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1. Summary

We interpret category-theoretically several of the Shelah dividing lines in
model theory, using a simplicial category of generalised topological spaces.
This makes formal the intuition that these properties of models and formulas
are defined in terms of avoiding certain “bad” infinite combinatorial structures:
the same diagram chasing “trick”, the lifting property, applied to (a morphism
associated with) a combinatorial structure defines the associated no-tree- or
no-order- property of (objects associated with) models. The list of properties
includes NOP, NTP, NATP, NTPi, NSOPi (i⩾1) and NIP.
A logician should find amusing a metamathematical aspect—how trivial is all
we do here: take the text of the usual definition of NTP in Tent-Ziegler [5]
and “transcribe” it line by line into the simplicial language in an oversimplified
manner. [9] does the same with a few other textbook definitions including that
of a topological space and a limit of a filter in (Bourbaki, General Topology).

2. A category of generalised topological spaces

We define our generalised topological spaces to be simplicial objects of the
category of filters on sets, or, equivalently, the category of finitely additive
measures taking values 0 and 1 only. Thus a generalised topological space is
a simplicial set equipped, for each n ≥ 0, with a filter on the set of n-simplices
such that under any face or degeneration map the preimage of a large set is
large.
These spaces generalise uniform and topological spaces, filters, and simpli-
cial sets, and the concept is designed to be flexible enough to formulate cate-
gorically a number of standard basic elementary definitions in various fields,
e.g. in analysis, limit, (uniform) continuity and convergence, equicontinuity of
sequences of functions; in algebraic topology, being locally trivial and geo-
metric realisation; in geometry, quasi-isomorphism; in model theory, stability,
simplicity and several Shelah’s dividing lines [3,9].

3. The definition of generalised topological spaces

Definition (Continuous maps of filters). Let X and Y be sets equipped with
filters (resp. measures). Call a map f ∶ X → Y continuous iff the preimage of
a big (resp. full measure) set is necessary big (resp. has full measure).
Definition (Generalised topological spaces). Let Å denote the category
formed by sets equipped with filters, and their continuous maps. Its category
of simplicial objects

sÅ ∶= Functors(Non-emptyFiniteLinearOrdersop,Å)
is our category of generalised topological spaces.
In sÅ a topological, resp. uniform, space X is the simplicial set represented
by the set of points of X, where X × X is equipped with the filter of non-
uniform neighbourhoods of the diagonal of form ⊔Ux a neighbourhood of x∈X{x}×Ux,
resp. the uniformity filter, and eachXn is equipped with the coarsest filter such
that all the simplicial maps Xn →X ×X are continuous. Geometric realisation
is a space of maps in sÅ from [0, 1]⩽ to a simplicial set [3,8,9].

4. A precise meaning for “n-tuple being sufficiently small” for n > 2

A topological structure on a set enables one to give an exact meaning to the
phrase “whenever x is sufficiently near a, x has the property P (x)”, whereas
a generalised topological space enables one to give an exact meaning to
the phase “every n-tuple of sufficiently similar points x1, x2, ..., xn has property
P (x1, ..., xn)” for n > 1. (Uniform spaces were introduced to do this for n = 2
and “similar” meaning “at small distance”, as explained in (Bourbaki, General
Topology; Introduction)). In a topological space, this exact meaning is that
the set {x ∣P (x)} belongs to the neighbourhood filter of a point a. Similarly,
in a generalised topological space, it is that the set {(x1, ..., xn) ∣P (x1, ..., xn)}
belongs to the “neighbourhood” filter defined on n-simplices.
In model theoretic examples, similarity may mean either indiscernability or
realising sufficiently many instances of a formula: n-simplices are tuples of
elements of a model, and the “neighourhood filter” on n-tuples consists of
all subsets containing all “sufficiently” indiscernible tuples or realising “suffi-
ciently many” instances of a formula. This exact meaning enables us to bring
the standard intuition of topology to model theory.

5. The definition of NTP (no tree property)

For a binary formula ϕ(x, y), call a tuple (ai ∶ 0 < i < n) ϕ-consistent iff the
set (ϕ(x, ai) ∣ 0 < i < n) is consistent. Below <ωω, resp. ωω, denotes the tree
formed by finite, resp. countably infinite, sequences of natural numbers.

———–
What do you gain by pretending so ?

