(e) : o <, v(e), « € ObA}

Note that the formula defines, up to natural equivalence, a functor, i.e. an order-preserving function,
satisfying (i) and (ii) for for ' : A— B an arbitrary function not necessarily order-preserving (i.e.
functorial).

”We shall be concerned only with the case where A is a model category and -y is the localisation
functor v : A— HoA. Recall that by construction of the homotopy category we outlined in §1.2,
ObA = ObA" = ObHoA, and a morphism in A" = HoA from X to Y is (an equivalence class
represented by) a chain of morphisms in A of the following form :

the localisation v : A— H oA is the identify on objects and (almost) morphisms (a morphism is
taken into the equivalence class of itself).
Thus, in this case, v : A—HoA, for F : A—On afunctorand " F : HoA—On,

LY F(X) = min{F(Y): X—X; <2 Xooxy &2 X, Y,

Y, X1, ..., Xn € ObA}

In homotopy theory it is often useful to require certain maps to be cofibrations; e.g. we may require
l—Y to be a cofibration:
LYF(X) = min{F(Y): X—X; <2 Xoox; &2 x, oy g,

Y, X1,..., X, € ObA}

Note that both these formulae are defined for an arbitrary function F' : A --+ On, not necessary a
functor. In particular, they are well-defined for card : QtNaam --+» On.
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The derived functor " card of cardinality card : Qt Naam --+ On. Let us look at
what our hero has been doing while we have been busy explaining the basics about
derived functors.

Meanwhile, our hero was looking for functors to derive. In all the journey so far
s/he has encountered only one notion that reminds him of a functor—the notion of
cardinality of a set. For example, it is the only notion he encountered that you can
plug into an object and get something rather different. Moreover, it was definitely the
only notion he has used as he would use a (forgetful) functor: to plug in a set and get
something simpler (his definition of a (c)-arrow worked this way). So he looks closely
at the cardinality and notices that, regrettably, it is not homotopy-invariant (and that’s

something very important to him/her!): the arrow {{e;}, {e, e;}} 2N {{e1,92}}is
a weak equivalence but the arrow 2 = card {{e1}, {®1,0:}} > card {{e;,e:}} =1
1s not an 1somorphism. His prejudices do not allow him to notice that cardinality is
not even a functor from QtNaam, as these two sets {{e1}, {81, e} } and {{e;, ;}}
are in fact isomorphic.

Besides, it’s not like that he has a choice, he has not yet seen anything else he could
possibly derive...

And so he defines:

Leard (X) = min{card (Y) : X—X; <2 X, x, &2 X,
Y, Xy, ..., X, € ObQtNaam}

Then he plugs as Y the terminal object {universe} of QtNaam, and observes that
for any X Lcard (X) = 1 as card {universe} = 1. How boring!

Lost, he turns for advice of a seasoned topologist.

Cofibrant replacement. “Faced with something like this, a seasoned topologist would
probably [..] invoke the philosophy that to give [...] homotopy significance the maps
involved should be replaced if necessary by cofibrations. In fact, it becomes clear [...]
that this philosophy is no different from the philosophy in homological algebra that
a cautious practitioner should usually replace a module by a projective resolution be-

fore, for instance, tensoring it with something. (In model categories, taking projective

resolution of an X corresponds to decomposing X L), X’ ), terminal object or

initial object 2 x7 “0, xy.

Grothendieck teaches (todo: find quote) us that one should work with morphisms
and not objects; and, particularly, that it is good/useful to identify/think of an object as
the unique morphism from the initial object to the object. So think of the object Y as
the unique morphism )— Y from the initial object. Now we do have a map/morphism
which we replace, as necessary, by cofibrations.

So we write instead of ()

Lecard (X) = min{card (Y) : X —X; <2 x,——x, &2 x, oy 2 ),
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Y, X1, ..., X, € ObQtNaam}(xx)
We compute L.card (X) for singletons X: for X = {Ro} L.({Rg}) = L.(2%) =
1, for X = {X,},n > 0 finite, L.card ({8, }) = L.card (2%+) = X,,. However, we get
stuck computing L.card ({X,}) = L.card (2¥+). Further we notice that L.card ({X,}) =
L.card (2%). Interesting! (We state these bounds in Theorem 13 below..)

The derived functor L.card as a covering number of PCF. In fact, the numbers
L.({RX,}) are well-known in set theory under the name of covering numbers in PCFE.
Further, a celebrated theorem of Shelah in set theory provides a bound on LL.card (2%~) =
Lecard ({R,}) < X, in ZFC.

By definition the covering number!?

cov(A, k,0,0)

is the least size of a family X C [A|<" of subsets of A of cardinality less than k, such
that every subset of A of cardinality less than 8, lies in a union of less than o subsets
in X.

The following is proven by unwinding definitions.

Lemma 11 (the covering number as a derived functor) For {\} € QtNaam,
Lecard ({A}) = cov(A, Ny, Ry, 2)

Proof. Call X € ObStNaam a (wc)-covering family of A iff every countable subset of A is a
subset, up to finitely many elements, of an element of X. Prove by induction on n that each X,
X1,.., X, Y is a (wc)-covering family for A. For X = {A} this is obvious; for X this is im-
mediate by the definition of a morphism X — X, for Xo this is immediate by the definition

of a weak equivalence X1 L Xo, etc. Thus Y is a (wc)-covering family for A; the condition

{3 “y implies that every element of Y is countable. In notation, { O,y Lo {A}; ap-

ply Claim(Fixed point argument) to find A such that 0 )y ) {A} e ALY --» Y.