.
Definition (Tent-Ziegler, 7.2.1). A formula ϕ(x, y) has the tree property (with
respect to k) if there is a tree of parameters (as ∣ ∅ ≠ s ∈ <ωω) such that:
a) For all s ∈ <ωω, each k-tuple of distinct siblings (asi ∣ i < ω) is ϕ-inconsistent.
b) For all branches σ ∈ ωω the tuple (as ∣ ∅ ≠ s ⊆ σ) is ϕ-consistent.

Read the definition of NTP line by line
and rephrase it in terms of generalised topological spaces

6. The space associated with a formula

The definition cares about ϕ-consistency of tuples in a model M . Therefore
we consider the simplicial set M● ∶ Non-emptyFiniteLinearOrdersop → Sets

M●(n⩽) ∶= Homsets(n⩽, ∣M ∣) = ∣M ∣n, n > 0

and equip each ∣M ∣n with the filter generated by a single subset:
the subset of ϕ-consistent n-tuples.

7. Rewriting the positive requirement of item b)

View a tree as a partial order under prefix relation.
The definition also cares about branches of the tree T ∶= <ωω, i.e.
sets of increasing tuples

T ⩽
● (n⩽) ∶= Hompreorders(n⩽, T ⩽), n > 0.

An easy simplicial argument (as both are representable) shows that
a tree of parameters (as ∣ ∅ ≠ s ∈ T ) is the same as a map T ⩽

● →M●
We want this map to be continuous iff the tree of parameters satisfies the pos-
itive requirement on a witness of the tree property, i.e. item b). By definition,
this means that the subset of ϕ-consistent tuples in each ∣M ∣n contains all the
linearly ordered (in the tree) tuples of parameters. This becomes precisely
what is required by the definition of continuity if we

equip each T ⩽
● (n⩽) with the indiscrete filter.

8. Rewriting the negative requirement of item a)

The negative requirement of the definition (i.e. item a)) cares about unordered
tuples of parameters. To capture arbitrary tuples, consider the simplicial set

∣T ∣●(n⩽) ∶= Homsets(n⩽, ∣T ∣) = ∣T ∣n, n > 0

We want the map ∣T ∣● Ð→M● to be continuous iff there is a witness of failure
of the negative requirement (i.e. a ϕ-consistent k-tuple of distinct siblings) in
each subtree of shape required by the definition (i.e. a copy of <ωω). We turn
this requirement into a definition of filters on ∣T ∣●: a subset of ∣T ∣●(n⩽) is big iff
it contains a tuple with k distinct siblings (in the subtree) from each subtree

of T isomorphic to <ωω, and is closed under permutations.
A Ramsey theory argument verifies this indeed defines a filter. (A technicality:
we need to slightly modify these filters to ensure T ⩽

● → ∣T ∣● is continuous, and
insist that big subsets also contain all the linearly ordered tuples of vertices.)

9. Finally, a reformulation via the lifting property

Finally, we see that
a continuous map T ⩽

● →M● extends continuously to ∣T ∣● ⊃ T ⩽
●

iff
the tree of parameters (as ∣ ∅ ≠ s ∈ T ) satisfying item b),

has a subtree of shape <ωω failing item a).
The latter is equivalent to failure of the tree property when quantified over ai’s;
the former is represented by a commutative diagram known as lifting property:

This is our category-theoretic interpretation of NTP (no tree property). The
same method leads to similar diagrams defining NTPi, NATP, NSOP1 (new
item a) leads to new filters), and NOP, NSOPi, i ≥ 3 (also need to modify M●).

10. Research directions

• The lifting property is used to axiomatise homotopy theory as the notion of
a Quillen model category. Is there a homotopy theoretic interpretation of
the Shelah dividing lines in model theory ? Say, what is the model theoretic
meaning of the number of connected components of the space of maps
from T ⩽

● to M● where, perhaps, the space of maps is as defined in the sÅ
reformulation of geometric realisation ?

• Pillay-Starchenko [1,Cor.1.2] uses ϕ-consistent tuples (take ϕ ∶= E there),
i.e. data captured byM●, and so does Simon [2,Def.1.1] to define generically
stable measures. Malliaris [6] studies Szemerédi regularity of M● viewed as
a multigraph. Reformulate this in terms of sÅ. Can definable and Szemerédi
regularity be reformulated in terms of our generalised spaces ?