This shows L.card ({A}) < cov(A, N1, N1, 2). Conversely, for Y a covering family, take n = 2,

X1 = X, Xo =Y, then by the definition of a covering family {A} = X, L Xo=Y L 0.

More covering numbers as values of derived functors. We explained that the defi-
nition of L.card (X) is natural and straightforward in homotopy theory and particu-

larly in Quillen’s formalism of model categories. The following two modifications are

seemingly minor and not entirely unnatural from the homotopy point of view:

L% card (A—X) =
—minfeard X’ : AL x — x; “ox, — L x, X,

13The 4-parameter notation cov{, A, k, 2) is standard and follows [Shelah, Cardinal Arithmetic], p. 7? (Appendix S). We re-
fer to two expository papers [Shelah, Cardinal arithmetics for skeptics] and [Kojman, 2001]1(PCF Theory) that use slightly differ-
ent 2-parameter notation for the covering number cov(A, k) := cov(\, A, k, 2) (Shelah) and cov(\, w) := cov{A, 1,87, 2)
(Kojman). In [Shelah, Cardinal arithmetics for skeptics], Theorem 5.7 identifies pp, () as pp,.(A) = cov(\ k) =
covi{A, A, k,2) forcfh < k < Aand A # R Itis not known whether it is consistent with ZFC that pp,. (A) # cov(X, A, K, 2)
for some A. Theorem 6.3 [ibid.] is what we call Homotopy Generalised Continuum Hypothesis. The relevant two pages of the
paper are in the appendix; at a later stage we shall provide references to the book ”Cardinal Arithmetic” which contains proofs.
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A— X' A— X, ..., A—X, € QtNaam} (% * )
and
[Ptcard (A—X) =
(w) (w)

—minfeard X’ : AL x' — x; “ox, — M x, X,
X', Xy, ..., X, € QtNaam} (% % *)

Lemma 12 For a cardinal X, € QtNaam,
(i)
Lecard ({R,}) = Lcard ({}—{R,}) = Lfcard ({}—{R.}) = cov(R,, Ry, Ry, 2).
In particular, (i’)

L.card ({X,}) = LY%card ({}—{R,}) = Lcard ({}—{R,}) = cov(R,, N1, X1, 2) = pp(X).

(ii)
LM (R, ——{Ra}) = cov(Ra, Ra, Ra, 2)
(iii)
L2 (N, —{R,}) = cov(Ra, R, Ry, 2)
Proof. (i) has the same proof as previous Lemma. (iii) Take n = 1, X; := [N,]S¥ be

the set of countable subsets, X’ be a covering family as in the definition of cov(R,, N, Ry, 2).
(1) As in the previous Lemma, we know that every countable subset of X, is a subset
of an an element of every X;, up to finitely many elements. However, we also know
that X; € QtNaam and there is an arrow N,— X, for each X;. Use the lifting
property (Fig. QtNaam) in the definition of QtNaam to show that in fact X; covers
every subset of R, of cardinality less than 8, e.g. by taking A = X, 1 < «, and
B =N, U B’ where B’ is arbitrary such that card B’ < X,,.

The reader would have little trouble giving other examples, e.g. by replacing the
arrow N, —{X, } by [R,]Fe—{R,} to get rid of assumption R, € QtNaam.

Est’ Jjudi, dlja kotoryh teorema wierna.

There are men, for whom the/a? theorem is
true

PCF as a homotopy theory. Generalised Homotopy Continuum Hypothesis. We sum-
marise some of what is known in our notation. As explained in the introduction, She-
lah ([Shelah, Cardinal Arithmetic], [Shelah, Logical Dreams]) views these bounds
as answers to the right questions. Note that analogously, from the homotopic point
of view, these are answers to natural homotopy-invariant questions. In the introduc-
tion we say more on PCF as a homotopy-invariant theory. We note that passing to
homotopy-invariant/PCF questions avoids independence of ZFC.
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Theorem 13 (Shelah; bounds towards HGCH) There are following bounds on the
values of the derived functors L. and 1.9 15"

(i) if R, = W, a regular cardinal, then

Lo({R,}) = Lo(2%) = cov(Ra, Ry, Ny, 2) = X,

(ii) Lo({N,}) = Lo (2%) = cov(Ry, Ry, V1, 2) < Ry,
(iii) if 0 is a limit ordinal, cfé = w, and 6 < V.15 o+ 0 < N, .4, then

LR, s—{Rois}) = cov(Ryis, Raws, 81, 2) < Nyogea
Proof. Todo: give references to [Shelah, Cardinal Arithmetics].

Note that we do not say anything about the fixed points o = R, of N,-function.
(TODO: Is there an explanation )

In other words, Generalised Homotopy Continuum Hypothesis holds for regular
cardinals, and there are non-trivial bounds in ZFC for most of the limit cardinals.
Arguably, we may say that PCF solves the Generalised Continuum Hypothesis by
replacing it with a better, homotopy-invariant question.

Some remarks. We leave the following as an exercise to our reader.

Exercise. Call a set A is closed under homotopy countable unions iff for every
countable family of sets aq, as,... € A there exists a € A such that each «q; is con-
tained in a up to finitely many elements.

(0) Check that this notion is homotopy-invariant, i.c. if X “% Y and either of X

or Y is closed under homotopy countable unions, then both X and Y are closed
under homotopy countable unions.

(1) prove that objects of QtNaam closed under homotopy countable unions, form a
model category.

(2) Calculate, in the subcategory,

(w)

/&Xlﬁ

(w) (w) (w)

Lecard ({R1}—{x}) := min{card X' : {®,} % x Xy W x, &y

(Answer: this is cov(k, N1, Ry, w))
Task. Play more with this formalism...

2. Journey’s end. Directions for further research

We take the liberty of offering a few questions.

Perhaps some of the questions are quite straightforward to do, perhaps others are
not.

The order of questions is insignificant.

©2010



http://corrigenda.ru/by:gavrilovich/what:writing-in-progress 39

Question 1(i). Find a natural (e.g. in homotopy theory) characterisation/axiomatisation
of QtNaam (or StNaam), possibly adding more structure, e.g. that of infinity-category.
For example, characterise/axiomatise QtNaam as (a) a labelled category up to isomor-
phism, or (b) as a model category, e.g. up to Quillen’s equivalence of model categories,
or perhaps (c) offer an interesting and relevant notion of equivalence.

Question 1(ii) Rewrite first-order axioms of (a large fragment) of ZFC in terms of
arrows, lifting properties, commutative diagrammes in StNaam, or, better, QtNaam,
preferably in the spirit of homotopy theory, e.g. Quillen’s model category book. 1f
necessary, find and add more structure to QtNaam/StNaam to axiomatise the whole of
ZFC, e.g. something of higher category structure. Does this clarify any issues in ZFC
? Does this reformulation makes ZFC easier to appreciate or use by a non-specialist
mathematician? How much is lost?

Question 1(iii). Use methods of set theory, possibly also model theory, to suggest
a natural notion extending in some way the notion of a model category. Does it make
sense in the context of homotopy theory?

Question 2(i). Use methods of stability/classification/model theory (of mathemat-
ical logic) to study the structure on the homotopy category induced by the model
category, even if in our rather degenerate setting. We already saw that there 1s some-
what of a non-trivial connection to set theory. As the main topic of interest of both
authors is model theory, we cannot resist asking whether methods of model theory
can contribute to the study of model categories, e.g. the category QtNaam. For exam-
ple, in the explanatory exposition we said “axioms of a model category require that
the labelling induces no further structure on the homotopy category”. Do this words
admit an interpretation that certain structure in stably/conservatively embedded in the
labelled category as a structure, here all structures as in the sense of logic?

The following two questions are perhaps slightly unrelated to the current work.

Question 2(ii). (a) In general, can logic say anything to explain the “unreason-
able power” of algebraic topology language, arguably the language that shapes/used
a substantial part of mathematics. This seems as a natural question for a logician,
although perhaps not necessarily a model theorist. I am unaware of any study of alge-
braic topology or model categories by logicians, particularly model theorists. There
are studies in the opposite direction, e.g. to apply methods of algebraic topology to
study of o-minimal structures. Still, as far as I am aware, the words “model category”
occur in model theory literature only once, in a paper by Artur Piekosz [Piekosz,
2009](O-minimal homotopy and generalized (co)homology,2006).

Question 2(iii). In model theory, inside of the subfield of o-minimality, once known
as tame topology of Grothendieck, there are many studies developing homotopy the-
ory inside of an o-minimal model. Is it possible to construct a model category inside
an o-minimal structure? This question belongs to Artur Piekosz [Piekosz, 2009] who
asked it in a slightly different setting.

As now, these studies usually follow old-fashioned expositions of algebraic topol-
ogy, instead of trying to set up the general setup of a model category, and then apply
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the general machinery of model categories to develop homotopy theory, e.g. the the-
ory of fundamental groups within a structure. In fact, the only exception I know is the
paper by Artur Piekosz just mentioned.

The following question has rather technical motivation. We stress that at the mo-
ment, we see no ~conceptual” motivation for the next question.

Question 3. Observe that most of common computation tools of algebraic topol-
ogy, e.g. fibration and cofibrations sequences, loop or suspension objects, path spaces,
maps spaces degenerate in our setting. Try to enlarge the category by adding either
new morphisms or objects. One way to start is to add all injective maps as morphisms,
”quantise” to add formal limits, new path and map objects as necessary. And iterate
this step countably many times.

Question 4. Elaborate explicitly our hero’s strategy in the context of Gromov’s
Ergosystems. Is it really as simple and automatic as our exposition seem to suggest?

Question 4’. Develop better notation so that everything our hero does, becomes
a calculation on rather simple marked graphs or surfaces. E.g. use N.Durov’s idea to
consider the dual of the commutative diagramme and his observation that (todo: state
the observation).

Question 5. Construct a model category whose objects are (some) families of mod-
els of an excellent abstract elementary class, e.g. an uncountably categorical first-
order theory in a countable language a quasi-minimal excellent class of Zilber. Is the
expressive power of the "homotopy” language of category theories, sufficient to de-
velop the theory or at least state its main results and lemmas ? If not, is it possible to
enrich it while keeping the “homotopic” and category-theoretic character of the expo-
sition? Does this allow a an exposition of the theory of AEC or its results easier to a
non-specialist?