• Reformulating in sÅ the Bourbaki definition of a limit of a filter on a topologi-
cal space defines a notion of limit of an arbitrary morphism in sÅ reminiscent
of homotopy, see §23. A combinatorial structure on a model, say an NTP
tree, is a morphism in sÅ, hence there is a notion of a limit of a combinatorial
structure on a model. Is it useful? Can one define homotopy of models?
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11. Appendix: The lifting property

A ∀t //

f
��

C
g
��

B ∀b //

∃d
>>

D

Definition. A morphism A
fÐ→ B in a category has the left lift-

ing property with respect to a morphism C
gÐ→D and g also has

the right lifting property with respect to f , denoted f ⋌ g, iff for
each map A tÐ→ C and B bÐ→D such that f ○b = t○g, there exists
B

dÐ→ C such that t = f ○ d and b = d ○ g.
For a class C of morphisms in a category, its left orthogonal C⋌l with respect
to the lifting property, respectively its right orthogonal C⋌r, is the class of all
morphisms which have the left, respectively right, lifting property with respect
to each morphism in the class C.
It is clear that C⋌lr ⊃ C, C⋌rl ⊃ C, C⋌l = C⋌lrl, and C⋌r = C⋌rlr. The class C⋌r

is always closed under retracts, pullbacks, (small) products (whenever they
exist in the category) and composition of morphisms, and contains all isomor-
phisms. Meanwhile, C⋌l is closed under retracts, pushouts, (small) coprod-
ucts and transfinite composition (filtered colimits) of morphisms (whenever
they exist in the category), and also contains all isomorphisms. A desirable
property, sometimes proved by a Quillen small object argument, is that each
morphism f decomposes as f = fl○flr and f = frl○fr where fl ∈ C⋌l, flr ∈ C⋌lr,
fr ∈ Cr, and frl ∈ C⋌rl.
Taking the orthogonal (”negation”) of a class C is a simple way to define a
class of morphisms excluding non-isomorphisms from C, in a way which is
useful in a diagram chasing computation. A useful intuition is to think that the
property of left-lifting against a class C is a kind of negation of the property of
being in C, and that right-lifting is also a kind of negation, and for this reason
it is convenient to say that

property C⋌l, resp. C⋌r, is left, resp. right, Quillen negation of property C.

12. Appendix: Examples of the lifting property

Iterated lifting property (=iterated Quillen negation) is used to define a number
of textbook notions starting from an explicitly given list of (counter)examples
or a simple property, see [4] for a list. We sketch the simplest examples.
Example. It is easy to verify that
• A map is surjective iff it has the right lifting property with respect to the map
from the emptyset to a singleton (the archetypal example of non-surjection
∅ → {●}), and it is injective iff it has the right lifting property with respect to
the map gluing together two points (the archetypal non-injection example of
{●, ●}→ {●})

These statements are represented by the following commutative diagrams:
∅ //

��

X

∴(surj)
��

{●} //

>>

Y

{●, ●} //

��

X

∴(inj)
��

{●} //

<<

Y

where ∴ marks the property being defined.

13. Rewriting combinatorial characterisations of other dividing lines

Let us now clarify what we said earlier: The same method leads to the same
diagram defining NTPi, NATP, NSOP1 (new item a) leads to new filters), and
NOP, NSOPi, i ≥ 3 (also need to modify M●)’. We also observe that NFCP (no
finite cover property) means “of infinite simplicial dimension”.

14. Rewriting NTP1 (no tree property)

Let us show the same method leads us to rewrite NTP1 in sÅ. The cases of
NATP and NSOP1 are similar.
Definition. A formula ϕ(x, y) has TP1 (tree property 1) iff there is a tree of
parameters (as ∣ ∅ ≠ s ∈ <ωω) such that:
a) for each pair η, µ ∈ ⩽ωω of incomparable elements, the pair {aµ, aη) is ϕ-

inconsistent.
b) For all branches σ ∈ ωω the tuple (as ∣ ∅ ≠ s ⊆ σ) is ϕ-consistent.
Note that the only difference from the definition of NTP is in item a). There-
fore, the only the only difference from the reformulation of the definition of
NTP is in the definition of filters on ∣T ∣●.
As in the case of NTP, we want the map ∣T ∣● Ð→M● in sÅ to be continuous iff
there is a witness of failure of the negative requirement of item a). In case of
NTP1, it means that we define the filters on ∣T ∣● by:
a subset of ∣T ∣●(n⩽) is big iff it contains a pair of incomparable vertices from

each subtree of T isomorphic to ⩽ωω and all of T ⩽
● (n⩽),

and is closed under permutations.