One way to start is to consider the full subcategory of StNaam

StNaam(M) := {M:VM(M e M = M < M)}

consisting only of families of elementary submodels of a fixed monster model M of
the class we are interested in. Label an arrow (¢) or (wf) iff it carries the same label
in StNaam. Rest of labelling is already not entirely clear: for most AEC, no arrow
but identity in StNaam(M) may inherit (wc)-label.

Intuition may suggest the following conditions to place on families.

A topologist may imagine every model M € M as a simplex in a simplicial set
M and {K} < {M} as being faces, subsimplices of simplex M € M. It may be
reasonable to place finiteness restrictions on families M, e.g. requiring M to be (w-0)
well-founded there is no strictly decreasing infinite chain ... < M,,; < M, < ... <
My in M or (A-fini)("that a simplex has finitely many faces”) for every M € M there
exists finitely many faces My, ..., M,, € M, My, ..., M,, < M, M., ..., M,, # M, such
that for every M’ € M either M < M or M'NM < My or..or M'NM < M,
(every M’ N M either is the whole simplex M or lies in one of its finitely many faces
My, ..., M,). This condition appears in the definition of a good system of the first page
of [Shelah, 1973], and in fact was a starting point of this research.
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A logician may imagine an inductive construction (or proof of something about)
a large model U, and that a family M is a stage of induction, a collection of models
already constructed at an (infinite) inductive step, or perhaps the models the inductive
hypothesis says something about at a step.

Topology /To*pol”o*gy/, n. [Gr. ? place +
-logy.] The art of, or method for, assisting the
memory by associating the thing or subject
to be remembered with some place. [R.]

Question 6. A "functorial” definition of a topological space. Given a compact nice
(sequential, Hausdorff, etc) topological space 1°, consider a pair of functors:

accr : StNaam(T)—T

{}r: T—StNaam(T)

where StNaam(T') is the full subcategory of StNaam, ObStNaam(T) := 22" with
induced structure, for a subset Z C T {U}y = {U}, and

acc (X)) := Uxex{l : t is an accumulation point of X C T'}.

Observe that for T compact, a subset U C T is open iff for any X € StNaam(T),
any arrow acc r(X)—U ”lifts” to an arrow X LA {U}r in the homotopy category
(equivalently, to X (elic—) X' --» {U}7).

Furthermore, it seems that such pairs of functors could be characterised in a rea-
sonable functorial manner by properties like

@) & YLy implies acc () = acc ()

Gi) acc X 22 ¢ implies X < ¢

(iii) ifacc r(X)—U «— V, then there exists ) € ObStNaam(T),Y --+ X,accr(Y) --»

v

Is this characterisation useful for anything ? Does it give rise to a nice category
of topological spaces ? Does it generalise, e.g. if we take StNaam(M) instead of a
topological space 7" ? Can one nicely define the unit interval [0, 1] in this way ?
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I thank my Mother and Father for support, patience and more.

I also thank Artem Harmaty for attention to this work, and encouraging conver-
sations. I thank Boris Zilber; dept to him and his ideas is obvious and large. I thank
Martin Bays for reading this draft at a very early stage and at a very late stage, and
pointing out many a mistake.

I would like thank St.Petersburg Steklov Mathematical Institute (PDMI RAS) and
N.Durov&A.Smirnov seminar for hospitality and insight in model categories. I also
thank my girlfriends for not being there when 1 did not need them.

We plagiarised16 [Gromov, Ergobrain] and [Quillen, 1967](Homotopical Algebra)
and also [Dwyer, Spalinski; 1995](Homotopy theories and Model categories) to im-
prove our exposition; though, arguably and applicable to our case, an exposition of
a mathematical idea is the idea itself. We learned of PCF from the Kojman’s note
[Kojman, 2001](PCF Theory). [Shelah, 1983](The classification theory of abstract el-
ementary classes), especially a combinatorial condition on the first page, gave us a
push and importantly hinted on connection to simplicial objects and therefore model
categories. Notation (wf), (wc), ... belongs to [N.Durov,2007](A new approach to
Arakelov geometry); we use (wf), (we) instead of his (af), (ac).

Since late in his DPhil an author of this paper had a running in-joke that it would
be very punny to prove a theorem model stable category is a stable categorical model
or at least that a model category is a categorical model. (todo: find an exact quote)
and it would nicely fit in Zilber’s programme, as the notion of a model category is
a widely used notion in mathematics . It took her/him few years to take her/himself
seriously. Shelah’s goodness condition in [Shelah, 1983] was an important push to
make him take herself seriously.

One of the authors thanks Marie Curie grant (Berlin grant), Skirball foundation
and his current grant; I also thank A.Baudisch for the freedom I enjoyed at the early
stages of this research.

Full-text searching in mathematical books was essential in this research.

More tanks!!!

4. Bibliography

We quoted freely from the papers [Gromov, 2009+](Structures, Learning and Er-
gosystems), [Quillen, 1967](Homotopy Algebra), [Shelalh, 1994](Cardinal Arithmetic)
and [Dwyer,Spalinski; 1995](Homotopy Theories and Model Categories). Our brief

16 A common scenario in the mathematical community is as follows. X gives a lecture, while (preferably young) Y is in the
audience but who understands nothing of the lecture; every word of the lecture is forgotten next day. (This is what normally
happens when you attend a mathematics lecture with new ideas.) A year later, Y writes an article essentially reproducing the
subject matter of the lecture with full conviction that he/she has arrived at the idea by himself/herself.

Unsurprisingly, X is unhappy. He/she believes that Y could not arrive at the idea(s) by himself/herself, since Y has no inkling
of how the idea came up to him/her, while X is well aware when, why and how he/she started developing the idea. (A simi-
lar ”’structure recall” is common in solving non-mathematical problems, such as “egg riddle” in 3.3, for example.) [Gromov,
Ergobrain]
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exposition of category theory consists mostly of quotes from Gromov’s paper; the
reader is advised to read [Gromov,2009+,53.5] for more. Our debt to [Quillen, 1967] is
obvious. The seasoned topologist” is taken from [Dwyer,Spalinski;1995; §10,p.46].
All these sources are available online.
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3. Interpret “func:or m the following special 1ypes of categories: (al A functor
between two pi 1S is a funcuon T which is monotonic (i.e. p<p' implies
TpsTpL(b)A I'unctor between two groups (one-object categories) is a morphism

4. For functors S, T': C— P where C is a category and P a preorder, show that
there is a natural transformation ST (which is then umque) if and only if

Scs Tc for cvcry object ceC.

In a preorder P, a least upper bound aub of two elements a and b,
if it exists, is an element aUb with the properties (i) asaub, b<aub;
and (ii) if a<c and b <e, then aub = c. These propertics state exactly
that aub is a coproduct of a and b in P, regarded as a category.

S. Adjoints for Preorders

Recall that a preorder Pisa set P={p, p', .. }eqmpped with a reflexive
and transitive bmary relation p S p', and that preorders may be regarded
as calegories so that order-preserving functions become functors. An
order-reversing function L on P to Q is then a functor L:P—Q%".

Theorem 1. (Galois connections are adjoint pairs). Let P, Q be two
preorders and L:P—Q°®, R:Q%—P two order-preserving functions.
Then L ( regarded as a functor) is a left adjoint to R if and only if, for all
pePand geQ,

Lp2q in Q ifandonlylf pSRq in P. (1)

When this is the case, there is exactly one adjunction ¢ making L the left
adjoint of R. For all pand g, pSRLp and LRq= q; hence also

Lp2LRLp>Lp, RqSRLRqSRq. @

What is a monad in a preorder P? A functor T: P— P is just a function
T: P— P which is monotonic (xSy in P implies Tx £ Ty); there are
natural transformations 5 and u as in (1) precisely when

x<Tx, T(Tx)<STx (3)

for all xe P; the diagrams (2) then necessarily commute because in a
pcmu:hcre is at most one arrow from here to yonder. The first equation
of (3) gives Tx < T(Tx). Now suppose ‘that the preorder P is a partial
order (x £ y < x implies x = y). Then the Eqgs. (3) imply that T(Tx) = Tx.
Hence a monad T in a partial order P is just a closure operation t in P;
that is, a monotonic function ¢ : P— P with x Stx and ¢(tx)=tx for all .
xeP.

We lcave the reader to describe a morphism (T, u, ) —<(T, u', ">
of monads (a suitable natural transformation 7-+T") and the category
of all monads in a given category X.

©2010
Fig. 2: Notions of category theory for preorders. We quote from Maclane, Categories for working

mathematician
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Definition 1: Let y: A —> A' and F: ; —> B be
two functors. By the left-derlved functor of F with
respect to y we mean a functor LYFP: A" —> B with a
natural transformation €: LYF O y ~=> F having the
following universal property: Given any G:A'—> B and
natural transformation (: G O y =—> F there is a unique

natural transformation ©: G —> LYP such that

Goy

o
(1) ;::\\h““ﬁ%'F
s

LYFoy

commutes.
Remacks: 1. LYF is the functor from A' to B

such that LYF 0 y is closest to F from the left. Sim=-
ilarly we may define the pight-derived functor of F with
respect to y to be "the" functor RYF:A' —> B with a
natural transformation 7: F —> RYFoy which is closest
to F from the right.

2. The terminology left=derived functor comes from
Verdier's treatment of homological algebral::.ﬂ In that case
A 1is the category K(A), where A is an abelian category,
Yy 1s the localization K(A) —> D(A), P: K(A) —> B is a
cohomological functor from K(A) to an abelian category B,

and LYF, R'P are what Verdier calls the left and right

~derived functors of Fi - s

Fig. 3: Definition of a derived functor
©2010
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3. We shall be concerned only with the case where

A is a model category C and y is the localization functor
y: C —> HoC. In this case we will write just LF.

4., If C is a model category and F: C —> B is a
functor then it is clear that £: LFOy —> F is an
isomorphism if and only if F carries weak equivalences
in C into isomorphisms in B. In this case we may assume
that LF is induced by F in the sense that LF is the
unique functor HoC ~—> B with LFoy = F. Moreover RF=LF.

Fig. 4: Definition of a derived functor, continued

©2010
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2. A Simple Proof of the Existence: Localization of a Category

Let B be an arbitrary category and S an arbitrary class of morphisms in
B. We show that there exists a universal functor transforming elements of
S into isomorphisms. More precisely, we construct a category B[S~!] and a
“localization by S” functor Q : B — B[S~!] with the universality property
similar to that of II1.2.1b) above.

To do this we set first Ob B[S~!] = Ob B and define Q to be identity on
objects.