15. NSOP1

Definition. A formula ϕ(x, y) has SOP1 iff there are (aη ∶ η ∈ <ω2) such that
a)∀ η, µ ∈ <ω2, if µ̂ 0 ≺ η, then {ϕ(x, aµˆ1), ϕ(x, aη)} is inconsistent.
b) for all branches σ ∈ ω2, {ϕ(x, aσ∣n) ∶ n < ω} is consistent.
The reformulation is exactly the same except that we take the tree T ∶= <ω2,
and equip ∣T ∣●(n⩽) with the filter

a subset U of ∣T ∣●(n⩽) is big iff for each subtree of T isomorphic to <ω2 there
is a pair η,µ ∈ <ω2 , such that µ0 ≺ η and U contains all tuples containing both
η and µ1, where µ0 and µ1 denote 0- and 1- descendants of µ in the subtree.

16. Rewriting No-Order-Properties

The analysis of No-Order-Properties is similar but different mathemati-
cal structures arise. Instead of an infinitely branching tree T ⩽ No-Order-
Properties consider the tree consisting of a single branch, i.e. an increasing
sequence.
The order properties care about consistency of instances of a formula with
ordered variables, hence we need to modify the filters on ∣M ∣● to reflect that.

17. Rewriting NOP (no order property)

Recall a formula ϕ(−,−) has NOP (no order property) iff there no sequence
(ai)i∈ω such that ϕ(ai, aj)⇔ i ≤ j.
Because NOP cares about consistency of instances of a formula on tuples of
ordered variables, equip M●(n⩽) ∶=Mn with the filter of subsets containing

{(a1, .., an) ∈Mn ∶ i < j&ai ≠ aj Ô⇒ ϕ(ai, aj)}

Then rewrite the standard definition of NOP in a form with two items repre-
senting positive and negative requirements.
Definition. A formula ϕ(x, y) has NOP iff there is no sequence (ai)i∈ω such
that
a) for i < j, ϕ(aj, ai) is false.
b) for i < j, ϕ(ai, aj) holds.
In analogy with NTP, think of the sequence as a tree T ∶= ω⩽ with a single
branch, and equip ω⩽

●(n⩽) ∶= Hompreorders(n⩽, ω⩽), n > 0. with indiscrete fil-
ters. Let ∣ω∣NOP

● (n⩽) ∶= HomSets(n⩽, ∣ω∣) = ∣ω∣n, n > 0. where a subset U of
∣ω∣NOP

● (n⩽) = ∣ω∣n is large iff it is closed under permutations and
each infinite subsequence (aij)j of ω has a subsequence

(aij1, .., aijn) ∈ U where j1 > ... > jn
With these definitions, ω⩽

● → ∣ω∣NOP
● ⋌ M● → ⊺ defines NOP.

18. NSOP` for ` ≥ 3 (no strict order property)

Definition. For ` ⩾ 3, a formula ϕ(x, y) has SOP` (`-strong order property) iff
a) the set {ϕ(x1, x2), . . . , ϕ(xn−1, xn), ϕ(x`, x1)} is inconsistent.
b) there are (ai)i<ω such that ⊧ ϕ(ai, aj) for all i < j
A theory is NSOP` if no formula has SOP`.
Equivalently, NSOP` means that “item a) implies NOP”.
Let ∣`∣●(n⩽) ∶= HomSets(n⩽, ∣`∣) = ∣`∣n, n > 0 denote the simplicial set represented
by the set {1, 2, ...`} with ` elements which we denote by ∣`∣. Equip ∣`∣●(2⩽) = ∣`∣2
with the filter of subsets containing

{(1, 2), (2, 3), ..., (` − 1, `), (`, 1), (1, 1), .., (`, `)},
and for each n > 0 equip ∣`∣●(n⩽) = ∣`∣n with the coarsest filter such that all
simplicial maps ∣`∣●(n⩽) → ∣`∣●(2⩽) are continuous, i.e. a subset is big iff it con-
tains each element of form (i, i, .., i) and (i, .., i, i + 1, .., i + 1), 1 ⩽ i ⩽ `, and
(`, ..`, 1, ..., 1).
Then a map ∣`∣`-cycle