To construct morphisms in B[S~1] we proceed in several steps.

a) Introduce variables z,, one for every morphism s € S.

b) Construct an oriented graph I as follows

vertices of I" = objects of B;

edges of I' = {morphisms in B} U {z;s,s € S};

the edge X — Y is oriented from X to Y;

the edge x; has the same vertices as the edge s but the
opposite orientation.

¢) A path in I' is a finite sequence of edges such that the end of any edge
coincides with the beginning of the next one.

d) A morphism in B[S~!] is an equivalence class of paths in I" with the
common beginning and the common end. Two paths are equivalent if they
can be joined by a chain of elementary equivalences of the following type:

— two consecutive arrows in a path can be replaced by their composition;
~arrows X — Y = X (resp. ¥ =% X -5 Y) can be replaced by

X i, X (resp. Y a, ¥):

Finally, the composition of two morphisms is induced by the conjuction
of paths and the functor Q : B — B[S™!] maps a morphism X — Y into the
class of corresponding path (of length 1). For any s € S the morphism Q(s)
is clearly an isomorphism in B[S~!|, the inverse being the class of the path
o

For another functor B — B’ transforming morphisms from S into quasi-
isomorphisms the functor G : B[S~!] — B’ with the condition F' = G o Q is
constructed as follows:

G(X)= F(X),X € ObB = ObB[S™}];
G(f) = F(f),f € Mor B,
G(class of z,) = F(s™1),s € S.

The reader can easily verify that all definitions are unambiguous and that
the functor G is unique.
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Homotopical Algebra

Daniel G. Quillen?l

Homotopical algebra or non-linear homological algebra is the
generalization of homological algebra to arbitrary categories
which results by considering a simplicial object as being a gener-
alization of a chain complex. The first step in the theory was
presented in [5], [6], where the derived functors of a non-
additive functor from an abelian category A with enough projec-
tives to another category B were constructed. This construction
generalizes to the case where A 1s a category closed under finite
limits having sufficiently many projective objects, and these de-
rived functors can be used to give a uniform definition of coho-
mology for universal algebras, ~In order to compute this cohomo-
logy for commutative rings, the author was led to consider the
simplicial objects over A as forming the objects of a homotopy
theory analogous to the homotopy theory of algebraic topology,
then using the analogy as a source of intuition for simplicial
objects. This was suggested by the theorem of Kan [10] that the
homotopy theory of simplicial groups is equivalent to the homo-
topy theory of connected pointed spaces and by the derived cate-
gory ([9], [19]) of an abelian category. The analogy turned out
to be very frultful, but there were a large number of arguments

lSup orted in part by the National Science Foundation under
grant GP 6166,




-which were formally similar to well-known ones—in algebraic tepo
logy, s0 it was decided to define the notion of a homotopy theory
in sufficient generality tc cover in a unifomm way the different
homotopy theories encountered. This is what is done in the pre-
sent paper; applications are reserved for the future.

The following is a brief outline of the contents of this

: ’ - Chapter intreductions,

paper; for a more complete discussion see Chapter I con-
tains an axiomatic development of homotopy theory patterned on
the derived category of an abelian category. In Chapter II we
give various examples of homotopy theories that arise from these
axioms, in particular we show that the category of simplicial cb-
Jects in a category A satisfying suitable conditions gives rige
to a homotopy theory. Also in §5 we give a uniform description
of homology and cohomology in a homotopy theory as the "lineari-
zation" or "abelianization" of the non-linear homotopy situation.
and we indicate how in the case of algebras this yields a reason-
able cohcmology theory.

The author extends his thanks to S. ILichtenbaum and
_M. Schlesinger whe suggested the original problem on commutative
ring cohomology, to Robin Hartshorne whose seminar [9] on
Grothendiaek'a“;duality theory introduced the author to the derived
c&tegqry:néédﬁpb Daniel Kan for many conversations during which
the author iesrmed about simplicial methods and formulated many
of the ideas in this paper.
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Chapter-I. Axiomatic Homotopy Theory

Introduction

Chapter I is an attempt to define what is meant by a "homo-
topy theory" in a way sﬁfficiently general for various applica-
tions. The basic definition is that of a model category which is

'a category endowed with three distinguished families of maps called
cofibrations, fibrations, and weak equivalences satisfying certain
axicmg,the most important being the following two: ML. Given a

commutative solid afrow diagram

where 1 1s a cofibration, p 1s a fibration, and either 1 or
p 1is also a weak equivalence, there exists a dotted arrow such
that the total diagram is commutative. M2. Any map f may be
factored f =pi and f = p'i' where 1, i' are cofibrations
where p, p' are fibrations, and where p and 1i' are also
weak equivalences. It should be noticed that we do not assume
the existence of a path or cylinder functor; in fact the homotopy
relation for maps may be recovered as follows: Call an ocbject X
cofibrant if the map # - X is a cofibration (hence in the cate-
gory of simplicial groups the cofibrant objects are the free
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(hence in the category of simplicial sets the fibrant objects are
the Kan complexes). f,g from a cofibrant object
A to a fibrant object B are saild to be homotopic if there exists

Then two maps

a commutative diagram

AVA — T8 5 »

14
() 1d+4d >t |n

v
Ao Ar
o

where V denotes direct sum, f+g is the map with components f

and g , and where ¢ 1is a weak equivalence,

Glven a model category C , the hemotopy category Ho C 1is
obtained from C by formally inverting all the weak equivalences.
The resulting "localization" y:C - Ho C 4is in general not cal-
culable by left or right fractions [7] but is rather a mixture of
both.. The main result of §1 is that Ho C 1is equivalent to the
category wC C.p whose objects are the cofibrant and fibrant objects
of C and whose morphisms are homotopy classes of maps in c.

Ir ¢c

is a pointed category then,in §§2-3 we construct the loop
and suspension functors and the families of fibration and cofi-
"bration sequences in the homotopy category. If one defines a

cylinder object for a cofibrant object A to be an object A"

i
|
£

S,

s

G S TP AR

in diagram (1), then the constructions are the same as in ordi-
nary homotopy theory except that, since a cylinder object of A
is nelther unique nor functorial in A , one has to be careful
that things are well-defined. This is done by defining operations
in two ways using the left (cofibration) structure and the right
(fibration) structure, and showing that the two definitions coin-
cide.

The term "model category' is short for "a category of models
for a homotopy theory", where the homotopy theory associated to
a model category C 1s defined to be the hamotopy category Ho C
with the extra structure defined in §§2-3 on this category when
c is peinted. The same homotopy theory may have several differ-
ent models, e.g. ordinary homotocpy theory with basepoint is
([10], [15]) the nomotopy theory of each of the following model
categories: O-connected pointed topological spaces, reduced sim-
plicial sets, and simplicial groups. In section 4 we present an
abstract form of this result which asserts that two model cate-
gories have the same homotopy theory provided there are a pair of
adjoint functors between the categories satisfying certain condi-

tions.

This definition of the homotopy theory associated to a modei
category is ob&iously tinsa.tisra.ctory. In effect, the loop and

suspension functors are a kind of primary structure on Ho c,
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~ __and the families of fihm:ion_nnd‘co:ﬁihmmn—saemenees—&ra a

kind of secondary structure since they determine the Toda bracket
(see §3) and are equivalent to the Toda bracket when Ho C 1is
additive. (This last remark is a result of Alex Heller.) Presu-
mably there is higher order structure (rsi1,
category which forms part of the hemotopy theory of a model cate-
gory, but we have not been able to find an inclusive general de-
finltion of this structure with the property that this structure
is preserved when there are adjoint functors which establish an
equivalence of homotopy theories.

In section 5 we define a closed model category which has the
desirable property that a map is a weak equivalence if and only
if 1t becomes an isomorphism in the homotopy category.

[17]) on the homotopy

cebitdihaieaid sl e R e B s e e

G amivieidv i sk

= Lol Ve,
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Chapter I —Axiomatie—Homotopy Theory.

§1. The Axioms.

All diagrams are assumed to be commtative unless stated

' otherwise.

By a model category we mean a category to-
¢ , called the fibrations,

Definition 1:
gether with three classes of maps in
cofibrations, and weak equivalences, satisfying the following
axioms.

MO. ('j' is closed under finite projective and inductive

limits.
Ml. Given a solid arrow diagram

———

X
t‘ﬂ i
i (," P
- ¥

L >

(1)

o >

where 1 18 a cofibration, p 4is a fibration, and where either

i or p 1is a weak equivalence, then the dotted arrow exists.
M2, Any map [ may be factored f = pi where i is a
cofibration and weak equivalence and p 1is a fibration. Also

f =pl where 1 418 a cofibration and p is a fibration and
weak equivalence.
M3. Fibrations are stable under composition, base change,

and any isomorphism ia a fibration.
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1.3

-—Cofibrations are stable-under -eomposgition;co~base-change; and
any isomorphism is a cofibration.

ME. The base extension of a map which is both a fibration
and a weak equivalence is a weak equivalence. The co-bage ex-
tension of a map which is both a cofibration and a weak equi-
valence is a weak equivalence,

M. Let X52v 82 bemaps in & . Then if two of the
maps f,g, and gf are weak equivalences, so is the third, Any
isomorphism is a weak equivalence.

Exemples. A. Let (¢ be the category of topological spaces
and continuous maps. Let fibrations in (5’ be fibrations in the
sense of Serre, let cofibrations be maps having the lifting pro-
'perty of Axiom M/ whenever p 1is both a Serre fibration and a
weak homotopy equivalence, and finally let weak equivalences in
C': be weak homotopy equivalences (maps inducing isomorphisms for
the functions [K,*] where K 1s a finite complex). Then the
axioms are satisfied. (This s
Chapter II, §3.)

proved |n

B. Let (/ be an abelian category with éufficimtly many
projectives and let (€ = . (d) be the category of complexes
K = {Kq,qu = K,_1] of objects of ({ which are bounded be-
low (Kq =0 if << 0). Then /& 1is a model category where
weak equivalences are maps inducing isomorphisms on homology,
where fibrations are the epimorphisms in (¢ , and where cofi-
brations are maps 1 which are injective and such that Coker i
is a complex having a projective object of (7 in each dimension.

2
3
4

L PRy M

i

A TR e e T

¢-—Let 2 be-the—category of semi-simpiicial sets—and ——

. let fibrations in (° be Kan fibrations, cofibrations be in-
jective maps, and let the weak equivalences be maps which be-

. come homotopy equivalences when the geometric realization

functor is applied. Then & 1= a model category (Chﬂ',j‘?ﬁ).

For the rest of thls section & will denote a fixed model

. category.