● Ð→ M●, i ↦ ai is continuous iff either a1 = ... = a` or
M ⊧ {ϕ(aj1, aj2), . . . , ϕ(aj`′−1, a`′), ϕ(xa′`, aj1)} holds for the subsequence of (ajk)k
of distinct elements. Hence, item a) holds iff ∣`∣`-cycle

● Ð→ ⊺ ⋌ M● Ð→ ⊺. Then
NSOP⩽` ∶= NSOP1 ∨ .. ∨NSOP` can be stated as:

∣`∣`-cycle
● Ð→ ⊺ ⋌ M● Ð→ ⊺ implies ω⩽

● → ∣ω∣NOP
● ⋌ M● → ⊺

19. NFCP (no finite cover property)

We also note that in the category sÅ of generalised topological spaces NFCP
(no finite cover property) means that M● is of infinite dimension. Recall that
“M● is of finite dimension” (as a simplicial object) means that the whole of M●
is fully determined by a finite piece of M●, namely there is N > 0 such that
for each n > N M●(n⩽) is the pullback of the diagram consisting of simplicial
maps M●(n⩽) → M●(m⩽) and M●(m⩽

1) → M●(m⩽
2) where m,m1,m2 < N . In

terminology of Malliaris [6,Remark 2.6] this is expressed by saying that “the
characteristic sequence < Pn > of ϕ has finite support”.

20. Stability and NIP

Both stability and NIP can be expressed in terms of indiscernible sequences.
Hence, we modify the filters on ∣M ∣● to reflect that: the filter on ∣M ∣●(n⩽) =Mn

is generated by sets of ϕ-indiscernible sequences with repetitions, i.e. se-
quences (ai)i such that ϕ(ai1, ..., air) ⇔ ϕ(aj1, ..., ajr) whenever i1 < ... < ir,
j1 < ... < jr, all the ai1, .., air are distinct, and all the aj1, ..., ajr are distinct. (If
you feel it is more natural, you may require each subsequence with distinct
elements to be part of an infinite ϕ-indiscernible sequence.)
This construction of M● generalises to formulas of arbitrary arity, and, more-
over, for arbitrary collections of formulas.
There is a forgetful functor sÅ Ð→ Top taking a generalised topological space
into a topological space (possibly empty). For a unary formula ϕ(−), it takes
M● defined above into the (usual) Stone space of ϕ-types.



21. Each indiscernible sequence is a set.

Let ω⩽,cof
● (n⩽) ∶= Hompreorders(n⩽, ω⩽), n > 0,

∣ω∣cof
● (n⩽) ∶= Homsets(n⩽, ∣ω∣) = ∣ω∣n, n > 0

equip ∣ω∣ = ω⩽,cof
● (1⩽) = ∣ω∣cof

● (1⩽) with the filter of cofinite subsets, and equip
each ω⩽,cof

● (n⩽), resp. ∣ω∣cof
● (n⩽), with the coarsest filter such that all simplicial

maps ω⩽,,cof
● (n⩽)→ ω⩽,cof

● (2⩽), resp. ∣ω∣cof
● (n⩽)→ ∣ω∣cof

● (2⩽), are continuous. Then
each (infinite) ϕ-indiscernible sequence is a ϕ-indiscernible set iff

ω⩽,cof
● Ð→ ∣ω∣cof

● ⋌ M● Ð→ ⊺

22. Each indiscernible sequence is eventually indiscernible over any parameter

Let M[+1]●(n⩽) ∶= Homsets((n + 1)⩽, ∣ω∣) = ∣M ∣ × ∣M ∣n, n > 0,
and equip ∣M ∣n+1 =M[+1]●(n⩽) with the filter generated by subsets
{(a0, a1, ..., an) ∶ the seq. (a1, ..., an) is ϕ-indiscernible over a0}, ϕ a formula

One can check that the map M[+1]● → M●, (a0, a1, ..., an) ↦ (a1, .., an) forget-
ting the first coordinate, is continuous.
Each indiscernible sequence in M is eventually indiscernible over any param-
eter iff

{0}● → ω⩽,cof
● ⋌ M[+1]● →M●

where {0}●(n⩽) = {0} is equipped with the filter containing the empty set, and
{0}● → ω⩽,cof

● is the map (0, .., 0) ↦ (0, .., 0). Note that the map {0}● → M[+1]●
picks an arbitrary element of M .

23. Speculations: limits and contractible models ?

In sÅ the notions of homotopy and limit are closely related:
the same construction in sÅ describes both
• picking a homotopy contracting a topological space (via singular complexes)
• taking a limit of a filter on a topological space,

and
• applies to an arbitrary morphism in sÅ.

Can one somehow apply this construction to models ? One may perhaps
hope that this construction can somehow be used to define a useful notion
of a contractible (generalised topological space associated with a) model, or
that the notion of a limit of a combinatorial structure on a model, say a tree
as in NTP, is useful (i.e. taking a limit of the morphism associated with a com-
binatorial structure on a model, such as those arising in the lifting properties
describing NTP).
Below we sketch this construction; see [9,§3] for more details. We warn the
reader that our considerations here are unusually preliminary, and apologise
for including them; our excuse is that we are likely unable to pursue them.
Definition ((Limit in a generalised space)). Let F● ∶ F● Ð→ X● be a morphism
in sÅ. A morphism x● ∶ X● Ð→ X● ○ [+1] is said to be a limit morphism (or
simply a limit) of F●, or a homotopy contracting F● within X●, iff the following
diagram commutes: X● ○ [+1]

pr2,3,...
��

F●

x●

::

F● //X●
where [+1] ∶ ∆Ð→ ∆ is the shift

n↦ n + 1, f ∶n→m z→ f ′ ∶n + 1→m + 1, f ′(0) ∶= 0; f ′(i + 1) ∶= f(i) for i ⩾ 0,

and X● ○ [+1]Ð→X● is the expected map “forgetting the first coordinate”.
To recover the Bourbaki definition of a limit of a filter F on a topological space
X, associate with F ∈ ObÅ the simplical set represented by X

F●(n⩽) ∶= Hom(n⩽,X)
equip F●(1⩽) = X with F, and equip each F●(n⩽) ∶= Hom(n⩽,X) with the finest
filter such that the diagonal map F●(1⩽) Ð→ F●(n⩽) is continuous. A verifi-
cation shows that (possibly discontinuous) liftings correspond to points of X
(indeed, as simplicial sets, F● is connected, and X●[+1] is the disjoint union
of connected component which are copies of X● parametrised by X), and the
continuity requirement means precisely that they are limit points.
Example (Limit of the tree in NTP). Let (as ∣ ∅ ≠ s ∈ <ωω) be a tree of pa-
rameters such that no subtree (of the same shape) is a counterexample to
NTP of a formula ϕ(x, y), and all branches are ϕ-consistent; recall this is the
same as a map ∣T ∣NTP

● Ð→ Mϕ-NTP
● in sÅ. A limit or contracting homotopy of

the tree (as ∣ ∅ ≠ s ∈ <ωω) is an element a ∈ M such that (a) no subtree (of
the same shape) of (as ∣ ∅ ≠ s ∈ <ωω) is a counterexample to NTP of formula
ϕ(x, a)&ϕ(x, y), and (b) ϕ(x, a), ϕ(x, as1), ..., ϕ(x, asn) is consistent whenever
n > 0 and s1 < ... < sn lie on the same branch of <ωω.
Thus, “each NTP tree of parameters is contractible” would mean that for each
tree of parameters on <ωω (i) with ϕ(x, y)-consistent branches and (ii) having
no subtree of the same shape <ωω with TP for ϕ(x, y), there is some a ∈ M
such that it has the same properties with respect to ϕ(x, a)&ϕ(x, y).
To explain this example, first note that, as simplicial sets (i.e. if we ignore the
filters), Mϕ-NTP

● [+1] is the disjoint union of connected component which are
copies of Mϕ-NTP

● parametrised by elements of M , and that ∣T ∣● is connected.
Thus to give a map of simplicial sets ∣T ∣● Ð→ Mϕ-NTP

● is the same as to pick
a point a0 ∈ M . The continuity requirement on ∣T ∣NTP

● Ð→ Mϕ-NTP
● means pre-

cisely items (a) and (b).
Can localisation and persistence of configurations in Mϕ-NTP

● of Malliaris [7,8]
be rephrased in terms of sÅ limits and homotopies of this kind ? Can NIP be?