Definition 2: Let £ (resp. e) denote "the" initial
(resp. final) object of the category (& .
An object X will be called cofibrant if @ - X 4is a cofibra-

(These exist by MO.)

tion and fibrant if X - e 1s a fibration. A map which is both

a fibration (resp. cofibration) and a weak equivalence will be

called a trivial fibration (resp. trivial cofibration.)

Remark: In example A every object is fibrant and the
class of cofibrant objects includes CW complexes, and more
generally any space that constructed by a well ordered succes-
slon of attaching cells. In example B every object is fibrant
and the cofibrant objects are the projective complexes (that is,
complexes consisting of projective objects--these are not pro-
,jectivelob‘jects in c+(c?)}. In example C every object is cofi-
brant and the fibrant objects are those s.s. sets satisfying

the extension condition.

Before stating the next definition we recall some standard
notation concerning fibre products and introduce some not-so-

standard notation for cofibre products. Given a diagram
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We will say that a map i: A --> B has the left
lifting property with respect to a class S of maps in a

category C if the dotted arrow exists in any diagram of

the form
A————3X
s7
(1) i o £
’/
B~ >y

where £ is in the class S. Similarly f has the right
lifting property with respect to S if the dotted arrow
exists in any diagram of the form (1) where i is in S.

Definition 1: A model category C is said to be

closed if it satisfies the axiom

M6: Any two of the following classes of maps in c -
the fibrations, cofibrations, and weak equivalences -
determine the third by the following rules:

a) A map is a fibration <==> it has the right
lifting property with respect to the maps which are both
cofibrations and weak equivalences

b) A map is a cofibration <=> it has the left
lifting property with respect to the maps which are both
fibrations and weak equivalences,

c) A map f is a weak equivalence <==> f = uv where

v has—the left Iifting property with respect to the class
of fibrations and u has the right lifting property with
respect to the class of cofibrations.
Remarks: 1. It is clear that M6 implies M1, M3, and
M4. Hence a closed model category may be defined using
axioms MO,M2,M5, and M6,
2. Examples A, B, and C of §l1 are all closed model
categories (see proposition 2 below). Model categories
which are not closed may be constructed by reducing the
class of cofibrations but keeping M2, M3, and M4 valid.
For example, take example B, §l, where A is the category
of left R modules, R a ring, and define cofibrations to
be injective map@g'in C,(A) such that Coker f is a
complex of free R modules,
In the following C is a fixed model category and we
retain the notations of the previous sections.
Lemma 1: Let p: X —> Y be a fibration in Cosr
The following are equivalent.
i) p has the right lifting property with respect
to the cofibrations.
(ii) p 1is the dual of a strong deformation retract
map in the following precise sense: there is a map
t: ¥ —> X with pt=id_, and there is a homotopy

Y
h: XxI —> X from tp to idx with ph = pa.



AXIOMS OF A MODEL CATEGORY IN LABELLED COMMUTATIVE
DIAGRAMMES NOTATION.

We state the axioms of Quillen of a model category in their original form.
In particular, we follow the axiom numeration of Quillen(Homotopical Al-
gebra).

Notation (Commutative diagrammes). Commutative diagrammes will be
used systematically throughout this note. Most importantly, diagrammes
will be used to introduce new definitions. We introduce our notation for
commutative diagrams. The properties defined are always properties of ar-
rows. To distingish the arrows in the diagrammes which are the object of
the definition we will denote them by <4 or ». We will mostly use commuta-
tive diagrammes to introduce V3-definitions. In such cases solid arrows will
be universally quantified and dashed arrows will be existentially quantified.
Whenever definitions involving higher quantifier depth (such as in Figure )

a legend will be provided. As in Figure 1, we will use the notation X =25 y
to mean “if the commutative diagram is true, then X — 'Y is labeled (-)".

Notation X Y indicates uniqueness. A legend on the right might be used
to indicate the quantifiers and their order (from top to bottom). Unless
stated otherwise, solid arrows are quantified universally, and dotted arrows
are quantified existentially.

Axiom (M0). The category C is closed under finite projective and injective
limits. It is knoun that it is enough to require ezxistence of initial objects,
terminal objects and pullbacks and pushouts.

(1d) (id)
_—— _—




(AR

i

Axiom (M1). The two following lifting properties for labeled arrows hold:

. —_—_—_.-‘" . . —?‘ .
(we) & N ) _.' (f)

Axiom (M2). The following two ¥3-diagrams hold:

(we) - ) @ . (wf)

Axiom (M3(ccce fif)). Fibrations and cofibrations are stable under compo-
sitions. Namely, the following two ¥Y3-diagrams hold:

ANT——— .

Axiom (M2(cwf)). Isomorphismas are fibrations, co-fibrations and weak equiv-
alences:

Figure 1: The figure reads: if the commutative ¥3-diagramme is true then the left
arrow 1s labeled (wef).
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Axiom (M3(f « f,e¢ — ¢)). Fibrations and cofibrations are stable under
base change and co-base change respectively. I.e. the following diagrammes
are lrue:

Axiom (M4(wf «— w,we — w)). The base extension of an arrow labeled
{we) and the co-base extension of an arrow labeled (wf) are both labeled (w):

(wf)

The last axiom assures that weak equivalence is close enough to being
transitive:

Axiom (M5, Two out of three). In a triangluar diagram, if any two of the
arrows are labeled (w) so is the third

7. S e i

() (w) ' )

b