24. Contracting homotopy as a limit

Now let F and X denote “nice” topological spaces.
Remark (Homotopy as limit of singular complexes).A map h0 ∶ F Ð→X is con-

tractible, i.e. it factors through the cone of F as F
x↦(x,0)ÐÐÐÐ→ F×[0, 1]/F×{1} hÐ→X,

iff in sSets or sÅ the map singF● Ð→ singX● of singular complexes has a limit
i.e. there is a commutative diagram

singX● ○ [+1]
pr2,3,...

��

singF●

h●

77

//singX●
Recall that the singular complex is defined using simplices ∆n =
Hompreorders([0, 1]⩽, (n + 1)⩽) as “test spaces”:

singF●((n + 1)⩽) ∶= HomTop(∆n, F ),
singX●((n + 1)⩽) ∶= HomTop(∆n,X),

singX● ○ [+1]((n + 1)⩽) = HomTop(∆n × [0, 1]/∆n × {1},X)
where n ⩾ 0 and ∆n × [0, 1]/∆n × {1} is the cone of n-simplex ∆n.
To define a limit(=lifting) h●, take each δ ∶ ∆n → F in F●((n + 1)⩽) to h∗(δ) ∶
∆n × [0, 1]/∆n × {1}→X in X●((n + 2)⩽) defined by

h∗(δ)(x, t) ∶= h(δ(x), t).
To see the other direction, note that h● ∶ F● Ð→ X●[+1] takes a singular sim-
plex δ ∶ ∆n Ð→ F into h●(δ) ∶ ∆n+1 = ∆n × [0, 1]/∆n × {1} Ð→ X such that
δ ○ h0 = h●(δ)∣∆n×{0}, i.e. each δ ∶ ∆n Ð→ F Ð→ X factors through the cone of
∆n. A verification using functoriality shows that the same factorisation holds
for Sn = ∂∆n+1, which means exactly that h0 is weakly contractible, and for
“nice” topological spaces contractible and weakly contractible are equivalent.
Remark (Homotopy as limit of the fibre). A map h ∶ F × [0, 1]/F × {1} Ð→ X
continuous in a neighbourhood of “the top of the cone” point F × {1} is the
same as a map in sÅ

F● × ([0, 1]1)● Ð→X●[+1]
(x1, .., xn, t1, .., tn)↦ (h(x1, 1), h(x1, t1), h(x2, t2), ..., h(xn, tn))

where [0, 1]1 denotes the interval [0, 1] equipped with the filter of neighbour-
hoods of point 1, and F●,X● denote the generalised topological spaces corre-
sponding to F and X.
In other words, sÅ can express infinitesimally/”sufficiently” short” homotopies:
in an expressive language, we may say that ht ∶ F Ð→ X, t ∈ [0, 1], converges
at 0 iff there is ε > 0 such that h∣[0,ε] is a homotopy contracting F in X.

25. Homotopy theory for a model ?

A standard way to modify the definition of sing ∶ TopÐ→ sSets (or nerve ∶ CatÐ→
sSets) is to use instead of simplices another cosimplicial “test” space, i.e. take
a functor l● ∶ Non-emptyFiniteLinearOrdersÐ→ sÅ and set

singX●(n⩽) ∶= Hom(l●(n⩽),X)
where Hom may mean a space (rather than merely a set) of maps, e.g. in-
ternal hom or as defined in [8]. This suggest that we find a cosimplicial “test”
object in sÅ such that Hom(l●(n⩽),M●) is meaningful in model theory, perhaps
by finding first a sequence of interesting combinatorial structures.
Alternatively, do something like what we did with NTP: find a definition in
model theory that has the pattern of the diagram defining limit in sÅ. Say,
you’d like to see (force?) that NTPk has pattern of πn(X) = 0 e.g. that
T ⩽
● Ð→ ∣T ∣NTPk● ⋌ Mϕ-NTP

● → ⊺ has the pattern of ∂∆n+1 → ∆n+1 ⋌ X → ⊺.
defining πn(X) = 0 in sSets. Hence, you’d want to see how monotone maps
(n + 2)⩽ → (n + 2)⩽ would act on ∣T ∣NTPk● (but not T ⩽

● ). You’d also want this ac-
tion if you want ∣T ∣NTPk● to be part of a cosimplicial object used to define sing.
(Note that in topology there is no natural action of these maps on Dn+1 occur-
ring in Sn → Dn+1 ⋌ X → ⊺ defining πn(X) = 0: you need to pick an arbitrary
homeomorphism of ball Dn+1 with the standard (n + 1)-simplex.)
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